aboutsummaryrefslogtreecommitdiff
path: root/source/aes.c
blob: 31f0661522ba7a6e7b6accf21a2e54198a184c14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// AES Implementation by X-N2O
// Started:  15:41:35 - 18 Nov 2009
// Finished: 20:03:59 - 21 Nov 2009
// Logarithm, S-Box, and RCON tables are not hardcoded
// Instead they are generated when the program starts
// All of the code below is based from the AES specification
// You can find it at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
// You may use this code as you wish, but do not remove this comment
// This is only a proof of concept, and should not be considered as the most efficient implementation

#include "compat.h"
#include "utils.h"
#include "aes.h"
 
#define AES_RPOL      0x011b // reduction polynomial (x^8 + x^4 + x^3 + x + 1)
#define AES_GEN       0x03   // gf(2^8) generator  (x + 1)
#define AES_SBOX_CC   0x63   // S-Box C constant
 
#define aes_mul(a, b) ((a)&&(b)?g_aes_ilogt[(g_aes_logt[(a)]+g_aes_logt[(b)])%0xff]:0)
#define aes_inv(a)    ((a)?g_aes_ilogt[0xff-g_aes_logt[(a)]]:0)

 
static unsigned char* g_aes_logt = NULL;
static unsigned char* g_aes_ilogt = NULL;
static unsigned char* g_aes_sbox = NULL;
static unsigned char* g_aes_isbox = NULL;
 
 
static inline uint32_t aes_subword(uint32_t w);
static inline uint32_t aes_rotword(uint32_t w);
static void aes_keyexpansion(aes_ctx_t *ctx);
static inline unsigned char aes_mul_manual(unsigned char a, unsigned char b); // use aes_mul instead

static void aes_subbytes(aes_ctx_t *ctx);
static void aes_shiftrows(aes_ctx_t *ctx);
static void aes_mixcolumns(aes_ctx_t *ctx);
static void aes_addroundkey(aes_ctx_t *ctx, int round);
 
static void aes_invsubbytes(aes_ctx_t *ctx);
static void aes_invshiftrows(aes_ctx_t *ctx);
static void aes_invmixcolumns(aes_ctx_t *ctx);


char* aes_crypt_s(aes_ctx_t* ctx, const char* input, uint32_t siz, uint32_t* newsiz, bool doEncrypt)
{
    uint32_t bsiz;
    if (doEncrypt) {
        bsiz = siz + (16 - siz%16);
    } else {
        bsiz = siz;
    }
    char* output = COMPAT(calloc)(1, bsiz+1);
    unsigned char inbuf[16];
    unsigned char outbuf[16];

    uint32_t i = 0;
    for (i = 0; i < bsiz; i=i+16) {
        uint32_t maxsiz;
        if (doEncrypt && bsiz-i <= 16) {
            maxsiz = siz%16;
        } else maxsiz = 16;
        COMPAT(memset)(&inbuf[0], '\0', 16);
        COMPAT(memset)(&outbuf[0], '\0', 16);
        COMPAT(memcpy)( (void*)&inbuf[0], (void*)(input+i), maxsiz);
        if (doEncrypt) {
            aes_encrypt(ctx, inbuf, outbuf);
        } else {
            aes_decrypt(ctx, inbuf, outbuf);
        }
        COMPAT(memcpy)( (void*)(output+i), (void*)&outbuf[0], 16);
    }
    if (newsiz)
        *newsiz = bsiz;
    return output;
}

void aes_randomkey(unsigned char* keyout, uint32_t keyLen)
{
    __pseudoRandom(keyout, keyLen);
} 
 
void aes_init()
{
    int i;
    unsigned char gen;

    g_aes_logt  = COMPAT(calloc)(sizeof(unsigned char), 256);
    g_aes_ilogt = COMPAT(calloc)(sizeof(unsigned char), 256);
    g_aes_sbox  = COMPAT(calloc)(sizeof(unsigned char), 256);
    g_aes_isbox = COMPAT(calloc)(sizeof(unsigned char), 256);
 
    // build logarithm table and it's inverse
    gen = 1;
    for(i = 0; i < 0xff; i++) {
        g_aes_logt[gen]  = i;
        g_aes_ilogt[i]   = gen;
        gen = aes_mul_manual(gen, AES_GEN);
    }
 
    // build S-Box and it's inverse
    for(i = 0; i <= 0xff; i++) {
        char bi;
        unsigned char inv = aes_inv(i);
 
        g_aes_sbox[i] = 0;
        for(bi = 0; bi < 8; bi++) {
            // based on transformation 5.1
            // could also be done with a loop based on the matrix
            g_aes_sbox[i] |= ((inv & (1<<bi)?1:0)
                        ^ (inv & (1 << ((bi+4) & 7))?1:0)
                        ^ (inv & (1 << ((bi+5) & 7))?1:0)
                        ^ (inv & (1 << ((bi+6) & 7))?1:0)
                        ^ (inv & (1 << ((bi+7) & 7))?1:0)
                        ^ (AES_SBOX_CC & (1 << bi)?1:0)
            ) << bi;
        }
        g_aes_isbox[g_aes_sbox[i]] = i;
    }
    // warning: quickhack
    g_aes_sbox[1] = 0x7c;
    g_aes_isbox[0x7c] = 1;
    g_aes_isbox[0x63] = 0;
}

void aes_cleanup(void)
{
    COMPAT(free)(g_aes_logt);
    COMPAT(free)(g_aes_ilogt);
    COMPAT(free)(g_aes_sbox);
    COMPAT(free)(g_aes_isbox);
}
 
aes_ctx_t *aes_alloc_ctx(unsigned char *key, uint32_t keyLen)
{
    aes_ctx_t *ctx;
    uint32_t rounds;
    uint32_t ks_size;
 
    switch(keyLen) {
        case 16: // 128-bit key
            rounds = 10;
            break;
 
        case 24: // 192-bit key
            rounds = 12;
            break;
 
        case 32: // 256-bit key
            rounds = 14;
            break;
 
        default:
            return NULL;
    }

    ks_size = 4*(rounds+1)*sizeof(uint32_t);
    ctx = COMPAT(calloc)(1, sizeof(aes_ctx_t)+ks_size);
    if(ctx) {
        ctx->rounds = rounds;
        ctx->kcol = keyLen/4;
        COMPAT(memcpy)(ctx->keysched, key, keyLen);
        ctx->keysched[43] = 0;
        aes_keyexpansion(ctx);
    }

    return ctx;
}
 
inline uint32_t aes_subword(uint32_t w)
{
    return g_aes_sbox[w & 0x000000ff] |
        (g_aes_sbox[(w & 0x0000ff00) >> 8] << 8) |
        (g_aes_sbox[(w & 0x00ff0000) >> 16] << 16) |
        (g_aes_sbox[(w & 0xff000000) >> 24] << 24);
}
 
inline uint32_t aes_rotword(uint32_t w)
{
    // May seem a bit different from the spec
    // It was changed because unsigned long is represented with little-endian convention on x86
    // Should not depend on architecture, but this is only a POC
    return ((w & 0x000000ff) << 24) |
        ((w & 0x0000ff00) >> 8) |
        ((w & 0x00ff0000) >> 8) |
        ((w & 0xff000000) >> 8);
}
 
void aes_keyexpansion(aes_ctx_t *ctx)
{
    unsigned long temp;
    unsigned long rcon;
    register unsigned int i;
 
    rcon = 0x00000001;
    for(i = ctx->kcol; i < (4*(ctx->rounds+1)); i++) {
        temp = ctx->keysched[i-1];
        if(!(i%ctx->kcol)) {
            temp = aes_subword(aes_rotword(temp)) ^ rcon;
            rcon = aes_mul(rcon, 2);
        } else if(ctx->kcol > 6 && i%ctx->kcol == 4)
            temp = aes_subword(temp);
        ctx->keysched[i] = ctx->keysched[i-ctx->kcol] ^ temp;
    }
}
 
inline unsigned char aes_mul_manual(unsigned char a, unsigned char b)
{
    register unsigned short ac;
    register unsigned char ret;
 
    ac = a;
    ret = 0;
    while(b) {
        if(b & 0x01)
            ret ^= ac;
        ac <<= 1;
        b >>= 1;
        if(ac & 0x0100)
            ac ^= AES_RPOL;
    }
 
    return ret;
}
 
void aes_subbytes(aes_ctx_t *ctx)
{
    int i;
 
    for(i = 0; i < 16; i++) {
        int x, y;
 
        x = i & 0x03;
        y = i >> 2;
        ctx->state[x][y] = g_aes_sbox[ctx->state[x][y]];
    }
}
 
void aes_shiftrows(aes_ctx_t *ctx)
{
    unsigned char nstate[4][4];
    int i;
 
    for(i = 0; i < 16; i++) {
        int x, y;
 
        x = i & 0x03;
        y = i >> 2;
        nstate[x][y] = ctx->state[x][(y+x) & 0x03];
    }
 
    COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state));
}
 
void aes_mixcolumns(aes_ctx_t *ctx)
{
    unsigned char nstate[4][4];
    int i;
     
    for(i = 0; i < 4; i++) {
        nstate[0][i] = aes_mul(0x02, ctx->state[0][i]) ^
                aes_mul(0x03, ctx->state[1][i]) ^
                ctx->state[2][i] ^
                ctx->state[3][i];
        nstate[1][i] = ctx->state[0][i] ^
                aes_mul(0x02, ctx->state[1][i]) ^
                aes_mul(0x03, ctx->state[2][i]) ^
                ctx->state[3][i];
        nstate[2][i] = ctx->state[0][i] ^
                ctx->state[1][i] ^
                aes_mul(0x02, ctx->state[2][i]) ^
                aes_mul(0x03, ctx->state[3][i]);
        nstate[3][i] = aes_mul(0x03, ctx->state[0][i]) ^
                ctx->state[1][i] ^
                ctx->state[2][i] ^
                aes_mul(0x02, ctx->state[3][i]);
    }
 
    COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state));
}
 
void aes_addroundkey(aes_ctx_t *ctx, int round)
{
    int i;
 
    for(i = 0; i < 16; i++) {
        int x, y;
 
        x = i & 0x03;
        y = i >> 2;
        ctx->state[x][y] = ctx->state[x][y] ^
            ((ctx->keysched[round*4+y] & (0xff << (x*8))) >> (x*8));
    }
}
 
void aes_encrypt(aes_ctx_t *ctx, const unsigned char input[16], unsigned char output[16])
{
    unsigned int i;
 
    // copy input to state
    for(i = 0; i < 16; i++)
        ctx->state[i & 0x03][i >> 2] = input[i];
 
    aes_addroundkey(ctx, 0);
 
    for(i = 1; i < ctx->rounds; i++) {
        aes_subbytes(ctx);
        aes_shiftrows(ctx);
        aes_mixcolumns(ctx);
        aes_addroundkey(ctx, i);
    }
 
    aes_subbytes(ctx);
    aes_shiftrows(ctx);
    aes_addroundkey(ctx, ctx->rounds);
 
    // copy state to output
    for(i = 0; i < 16; i++)
        output[i] = ctx->state[i & 0x03][i >> 2];
}
 
void aes_invshiftrows(aes_ctx_t *ctx)
{
    unsigned char nstate[4][4];
    int i;
 
    for(i = 0; i < 16; i++) {
        int x, y;
 
        x = i & 0x03;
        y = i >> 2;
        nstate[x][(y+x) & 0x03] = ctx->state[x][y];
    }
 
    COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state));
}
 
void aes_invsubbytes(aes_ctx_t *ctx)
{
    int i;
 
    for(i = 0; i < 16; i++) {
        int x, y;
 
        x = i & 0x03;
        y = i >> 2;
        ctx->state[x][y] = g_aes_isbox[ctx->state[x][y]];
    }
}
 
void aes_invmixcolumns(aes_ctx_t *ctx)
{
    unsigned char nstate[4][4];
    int i;
     
    for(i = 0; i < 4; i++) {
        nstate[0][i] = aes_mul(0x0e, ctx->state[0][i]) ^
                aes_mul(0x0b, ctx->state[1][i]) ^
                aes_mul(0x0d, ctx->state[2][i]) ^
                aes_mul(0x09, ctx->state[3][i]);
        nstate[1][i] = aes_mul(0x09, ctx->state[0][i]) ^
                aes_mul(0x0e, ctx->state[1][i]) ^
                aes_mul(0x0b, ctx->state[2][i]) ^
                aes_mul(0x0d, ctx->state[3][i]);
        nstate[2][i] = aes_mul(0x0d, ctx->state[0][i]) ^
                aes_mul(0x09, ctx->state[1][i]) ^
                aes_mul(0x0e, ctx->state[2][i]) ^
                aes_mul(0x0b, ctx->state[3][i]);
        nstate[3][i] = aes_mul(0x0b, ctx->state[0][i]) ^
                aes_mul(0x0d, ctx->state[1][i]) ^
                aes_mul(0x09, ctx->state[2][i]) ^
                aes_mul(0x0e, ctx->state[3][i]);
    }
 
    COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state));
}
 
void aes_decrypt(aes_ctx_t *ctx, const unsigned char input[16], unsigned char output[16])
{
    int i;
 
    // copy input to state
    for(i = 0; i < 16; i++)
        ctx->state[i & 0x03][i >> 2] = input[i];
 
    aes_addroundkey(ctx, ctx->rounds);
    for(i = ctx->rounds-1; i >= 1; i--) {
        aes_invshiftrows(ctx);
        aes_invsubbytes(ctx);
        aes_addroundkey(ctx, i);
        aes_invmixcolumns(ctx);
    }
 
    aes_invshiftrows(ctx);
    aes_invsubbytes(ctx);
    aes_addroundkey(ctx, 0);
 
    // copy state to output
    for(i = 0; i < 16; i++)
        output[i] = ctx->state[i & 0x03][i >> 2];
}
 
void aes_free_ctx(aes_ctx_t *ctx)
{
    COMPAT(free)(ctx);
}