// AES Implementation by X-N2O // Started: 15:41:35 - 18 Nov 2009 // Finished: 20:03:59 - 21 Nov 2009 // Logarithm, S-Box, and RCON tables are not hardcoded // Instead they are generated when the program starts // All of the code below is based from the AES specification // You can find it at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf // You may use this code as you wish, but do not remove this comment // This is only a proof of concept, and should not be considered as the most efficient implementation #include "compat.h" #include "utils.h" #include "aes.h" #define AES_RPOL 0x011b // reduction polynomial (x^8 + x^4 + x^3 + x + 1) #define AES_GEN 0x03 // gf(2^8) generator (x + 1) #define AES_SBOX_CC 0x63 // S-Box C constant #define aes_mul(a, b) ((a)&&(b)?g_aes_ilogt[(g_aes_logt[(a)]+g_aes_logt[(b)])%0xff]:0) #define aes_inv(a) ((a)?g_aes_ilogt[0xff-g_aes_logt[(a)]]:0) static unsigned char* g_aes_logt = NULL; static unsigned char* g_aes_ilogt = NULL; static unsigned char* g_aes_sbox = NULL; static unsigned char* g_aes_isbox = NULL; static inline uint32_t aes_subword(uint32_t w); static inline uint32_t aes_rotword(uint32_t w); static void aes_keyexpansion(aes_ctx_t *ctx); static inline unsigned char aes_mul_manual(unsigned char a, unsigned char b); // use aes_mul instead static void aes_subbytes(aes_ctx_t *ctx); static void aes_shiftrows(aes_ctx_t *ctx); static void aes_mixcolumns(aes_ctx_t *ctx); static void aes_addroundkey(aes_ctx_t *ctx, int round); static void aes_invsubbytes(aes_ctx_t *ctx); static void aes_invshiftrows(aes_ctx_t *ctx); static void aes_invmixcolumns(aes_ctx_t *ctx); char* aes_crypt_s(aes_ctx_t* ctx, const char* input, uint32_t siz, uint32_t* newsiz, bool doEncrypt) { uint32_t bsiz; if (doEncrypt) { bsiz = siz + (16 - siz%16); } else { bsiz = siz; } char* output = COMPAT(calloc)(1, bsiz+1); unsigned char inbuf[16]; unsigned char outbuf[16]; uint32_t i = 0; for (i = 0; i < bsiz; i=i+16) { uint32_t maxsiz; if (doEncrypt && bsiz-i <= 16) { maxsiz = siz%16; } else maxsiz = 16; COMPAT(memset)(&inbuf[0], '\0', 16); COMPAT(memset)(&outbuf[0], '\0', 16); COMPAT(memcpy)( (void*)&inbuf[0], (void*)(input+i), maxsiz); if (doEncrypt) { aes_encrypt(ctx, inbuf, outbuf); } else { aes_decrypt(ctx, inbuf, outbuf); } COMPAT(memcpy)( (void*)(output+i), (void*)&outbuf[0], 16); } if (newsiz) *newsiz = bsiz; return output; } void aes_randomkey(unsigned char* keyout, uint32_t keyLen) { __pseudoRandom(keyout, keyLen); } void aes_init() { int i; unsigned char gen; g_aes_logt = COMPAT(calloc)(sizeof(unsigned char), 256); g_aes_ilogt = COMPAT(calloc)(sizeof(unsigned char), 256); g_aes_sbox = COMPAT(calloc)(sizeof(unsigned char), 256); g_aes_isbox = COMPAT(calloc)(sizeof(unsigned char), 256); // build logarithm table and it's inverse gen = 1; for(i = 0; i < 0xff; i++) { g_aes_logt[gen] = i; g_aes_ilogt[i] = gen; gen = aes_mul_manual(gen, AES_GEN); } // build S-Box and it's inverse for(i = 0; i <= 0xff; i++) { char bi; unsigned char inv = aes_inv(i); g_aes_sbox[i] = 0; for(bi = 0; bi < 8; bi++) { // based on transformation 5.1 // could also be done with a loop based on the matrix g_aes_sbox[i] |= ((inv & (1<rounds = rounds; ctx->kcol = keyLen/4; COMPAT(memcpy)(ctx->keysched, key, keyLen); ctx->keysched[43] = 0; aes_keyexpansion(ctx); } return ctx; } inline uint32_t aes_subword(uint32_t w) { return g_aes_sbox[w & 0x000000ff] | (g_aes_sbox[(w & 0x0000ff00) >> 8] << 8) | (g_aes_sbox[(w & 0x00ff0000) >> 16] << 16) | (g_aes_sbox[(w & 0xff000000) >> 24] << 24); } inline uint32_t aes_rotword(uint32_t w) { // May seem a bit different from the spec // It was changed because unsigned long is represented with little-endian convention on x86 // Should not depend on architecture, but this is only a POC return ((w & 0x000000ff) << 24) | ((w & 0x0000ff00) >> 8) | ((w & 0x00ff0000) >> 8) | ((w & 0xff000000) >> 8); } void aes_keyexpansion(aes_ctx_t *ctx) { unsigned long temp; unsigned long rcon; register unsigned int i; rcon = 0x00000001; for(i = ctx->kcol; i < (4*(ctx->rounds+1)); i++) { temp = ctx->keysched[i-1]; if(!(i%ctx->kcol)) { temp = aes_subword(aes_rotword(temp)) ^ rcon; rcon = aes_mul(rcon, 2); } else if(ctx->kcol > 6 && i%ctx->kcol == 4) temp = aes_subword(temp); ctx->keysched[i] = ctx->keysched[i-ctx->kcol] ^ temp; } } inline unsigned char aes_mul_manual(unsigned char a, unsigned char b) { register unsigned short ac; register unsigned char ret; ac = a; ret = 0; while(b) { if(b & 0x01) ret ^= ac; ac <<= 1; b >>= 1; if(ac & 0x0100) ac ^= AES_RPOL; } return ret; } void aes_subbytes(aes_ctx_t *ctx) { int i; for(i = 0; i < 16; i++) { int x, y; x = i & 0x03; y = i >> 2; ctx->state[x][y] = g_aes_sbox[ctx->state[x][y]]; } } void aes_shiftrows(aes_ctx_t *ctx) { unsigned char nstate[4][4]; int i; for(i = 0; i < 16; i++) { int x, y; x = i & 0x03; y = i >> 2; nstate[x][y] = ctx->state[x][(y+x) & 0x03]; } COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state)); } void aes_mixcolumns(aes_ctx_t *ctx) { unsigned char nstate[4][4]; int i; for(i = 0; i < 4; i++) { nstate[0][i] = aes_mul(0x02, ctx->state[0][i]) ^ aes_mul(0x03, ctx->state[1][i]) ^ ctx->state[2][i] ^ ctx->state[3][i]; nstate[1][i] = ctx->state[0][i] ^ aes_mul(0x02, ctx->state[1][i]) ^ aes_mul(0x03, ctx->state[2][i]) ^ ctx->state[3][i]; nstate[2][i] = ctx->state[0][i] ^ ctx->state[1][i] ^ aes_mul(0x02, ctx->state[2][i]) ^ aes_mul(0x03, ctx->state[3][i]); nstate[3][i] = aes_mul(0x03, ctx->state[0][i]) ^ ctx->state[1][i] ^ ctx->state[2][i] ^ aes_mul(0x02, ctx->state[3][i]); } COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state)); } void aes_addroundkey(aes_ctx_t *ctx, int round) { int i; for(i = 0; i < 16; i++) { int x, y; x = i & 0x03; y = i >> 2; ctx->state[x][y] = ctx->state[x][y] ^ ((ctx->keysched[round*4+y] & (0xff << (x*8))) >> (x*8)); } } void aes_encrypt(aes_ctx_t *ctx, const unsigned char input[16], unsigned char output[16]) { unsigned int i; // copy input to state for(i = 0; i < 16; i++) ctx->state[i & 0x03][i >> 2] = input[i]; aes_addroundkey(ctx, 0); for(i = 1; i < ctx->rounds; i++) { aes_subbytes(ctx); aes_shiftrows(ctx); aes_mixcolumns(ctx); aes_addroundkey(ctx, i); } aes_subbytes(ctx); aes_shiftrows(ctx); aes_addroundkey(ctx, ctx->rounds); // copy state to output for(i = 0; i < 16; i++) output[i] = ctx->state[i & 0x03][i >> 2]; } void aes_invshiftrows(aes_ctx_t *ctx) { unsigned char nstate[4][4]; int i; for(i = 0; i < 16; i++) { int x, y; x = i & 0x03; y = i >> 2; nstate[x][(y+x) & 0x03] = ctx->state[x][y]; } COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state)); } void aes_invsubbytes(aes_ctx_t *ctx) { int i; for(i = 0; i < 16; i++) { int x, y; x = i & 0x03; y = i >> 2; ctx->state[x][y] = g_aes_isbox[ctx->state[x][y]]; } } void aes_invmixcolumns(aes_ctx_t *ctx) { unsigned char nstate[4][4]; int i; for(i = 0; i < 4; i++) { nstate[0][i] = aes_mul(0x0e, ctx->state[0][i]) ^ aes_mul(0x0b, ctx->state[1][i]) ^ aes_mul(0x0d, ctx->state[2][i]) ^ aes_mul(0x09, ctx->state[3][i]); nstate[1][i] = aes_mul(0x09, ctx->state[0][i]) ^ aes_mul(0x0e, ctx->state[1][i]) ^ aes_mul(0x0b, ctx->state[2][i]) ^ aes_mul(0x0d, ctx->state[3][i]); nstate[2][i] = aes_mul(0x0d, ctx->state[0][i]) ^ aes_mul(0x09, ctx->state[1][i]) ^ aes_mul(0x0e, ctx->state[2][i]) ^ aes_mul(0x0b, ctx->state[3][i]); nstate[3][i] = aes_mul(0x0b, ctx->state[0][i]) ^ aes_mul(0x0d, ctx->state[1][i]) ^ aes_mul(0x09, ctx->state[2][i]) ^ aes_mul(0x0e, ctx->state[3][i]); } COMPAT(memcpy)(ctx->state, nstate, sizeof(ctx->state)); } void aes_decrypt(aes_ctx_t *ctx, const unsigned char input[16], unsigned char output[16]) { int i; // copy input to state for(i = 0; i < 16; i++) ctx->state[i & 0x03][i >> 2] = input[i]; aes_addroundkey(ctx, ctx->rounds); for(i = ctx->rounds-1; i >= 1; i--) { aes_invshiftrows(ctx); aes_invsubbytes(ctx); aes_addroundkey(ctx, i); aes_invmixcolumns(ctx); } aes_invshiftrows(ctx); aes_invsubbytes(ctx); aes_addroundkey(ctx, 0); // copy state to output for(i = 0; i < 16; i++) output[i] = ctx->state[i & 0x03][i >> 2]; } void aes_free_ctx(aes_ctx_t *ctx) { COMPAT(free)(ctx); }