diff options
Diffstat (limited to 'flatcc/src/runtime')
-rw-r--r-- | flatcc/src/runtime/CMakeLists.txt | 16 | ||||
-rw-r--r-- | flatcc/src/runtime/builder.c | 2035 | ||||
-rw-r--r-- | flatcc/src/runtime/emitter.c | 269 | ||||
-rw-r--r-- | flatcc/src/runtime/json_parser.c | 1297 | ||||
-rw-r--r-- | flatcc/src/runtime/json_printer.c | 1486 | ||||
-rw-r--r-- | flatcc/src/runtime/refmap.c | 248 | ||||
-rw-r--r-- | flatcc/src/runtime/verifier.c | 617 |
7 files changed, 5968 insertions, 0 deletions
diff --git a/flatcc/src/runtime/CMakeLists.txt b/flatcc/src/runtime/CMakeLists.txt new file mode 100644 index 0000000..127e2a4 --- /dev/null +++ b/flatcc/src/runtime/CMakeLists.txt @@ -0,0 +1,16 @@ +include_directories ( + "${PROJECT_SOURCE_DIR}/include" +) + +add_library(flatccrt + builder.c + emitter.c + refmap.c + verifier.c + json_parser.c + json_printer.c +) + +if (FLATCC_INSTALL) + install(TARGETS flatccrt DESTINATION ${lib_dir}) +endif() diff --git a/flatcc/src/runtime/builder.c b/flatcc/src/runtime/builder.c new file mode 100644 index 0000000..b62c2b6 --- /dev/null +++ b/flatcc/src/runtime/builder.c @@ -0,0 +1,2035 @@ +/* + * Codegenerator for C, building FlatBuffers. + * + * There are several approaches, some light, some requiring a library, + * some with vectored I/O etc. + * + * Here we focus on a reasonable balance of light code and efficiency. + * + * Builder code is generated to a separate file that includes the + * generated read-only code. + * + * Mutable buffers are not supported in this version. + * + */ + +#include <stdlib.h> +#include <string.h> + +#include "flatcc/flatcc_builder.h" +#include "flatcc/flatcc_emitter.h" + +/* + * `check` is designed to handle incorrect use errors that can be + * ignored in production of a tested product. + * + * `check_error` fails if condition is false and is designed to return an + * error code in production. + */ + +#if FLATCC_BUILDER_ASSERT_ON_ERROR +#define check(cond, reason) FLATCC_BUILDER_ASSERT(cond, reason) +#else +#define check(cond, reason) ((void)0) +#endif + +#if FLATCC_BUILDER_SKIP_CHECKS +#define check_error(cond, err, reason) ((void)0) +#else +#define check_error(cond, err, reason) if (!(cond)) { check(cond, reason); return err; } +#endif + +/* `strnlen` not widely supported. */ +static inline size_t pstrnlen(const char *s, size_t max_len) +{ + const char *end = memchr(s, 0, max_len); + return end ? (size_t)(end - s) : max_len; +} +#undef strnlen +#define strnlen pstrnlen + +/* Padding can be up to 255 zeroes, and 1 zero string termination byte. + * When two paddings are combined at nested buffers, we need twice that. + * Visible to emitter so it can test for zero padding in iov. */ +const uint8_t flatcc_builder_padding_base[512] = { 0 }; +#define _pad flatcc_builder_padding_base + +#define uoffset_t flatbuffers_uoffset_t +#define soffset_t flatbuffers_soffset_t +#define voffset_t flatbuffers_voffset_t +#define utype_t flatbuffers_utype_t + +#define write_uoffset __flatbuffers_uoffset_write_to_pe +#define write_voffset __flatbuffers_voffset_write_to_pe +#define write_identifier __flatbuffers_uoffset_write_to_pe +#define write_utype __flatbuffers_utype_write_to_pe + +#define field_size sizeof(uoffset_t) +#define max_offset_count FLATBUFFERS_COUNT_MAX(field_size) +#define union_size sizeof(flatcc_builder_union_ref_t) +#define max_union_count FLATBUFFERS_COUNT_MAX(union_size) +#define utype_size sizeof(utype_t) +#define max_utype_count FLATBUFFERS_COUNT_MAX(utype_size) + +#define max_string_len FLATBUFFERS_COUNT_MAX(1) +#define identifier_size FLATBUFFERS_IDENTIFIER_SIZE + + +#define iovec_t flatcc_iovec_t +#define frame_size sizeof(__flatcc_builder_frame_t) +#define frame(x) (B->frame[0].x) + + +/* `align` must be a power of 2. */ +static inline uoffset_t alignup_uoffset(uoffset_t x, size_t align) +{ + return (x + (uoffset_t)align - 1u) & ~((uoffset_t)align - 1u); +} + +static inline size_t alignup_size(size_t x, size_t align) +{ + return (x + align - 1u) & ~(align - 1u); +} + + +typedef struct vtable_descriptor vtable_descriptor_t; +struct vtable_descriptor { + /* Where the vtable is emitted. */ + flatcc_builder_ref_t vt_ref; + /* Which buffer it was emitted to. */ + uoffset_t nest_id; + /* Where the vtable is cached. */ + uoffset_t vb_start; + /* Hash table collision chain. */ + uoffset_t next; +}; + +typedef struct flatcc_iov_state flatcc_iov_state_t; +struct flatcc_iov_state { + size_t len; + int count; + flatcc_iovec_t iov[FLATCC_IOV_COUNT_MAX]; +}; + +#define iov_state_t flatcc_iov_state_t + +/* This assumes `iov_state_t iov;` has been declared in scope */ +#define push_iov_cond(base, size, cond) if ((size) > 0 && (cond)) { iov.len += size;\ + iov.iov[iov.count].iov_base = (void *)(base); iov.iov[iov.count].iov_len = (size); ++iov.count; } +#define push_iov(base, size) push_iov_cond(base, size, 1) +#define init_iov() { iov.len = 0; iov.count = 0; } + + +int flatcc_builder_default_alloc(void *alloc_context, iovec_t *b, size_t request, int zero_fill, int hint) +{ + void *p; + size_t n; + + (void)alloc_context; + + if (request == 0) { + if (b->iov_base) { + FLATCC_BUILDER_FREE(b->iov_base); + b->iov_base = 0; + b->iov_len = 0; + } + return 0; + } + switch (hint) { + case flatcc_builder_alloc_ds: + n = 256; + break; + case flatcc_builder_alloc_ht: + /* Should be exact size, or space size is just wasted. */ + n = request; + break; + case flatcc_builder_alloc_fs: + n = sizeof(__flatcc_builder_frame_t) * 8; + break; + case flatcc_builder_alloc_us: + n = 64; + break; + default: + /* + * We have many small structures - vs stack for tables with few + * elements, and few offset fields in patch log. No need to + * overallocate in case of busy small messages. + */ + n = 32; + break; + } + while (n < request) { + n *= 2; + } + if (request <= b->iov_len && b->iov_len / 2 >= n) { + /* Add hysteresis to shrink. */ + return 0; + } + if (!(p = FLATCC_BUILDER_REALLOC(b->iov_base, n))) { + return -1; + } + /* Realloc might also shrink. */ + if (zero_fill && b->iov_len < n) { + memset((uint8_t *)p + b->iov_len, 0, n - b->iov_len); + } + b->iov_base = p; + b->iov_len = n; + return 0; +} + +#define T_ptr(base, pos) ((void *)((uint8_t *)(base) + (uoffset_t)(pos))) +#define ds_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_ds].iov_base, (pos))) +#define vs_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vs].iov_base, (pos))) +#define pl_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_pl].iov_base, (pos))) +#define us_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_us].iov_base, (pos))) +#define vd_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vd].iov_base, (pos))) +#define vb_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vb].iov_base, (pos))) +#define vs_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_vs].iov_base)) +#define pl_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_pl].iov_base)) +#define us_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_us].iov_base)) + +#define table_limit (FLATBUFFERS_VOFFSET_MAX - field_size + 1) +#define data_limit (FLATBUFFERS_UOFFSET_MAX - field_size + 1) + +#define set_identifier(id) memcpy(&B->identifier, (id) ? (void *)(id) : (void *)_pad, identifier_size) + +/* Must also return true when no buffer has been started. */ +#define is_top_buffer(B) (B->nest_id == 0) + +/* + * Tables use a stack represention better suited for quickly adding + * fields to tables, but it must occasionally be refreshed following + * reallocation or reentry from child frame. + */ +static inline void refresh_ds(flatcc_builder_t *B, uoffset_t type_limit) +{ + iovec_t *buf = B->buffers + flatcc_builder_alloc_ds; + + B->ds = ds_ptr(B->ds_first); + B->ds_limit = (uoffset_t)buf->iov_len - B->ds_first; + /* + * So we don't allocate outside tables representation size, nor our + * current buffer size. + */ + if (B->ds_limit > type_limit) { + B->ds_limit = type_limit; + } + /* So exit frame can refresh fast. */ + frame(type_limit) = type_limit; +} + +static int reserve_ds(flatcc_builder_t *B, size_t need, uoffset_t limit) +{ + iovec_t *buf = B->buffers + flatcc_builder_alloc_ds; + + if (B->alloc(B->alloc_context, buf, B->ds_first + need, 1, flatcc_builder_alloc_ds)) { + return -1; + } + refresh_ds(B, limit); + return 0; +} + +/* + * Make sure there is always an extra zero termination on stack + * even if it isn't emitted such that string updates may count + * on zero termination being present always. + */ +static inline void *push_ds(flatcc_builder_t *B, uoffset_t size) +{ + size_t offset; + + offset = B->ds_offset; + if ((B->ds_offset += size) >= B->ds_limit) { + if (reserve_ds(B, B->ds_offset + 1, data_limit)) { + return 0; + } + } + return B->ds + offset; +} + +static inline void unpush_ds(flatcc_builder_t *B, uoffset_t size) +{ + B->ds_offset -= size; + memset(B->ds + B->ds_offset, 0, size); +} + +static inline void *push_ds_copy(flatcc_builder_t *B, const void *data, uoffset_t size) +{ + void *p; + + if (!(p = push_ds(B, size))) { + return 0; + } + memcpy(p, data, size); + return p; +} + +static inline void *push_ds_field(flatcc_builder_t *B, uoffset_t size, uint16_t align, voffset_t id) +{ + uoffset_t offset; + + /* + * We calculate table field alignment relative to first entry, not + * header field with vtable offset. + * + * Note: >= comparison handles special case where B->ds is not + * allocated yet and size is 0 so the return value would be mistaken + * for an error. + */ + offset = alignup_uoffset(B->ds_offset, align); + if ((B->ds_offset = offset + size) >= B->ds_limit) { + if (reserve_ds(B, B->ds_offset + 1, table_limit)) { + return 0; + } + } + B->vs[id] = (voffset_t)(offset + field_size); + if (id >= B->id_end) { + B->id_end = id + 1u; + } + return B->ds + offset; +} + +static inline void *push_ds_offset_field(flatcc_builder_t *B, voffset_t id) +{ + uoffset_t offset; + + offset = alignup_uoffset(B->ds_offset, field_size); + if ((B->ds_offset = offset + field_size) > B->ds_limit) { + if (reserve_ds(B, B->ds_offset, table_limit)) { + return 0; + } + } + B->vs[id] = (voffset_t)(offset + field_size); + if (id >= B->id_end) { + B->id_end = id + 1u; + } + *B->pl++ = (flatbuffers_voffset_t)offset; + return B->ds + offset; +} + +static inline void *reserve_buffer(flatcc_builder_t *B, int alloc_type, size_t used, size_t need, int zero_init) +{ + iovec_t *buf = B->buffers + alloc_type; + + if (used + need > buf->iov_len) { + if (B->alloc(B->alloc_context, buf, used + need, zero_init, alloc_type)) { + check(0, "memory allocation failed"); + return 0; + } + } + return (void *)((size_t)buf->iov_base + used); +} + +static inline int reserve_fields(flatcc_builder_t *B, int count) +{ + size_t used, need; + + /* Provide faster stack operations for common table operations. */ + used = frame(container.table.vs_end) + frame(container.table.id_end) * sizeof(voffset_t); + need = (size_t)(count + 2) * sizeof(voffset_t); + if (!(B->vs = reserve_buffer(B, flatcc_builder_alloc_vs, used, need, 1))) { + return -1; + } + /* Move past header for convenience. */ + B->vs += 2; + used = frame(container.table.pl_end); + /* Add one to handle special case of first table being empty. */ + need = (size_t)count * sizeof(*(B->pl)) + 1; + if (!(B->pl = reserve_buffer(B, flatcc_builder_alloc_pl, used, need, 0))) { + return -1; + } + return 0; +} + +static int alloc_ht(flatcc_builder_t *B) +{ + iovec_t *buf = B->buffers + flatcc_builder_alloc_ht; + + size_t size, k; + /* Allocate null entry so we can check for return errors. */ + FLATCC_ASSERT(B->vd_end == 0); + if (!reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0)) { + return -1; + } + B->vd_end = sizeof(vtable_descriptor_t); + size = field_size * FLATCC_BUILDER_MIN_HASH_COUNT; + if (B->alloc(B->alloc_context, buf, size, 1, flatcc_builder_alloc_ht)) { + return -1; + } + while (size * 2 <= buf->iov_len) { + size *= 2; + } + size /= field_size; + for (k = 0; (((size_t)1) << k) < size; ++k) { + } + B->ht_width = k; + return 0; +} + +static inline uoffset_t *lookup_ht(flatcc_builder_t *B, uint32_t hash) +{ + uoffset_t *T; + + if (B->ht_width == 0) { + if (alloc_ht(B)) { + return 0; + } + } + T = B->buffers[flatcc_builder_alloc_ht].iov_base; + + return &T[FLATCC_BUILDER_BUCKET_VT_HASH(hash, B->ht_width)]; +} + +void flatcc_builder_flush_vtable_cache(flatcc_builder_t *B) +{ + iovec_t *buf = B->buffers + flatcc_builder_alloc_ht; + + if (B->ht_width == 0) { + return; + } + memset(buf->iov_base, 0, buf->iov_len); + /* Reserve the null entry. */ + B->vd_end = sizeof(vtable_descriptor_t); + B->vb_end = 0; +} + +int flatcc_builder_custom_init(flatcc_builder_t *B, + flatcc_builder_emit_fun *emit, void *emit_context, + flatcc_builder_alloc_fun *alloc, void *alloc_context) +{ + /* + * Do not allocate anything here. Only the required buffers will be + * allocated. For simple struct buffers, no allocation is required + * at all. + */ + memset(B, 0, sizeof(*B)); + + if (emit == 0) { + B->is_default_emitter = 1; + emit = flatcc_emitter; + emit_context = &B->default_emit_context; + } + if (alloc == 0) { + alloc = flatcc_builder_default_alloc; + } + B->alloc_context = alloc_context; + B->alloc = alloc; + B->emit_context = emit_context; + B->emit = emit; + return 0; +} + +int flatcc_builder_init(flatcc_builder_t *B) +{ + return flatcc_builder_custom_init(B, 0, 0, 0, 0); +} + +int flatcc_builder_custom_reset(flatcc_builder_t *B, int set_defaults, int reduce_buffers) +{ + iovec_t *buf; + int i; + + for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) { + buf = B->buffers + i; + if (buf->iov_base) { + /* Don't try to reduce the hash table. */ + if (i != flatcc_builder_alloc_ht && + reduce_buffers && B->alloc(B->alloc_context, buf, 1, 1, i)) { + return -1; + } + memset(buf->iov_base, 0, buf->iov_len); + } else { + FLATCC_ASSERT(buf->iov_len == 0); + } + } + B->vb_end = 0; + if (B->vd_end > 0) { + /* Reset past null entry. */ + B->vd_end = sizeof(vtable_descriptor_t); + } + B->min_align = 0; + B->emit_start = 0; + B->emit_end = 0; + B->level = 0; + B->limit_level = 0; + B->ds_offset = 0; + B->ds_limit = 0; + B->nest_count = 0; + B->nest_id = 0; + /* Needed for correct offset calculation. */ + B->ds = B->buffers[flatcc_builder_alloc_ds].iov_base; + B->pl = B->buffers[flatcc_builder_alloc_pl].iov_base; + B->vs = B->buffers[flatcc_builder_alloc_vs].iov_base; + B->frame = 0; + if (set_defaults) { + B->vb_flush_limit = 0; + B->max_level = 0; + B->disable_vt_clustering = 0; + } + if (B->is_default_emitter) { + flatcc_emitter_reset(&B->default_emit_context); + } + if (B->refmap) { + flatcc_refmap_reset(B->refmap); + } + return 0; +} + +int flatcc_builder_reset(flatcc_builder_t *B) +{ + return flatcc_builder_custom_reset(B, 0, 0); +} + +void flatcc_builder_clear(flatcc_builder_t *B) +{ + iovec_t *buf; + int i; + + for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) { + buf = B->buffers + i; + B->alloc(B->alloc_context, buf, 0, 0, i); + } + if (B->is_default_emitter) { + flatcc_emitter_clear(&B->default_emit_context); + } + if (B->refmap) { + flatcc_refmap_clear(B->refmap); + } + memset(B, 0, sizeof(*B)); +} + +static inline void set_min_align(flatcc_builder_t *B, uint16_t align) +{ + if (B->min_align < align) { + B->min_align = align; + } +} + +/* + * It's a max, but the minimum viable alignment is the largest observed + * alignment requirement, but no larger. + */ +static inline void get_min_align(uint16_t *align, uint16_t b) +{ + if (*align < b) { + *align = b; + } +} + +void *flatcc_builder_enter_user_frame_ptr(flatcc_builder_t *B, size_t size) +{ + size_t *frame; + + size = alignup_size(size, sizeof(size_t)) + sizeof(size_t); + + if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) { + return 0; + } + memset(frame, 0, size); + *frame++ = B->user_frame_offset; + B->user_frame_offset = B->user_frame_end + sizeof(size_t); + B->user_frame_end += size; + return frame; +} + +size_t flatcc_builder_enter_user_frame(flatcc_builder_t *B, size_t size) +{ + size_t *frame; + + size = alignup_size(size, sizeof(size_t)) + sizeof(size_t); + + if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) { + return 0; + } + memset(frame, 0, size); + *frame++ = B->user_frame_offset; + B->user_frame_offset = B->user_frame_end + sizeof(size_t); + B->user_frame_end += size; + return B->user_frame_offset; +} + + +size_t flatcc_builder_exit_user_frame(flatcc_builder_t *B) +{ + size_t *hdr; + + FLATCC_ASSERT(B->user_frame_offset > 0); + + hdr = us_ptr(B->user_frame_offset); + B->user_frame_end = B->user_frame_offset - sizeof(size_t); + return B->user_frame_offset = hdr[-1]; +} + +size_t flatcc_builder_exit_user_frame_at(flatcc_builder_t *B, size_t handle) +{ + FLATCC_ASSERT(B->user_frame_offset >= handle); + + B->user_frame_offset = handle; + return flatcc_builder_exit_user_frame(B); +} + +size_t flatcc_builder_get_current_user_frame(flatcc_builder_t *B) +{ + return B->user_frame_offset; +} + +void *flatcc_builder_get_user_frame_ptr(flatcc_builder_t *B, size_t handle) +{ + return us_ptr(handle); +} + +static int enter_frame(flatcc_builder_t *B, uint16_t align) +{ + if (++B->level > B->limit_level) { + if (B->max_level > 0 && B->level > B->max_level) { + return -1; + } + if (!(B->frame = reserve_buffer(B, flatcc_builder_alloc_fs, + (size_t)(B->level - 1) * frame_size, frame_size, 0))) { + return -1; + } + B->limit_level = (int)(B->buffers[flatcc_builder_alloc_fs].iov_len / frame_size); + if (B->max_level > 0 && B->max_level < B->limit_level) { + B->limit_level = B->max_level; + } + } else { + ++B->frame; + } + frame(ds_offset) = B->ds_offset; + frame(align) = B->align; + B->align = align; + /* Note: do not assume padding before first has been allocated! */ + frame(ds_first) = B->ds_first; + frame(type_limit) = data_limit; + B->ds_first = alignup_uoffset(B->ds_first + B->ds_offset, 8); + B->ds_offset = 0; + return 0; +} + +static inline void exit_frame(flatcc_builder_t *B) +{ + memset(B->ds, 0, B->ds_offset); + B->ds_offset = frame(ds_offset); + B->ds_first = frame(ds_first); + refresh_ds(B, frame(type_limit)); + + /* + * Restore local alignment: e.g. a table should not change alignment + * because a child table was just created elsewhere in the buffer, + * but the overall alignment (min align), should be aware of it. + * Each buffer has its own min align that then migrates up without + * being affected by sibling or child buffers. + */ + set_min_align(B, B->align); + B->align = frame(align); + + --B->frame; + --B->level; +} + +static inline uoffset_t front_pad(flatcc_builder_t *B, uoffset_t size, uint16_t align) +{ + return (uoffset_t)(B->emit_start - (flatcc_builder_ref_t)size) & (align - 1u); +} + +static inline uoffset_t back_pad(flatcc_builder_t *B, uint16_t align) +{ + return (uoffset_t)(B->emit_end) & (align - 1u); +} + +static inline flatcc_builder_ref_t emit_front(flatcc_builder_t *B, iov_state_t *iov) +{ + flatcc_builder_ref_t ref; + + /* + * We might have overflow when including headers, but without + * headers we should have checks to prevent overflow in the + * uoffset_t range, hence we subtract 16 to be safe. With that + * guarantee we can also make a safe check on the soffset_t range. + * + * We only allow buffers half the theoritical size of + * FLATBUFFERS_UOFFSET_MAX so we can safely use signed references. + * + * NOTE: vtables vt_offset field is signed, and the check in create + * table only ensures the signed limit. The check would fail if the + * total buffer size could grow beyond UOFFSET_MAX, and we prevent + * that by limiting the lower end to SOFFSET_MIN, and the upper end + * at emit_back to SOFFSET_MAX. + */ + ref = B->emit_start - (flatcc_builder_ref_t)iov->len; + if ((iov->len > 16 && iov->len - 16 > FLATBUFFERS_UOFFSET_MAX) || ref >= B->emit_start) { + check(0, "buffer too large to represent"); + return 0; + } + if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) { + check(0, "emitter rejected buffer content"); + return 0; + } + return B->emit_start = ref; +} + +static inline flatcc_builder_ref_t emit_back(flatcc_builder_t *B, iov_state_t *iov) +{ + flatcc_builder_ref_t ref; + + ref = B->emit_end; + B->emit_end = ref + (flatcc_builder_ref_t)iov->len; + /* + * Similar to emit_front check, but since we only emit vtables and + * padding at the back, we are not concerned with iov->len overflow, + * only total buffer overflow. + * + * With this check, vtable soffset references at table header can + * still overflow in extreme cases, so this must be checked + * separately. + */ + if (B->emit_end < ref) { + check(0, "buffer too large to represent"); + return 0; + } + if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) { + check(0, "emitter rejected buffer content"); + return 0; + } + /* + * Back references always return ref + 1 because ref == 0 is valid and + * should not be mistaken for error. vtables understand this. + */ + return ref + 1; +} + +static int align_to_block(flatcc_builder_t *B, uint16_t *align, uint16_t block_align, int is_nested) +{ + size_t end_pad; + iov_state_t iov; + + block_align = block_align ? block_align : B->block_align ? B->block_align : 1; + get_min_align(align, field_size); + get_min_align(align, block_align); + /* Pad end of buffer to multiple. */ + if (!is_nested) { + end_pad = back_pad(B, block_align); + if (end_pad) { + init_iov(); + push_iov(_pad, end_pad); + if (0 == emit_back(B, &iov)) { + check(0, "emitter rejected buffer content"); + return -1; + } + } + } + return 0; +} + +flatcc_builder_ref_t flatcc_builder_embed_buffer(flatcc_builder_t *B, + uint16_t block_align, + const void *data, size_t size, uint16_t align, flatcc_builder_buffer_flags_t flags) +{ + uoffset_t size_field, pad; + iov_state_t iov; + int with_size = (flags & flatcc_builder_with_size) != 0; + + if (align_to_block(B, &align, block_align, !is_top_buffer(B))) { + return 0; + } + pad = front_pad(B, (uoffset_t)(size + (with_size ? field_size : 0)), align); + write_uoffset(&size_field, (uoffset_t)size + pad); + init_iov(); + /* Add ubyte vector size header if nested buffer. */ + push_iov_cond(&size_field, field_size, !is_top_buffer(B)); + push_iov(data, size); + push_iov(_pad, pad); + return emit_front(B, &iov); +} + +flatcc_builder_ref_t flatcc_builder_create_buffer(flatcc_builder_t *B, + const char identifier[identifier_size], uint16_t block_align, + flatcc_builder_ref_t object_ref, uint16_t align, flatcc_builder_buffer_flags_t flags) +{ + flatcc_builder_ref_t buffer_ref; + uoffset_t header_pad, id_size = 0; + uoffset_t object_offset, buffer_size, buffer_base; + iov_state_t iov; + flatcc_builder_identifier_t id_out = 0; + int is_nested = (flags & flatcc_builder_is_nested) != 0; + int with_size = (flags & flatcc_builder_with_size) != 0; + + if (align_to_block(B, &align, block_align, is_nested)) { + return 0; + } + set_min_align(B, align); + if (identifier) { + FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == identifier_size); + FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == field_size); + memcpy(&id_out, identifier, identifier_size); + id_out = __flatbuffers_thash_read_from_le(&id_out); + write_identifier(&id_out, id_out); + } + id_size = id_out ? identifier_size : 0; + header_pad = front_pad(B, field_size + id_size + (uoffset_t)(with_size ? field_size : 0), align); + init_iov(); + /* ubyte vectors size field wrapping nested buffer. */ + push_iov_cond(&buffer_size, field_size, is_nested || with_size); + push_iov(&object_offset, field_size); + /* Identifiers are not always present in buffer. */ + push_iov(&id_out, id_size); + push_iov(_pad, header_pad); + buffer_base = (uoffset_t)B->emit_start - (uoffset_t)iov.len + (uoffset_t)((is_nested || with_size) ? field_size : 0); + if (is_nested) { + write_uoffset(&buffer_size, (uoffset_t)B->buffer_mark - buffer_base); + } else { + /* Also include clustered vtables. */ + write_uoffset(&buffer_size, (uoffset_t)B->emit_end - buffer_base); + } + write_uoffset(&object_offset, (uoffset_t)object_ref - buffer_base); + if (0 == (buffer_ref = emit_front(B, &iov))) { + check(0, "emitter rejected buffer content"); + return 0; + } + return buffer_ref; +} + +flatcc_builder_ref_t flatcc_builder_create_struct(flatcc_builder_t *B, const void *data, size_t size, uint16_t align) +{ + size_t pad; + iov_state_t iov; + + check(align >= 1, "align cannot be 0"); + set_min_align(B, align); + pad = front_pad(B, (uoffset_t)size, align); + init_iov(); + push_iov(data, size); + /* + * Normally structs will already be a multiple of their alignment, + * so this padding will not likely be emitted. + */ + push_iov(_pad, pad); + return emit_front(B, &iov); +} + +int flatcc_builder_start_buffer(flatcc_builder_t *B, + const char identifier[identifier_size], uint16_t block_align, flatcc_builder_buffer_flags_t flags) +{ + /* + * This saves the parent `min_align` in the align field since we + * shouldn't use that for the current buffer. `exit_frame` + * automatically aggregates align up, so it is updated when the + * buffer frame exits. + */ + if (enter_frame(B, B->min_align)) { + return -1; + } + /* B->align now has parent min_align, and child frames will save it. */ + B->min_align = 1; + /* Save the parent block align, and set proper defaults for this buffer. */ + frame(container.buffer.block_align) = B->block_align; + B->block_align = block_align; + frame(container.buffer.flags = B->buffer_flags); + B->buffer_flags = (uint16_t)flags; + frame(container.buffer.mark) = B->buffer_mark; + frame(container.buffer.nest_id) = B->nest_id; + /* + * End of buffer when nested. Not defined for top-level because we + * here (on only here) permit strings etc. to be created before buffer start and + * because top-level buffer vtables can be clustered. + */ + B->buffer_mark = B->emit_start; + /* Must be 0 before and after entering top-level buffer, and unique otherwise. */ + B->nest_id = B->nest_count++; + frame(container.buffer.identifier) = B->identifier; + set_identifier(identifier); + frame(type) = flatcc_builder_buffer; + return 0; +} + +flatcc_builder_ref_t flatcc_builder_end_buffer(flatcc_builder_t *B, flatcc_builder_ref_t root) +{ + flatcc_builder_ref_t buffer_ref; + flatcc_builder_buffer_flags_t flags; + + flags = (flatcc_builder_buffer_flags_t)B->buffer_flags & flatcc_builder_with_size; + flags |= is_top_buffer(B) ? 0 : flatcc_builder_is_nested; + check(frame(type) == flatcc_builder_buffer, "expected buffer frame"); + set_min_align(B, B->block_align); + if (0 == (buffer_ref = flatcc_builder_create_buffer(B, (void *)&B->identifier, + B->block_align, root, B->min_align, flags))) { + return 0; + } + B->buffer_mark = frame(container.buffer.mark); + B->nest_id = frame(container.buffer.nest_id); + B->identifier = frame(container.buffer.identifier); + B->buffer_flags = frame(container.buffer.flags); + exit_frame(B); + return buffer_ref; +} + +void *flatcc_builder_start_struct(flatcc_builder_t *B, size_t size, uint16_t align) +{ + /* Allocate space for the struct on the ds stack. */ + if (enter_frame(B, align)) { + return 0; + } + frame(type) = flatcc_builder_struct; + refresh_ds(B, data_limit); + return push_ds(B, (uoffset_t)size); +} + +void *flatcc_builder_struct_edit(flatcc_builder_t *B) +{ + return B->ds; +} + +flatcc_builder_ref_t flatcc_builder_end_struct(flatcc_builder_t *B) +{ + flatcc_builder_ref_t object_ref; + + check(frame(type) == flatcc_builder_struct, "expected struct frame"); + if (0 == (object_ref = flatcc_builder_create_struct(B, B->ds, B->ds_offset, B->align))) { + return 0; + } + exit_frame(B); + return object_ref; +} + +static inline int vector_count_add(flatcc_builder_t *B, uoffset_t count, uoffset_t max_count) +{ + uoffset_t n, n1; + n = frame(container.vector.count); + n1 = n + count; + /* + * This prevents elem_size * count from overflowing iff max_vector + * has been set sensible. Without this check we might allocate to + * little on the ds stack and return a buffer the user thinks is + * much larger which of course is bad even though the buffer eventually + * would fail anyway. + */ + check_error(n <= n1 && n1 <= max_count, -1, "vector too large to represent"); + frame(container.vector.count) = n1; + return 0; +} + +void *flatcc_builder_extend_vector(flatcc_builder_t *B, size_t count) +{ + if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) { + return 0; + } + return push_ds(B, frame(container.vector.elem_size) * (uoffset_t)count); +} + +void *flatcc_builder_vector_push(flatcc_builder_t *B, const void *data) +{ + check(frame(type) == flatcc_builder_vector, "expected vector frame"); + check_error(frame(container.vector.count) <= frame(container.vector.max_count), 0, "vector max count exceeded"); + frame(container.vector.count) += 1; + return push_ds_copy(B, data, frame(container.vector.elem_size)); +} + +void *flatcc_builder_append_vector(flatcc_builder_t *B, const void *data, size_t count) +{ + check(frame(type) == flatcc_builder_vector, "expected vector frame"); + if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) { + return 0; + } + return push_ds_copy(B, data, frame(container.vector.elem_size) * (uoffset_t)count); +} + +flatcc_builder_ref_t *flatcc_builder_extend_offset_vector(flatcc_builder_t *B, size_t count) +{ + if (vector_count_add(B, (uoffset_t)count, max_offset_count)) { + return 0; + } + return push_ds(B, (uoffset_t)(field_size * count)); +} + +flatcc_builder_ref_t *flatcc_builder_offset_vector_push(flatcc_builder_t *B, flatcc_builder_ref_t ref) +{ + flatcc_builder_ref_t *p; + + check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame"); + if (frame(container.vector.count) == max_offset_count) { + return 0; + } + frame(container.vector.count) += 1; + if (0 == (p = push_ds(B, field_size))) { + return 0; + } + *p = ref; + return p; +} + +flatcc_builder_ref_t *flatcc_builder_append_offset_vector(flatcc_builder_t *B, const flatcc_builder_ref_t *refs, size_t count) +{ + check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame"); + if (vector_count_add(B, (uoffset_t)count, max_offset_count)) { + return 0; + } + return push_ds_copy(B, refs, (uoffset_t)(field_size * count)); +} + +char *flatcc_builder_extend_string(flatcc_builder_t *B, size_t len) +{ + check(frame(type) == flatcc_builder_string, "expected string frame"); + if (vector_count_add(B, (uoffset_t)len, max_string_len)) { + return 0; + } + return push_ds(B, (uoffset_t)len); +} + +char *flatcc_builder_append_string(flatcc_builder_t *B, const char *s, size_t len) +{ + check(frame(type) == flatcc_builder_string, "expected string frame"); + if (vector_count_add(B, (uoffset_t)len, max_string_len)) { + return 0; + } + return push_ds_copy(B, s, (uoffset_t)len); +} + +char *flatcc_builder_append_string_str(flatcc_builder_t *B, const char *s) +{ + return flatcc_builder_append_string(B, s, strlen(s)); +} + +char *flatcc_builder_append_string_strn(flatcc_builder_t *B, const char *s, size_t max_len) +{ + return flatcc_builder_append_string(B, s, strnlen(s, max_len)); +} + +int flatcc_builder_truncate_vector(flatcc_builder_t *B, size_t count) +{ + check(frame(type) == flatcc_builder_vector, "expected vector frame"); + check_error(frame(container.vector.count) >= count, -1, "cannot truncate vector past empty"); + frame(container.vector.count) -= (uoffset_t)count; + unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count); + return 0; +} + +int flatcc_builder_truncate_offset_vector(flatcc_builder_t *B, size_t count) +{ + check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame"); + check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty"); + frame(container.vector.count) -= (uoffset_t)count; + unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count); + return 0; +} + +int flatcc_builder_truncate_string(flatcc_builder_t *B, size_t len) +{ + check(frame(type) == flatcc_builder_string, "expected string frame"); + check_error(frame(container.vector.count) >= len, -1, "cannot truncate string past empty"); + frame(container.vector.count) -= (uoffset_t)len; + unpush_ds(B, (uoffset_t)len); + return 0; +} + +int flatcc_builder_start_vector(flatcc_builder_t *B, size_t elem_size, uint16_t align, size_t max_count) +{ + get_min_align(&align, field_size); + if (enter_frame(B, align)) { + return -1; + } + frame(container.vector.elem_size) = (uoffset_t)elem_size; + frame(container.vector.count) = 0; + frame(container.vector.max_count) = (uoffset_t)max_count; + frame(type) = flatcc_builder_vector; + refresh_ds(B, data_limit); + return 0; +} + +int flatcc_builder_start_offset_vector(flatcc_builder_t *B) +{ + if (enter_frame(B, field_size)) { + return -1; + } + frame(container.vector.elem_size) = field_size; + frame(container.vector.count) = 0; + frame(type) = flatcc_builder_offset_vector; + refresh_ds(B, data_limit); + return 0; +} + +flatcc_builder_ref_t flatcc_builder_create_offset_vector(flatcc_builder_t *B, + const flatcc_builder_ref_t *vec, size_t count) +{ + flatcc_builder_ref_t *_vec; + + if (flatcc_builder_start_offset_vector(B)) { + return 0; + } + if (!(_vec = flatcc_builder_extend_offset_vector(B, count))) { + return 0; + } + memcpy(_vec, vec, count * field_size); + return flatcc_builder_end_offset_vector(B); +} + +int flatcc_builder_start_string(flatcc_builder_t *B) +{ + if (enter_frame(B, 1)) { + return -1; + } + frame(container.vector.elem_size) = 1; + frame(container.vector.count) = 0; + frame(type) = flatcc_builder_string; + refresh_ds(B, data_limit); + return 0; +} + +int flatcc_builder_reserve_table(flatcc_builder_t *B, int count) +{ + check(count >= 0, "cannot reserve negative count"); + return reserve_fields(B, count); +} + +int flatcc_builder_start_table(flatcc_builder_t *B, int count) +{ + if (enter_frame(B, field_size)) { + return -1; + } + frame(container.table.vs_end) = vs_offset(B->vs); + frame(container.table.pl_end) = pl_offset(B->pl); + frame(container.table.vt_hash) = B->vt_hash; + frame(container.table.id_end) = B->id_end; + B->vt_hash = 0; + FLATCC_BUILDER_INIT_VT_HASH(B->vt_hash); + B->id_end = 0; + frame(type) = flatcc_builder_table; + if (reserve_fields(B, count)) { + return -1; + } + refresh_ds(B, table_limit); + return 0; +} + +flatcc_builder_vt_ref_t flatcc_builder_create_vtable(flatcc_builder_t *B, + const voffset_t *vt, voffset_t vt_size) +{ + flatcc_builder_vt_ref_t vt_ref; + iov_state_t iov; + voffset_t *vt_; + size_t i; + + /* + * Only top-level buffer can cluster vtables because only it can + * extend beyond the end. + * + * We write the vtable after the referencing table to maintain + * the construction invariant that any offset reference has + * valid emitted data at a higher address, and also that any + * issued negative emit address represents an offset reference + * to some flatbuffer object or vector (or possibly a root + * struct). + * + * The vt_ref is stored as the reference + 1 to avoid having 0 as a + * valid reference (which usally means error). It also idententifies + * vtable references as the only uneven references, and the only + * references that can be used multiple times in the same buffer. + * + * We do the vtable conversion here so cached vtables can be built + * hashed and compared more efficiently, and so end users with + * direct vtable construction don't have to worry about endianness. + * This also ensures the hash function works the same wrt. + * collision frequency. + */ + + if (!flatbuffers_is_native_pe()) { + /* Make space in vtable cache for temporary endian conversion. */ + if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) { + return 0; + } + for (i = 0; i < vt_size / sizeof(voffset_t); ++i) { + write_voffset(&vt_[i], vt[i]); + } + vt = vt_; + /* We don't need to free the reservation since we don't advance any base pointer. */ + } + + init_iov(); + push_iov(vt, vt_size); + if (is_top_buffer(B) && !B->disable_vt_clustering) { + /* Note that `emit_back` already returns ref + 1 as we require for vtables. */ + if (0 == (vt_ref = emit_back(B, &iov))) { + return 0; + } + } else { + if (0 == (vt_ref = emit_front(B, &iov))) { + return 0; + } + /* + * We don't have a valid 0 ref here, but to be consistent with + * clustered vtables we offset by one. This cannot be zero + * either. + */ + vt_ref += 1; + } + return vt_ref; +} + +flatcc_builder_vt_ref_t flatcc_builder_create_cached_vtable(flatcc_builder_t *B, + const voffset_t *vt, voffset_t vt_size, uint32_t vt_hash) +{ + vtable_descriptor_t *vd, *vd2; + uoffset_t *pvd, *pvd_head; + uoffset_t next; + voffset_t *vt_; + + /* This just gets the hash table slot, we still have to inspect it. */ + if (!(pvd_head = lookup_ht(B, vt_hash))) { + return 0; + } + pvd = pvd_head; + next = *pvd; + /* Tracks if there already is a cached copy. */ + vd2 = 0; + while (next) { + vd = vd_ptr(next); + vt_ = vb_ptr(vd->vb_start); + if (vt_[0] != vt_size || 0 != memcmp(vt, vt_, vt_size)) { + pvd = &vd->next; + next = vd->next; + continue; + } + /* Can't share emitted vtables between buffers, */ + if (vd->nest_id != B->nest_id) { + /* but we don't have to resubmit to cache. */ + vd2 = vd; + /* See if there is a better match. */ + pvd = &vd->next; + next = vd->next; + continue; + } + /* Move to front hash strategy. */ + if (pvd != pvd_head) { + *pvd = vd->next; + vd->next = *pvd_head; + *pvd_head = next; + } + /* vtable exists and has been emitted within current buffer. */ + return vd->vt_ref; + } + /* Allocate new descriptor. */ + if (!(vd = reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0))) { + return 0; + } + next = B->vd_end; + B->vd_end += (uoffset_t)sizeof(vtable_descriptor_t); + + /* Identify the buffer this vtable descriptor belongs to. */ + vd->nest_id = B->nest_id; + + /* Move to front hash strategy. */ + vd->next = *pvd_head; + *pvd_head = next; + if (0 == (vd->vt_ref = flatcc_builder_create_vtable(B, vt, vt_size))) { + return 0; + } + if (vd2) { + /* Reuse cached copy. */ + vd->vb_start = vd2->vb_start; + } else { + if (B->vb_flush_limit && B->vb_flush_limit < B->vb_end + vt_size) { + flatcc_builder_flush_vtable_cache(B); + } else { + /* Make space in vtable cache. */ + if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) { + return -1; + } + vd->vb_start = B->vb_end; + B->vb_end += vt_size; + memcpy(vt_, vt, vt_size); + } + } + return vd->vt_ref; +} + +flatcc_builder_ref_t flatcc_builder_create_table(flatcc_builder_t *B, const void *data, size_t size, uint16_t align, + flatbuffers_voffset_t *offsets, int offset_count, flatcc_builder_vt_ref_t vt_ref) +{ + int i; + uoffset_t pad, vt_offset, vt_offset_field, vt_base, base, offset, *offset_field; + iov_state_t iov; + + check(offset_count >= 0, "expected non-negative offset_count"); + /* + * vtable references are offset by 1 to avoid confusion with + * 0 as an error reference. It also uniquely identifies them + * as vtables being the only uneven reference type. + */ + check(vt_ref & 1, "invalid vtable referenc"); + get_min_align(&align, field_size); + set_min_align(B, align); + /* Alignment is calculated for the first element, not the header. */ + pad = front_pad(B, (uoffset_t)size, align); + base = (uoffset_t)B->emit_start - (uoffset_t)(pad + size + field_size); + /* Adjust by 1 to get unencoded vtable reference. */ + vt_base = (uoffset_t)(vt_ref - 1); + vt_offset = base - vt_base; + /* Avoid overflow. */ + if (base - vt_offset != vt_base) { + return -1; + } + /* Protocol endian encoding. */ + write_uoffset(&vt_offset_field, vt_offset); + for (i = 0; i < offset_count; ++i) { + offset_field = (uoffset_t *)((size_t)data + offsets[i]); + offset = *offset_field - base - offsets[i] - (uoffset_t)field_size; + write_uoffset(offset_field, offset); + } + init_iov(); + push_iov(&vt_offset_field, field_size); + push_iov(data, size); + push_iov(_pad, pad); + return emit_front(B, &iov); +} + +int flatcc_builder_check_required_field(flatcc_builder_t *B, flatbuffers_voffset_t id) +{ + check(frame(type) == flatcc_builder_table, "expected table frame"); + + return id < B->id_end && B->vs[id] != 0; +} + +int flatcc_builder_check_union_field(flatcc_builder_t *B, flatbuffers_voffset_t id) +{ + check(frame(type) == flatcc_builder_table, "expected table frame"); + + if (id == 0 || id >= B->id_end) { + return 0; + } + if (B->vs[id - 1] == 0) { + return B->vs[id] == 0; + } + if (*(uint8_t *)(B->ds + B->vs[id - 1])) { + return B->vs[id] != 0; + } + return B->vs[id] == 0; +} + +int flatcc_builder_check_required(flatcc_builder_t *B, const flatbuffers_voffset_t *required, int count) +{ + int i; + + check(frame(type) == flatcc_builder_table, "expected table frame"); + + if (B->id_end < count) { + return 0; + } + for (i = 0; i < count; ++i) { + if (B->vs[required[i]] == 0) { + return 0; + } + } + return 1; +} + +flatcc_builder_ref_t flatcc_builder_end_table(flatcc_builder_t *B) +{ + voffset_t *vt, vt_size; + flatcc_builder_ref_t table_ref, vt_ref; + int pl_count; + voffset_t *pl; + + check(frame(type) == flatcc_builder_table, "expected table frame"); + + /* We have `ds_limit`, so we should not have to check for overflow here. */ + + vt = B->vs - 2; + vt_size = (voffset_t)(sizeof(voffset_t) * (B->id_end + 2u)); + /* Update vtable header fields, first vtable size, then object table size. */ + vt[0] = vt_size; + /* + * The `ds` buffer is always at least `field_size` aligned but excludes the + * initial vtable offset field. Therefore `field_size` is added here + * to the total table size in the vtable. + */ + vt[1] = (voffset_t)(B->ds_offset + field_size); + FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)vt[0], (uint32_t)vt[1]); + /* Find already emitted vtable, or emit a new one. */ + if (!(vt_ref = flatcc_builder_create_cached_vtable(B, vt, vt_size, B->vt_hash))) { + return 0; + } + /* Clear vs stack so it is ready for the next vtable (ds stack is cleared by exit frame). */ + memset(vt, 0, vt_size); + + pl = pl_ptr(frame(container.table.pl_end)); + pl_count = (int)(B->pl - pl); + if (0 == (table_ref = flatcc_builder_create_table(B, B->ds, B->ds_offset, B->align, pl, pl_count, vt_ref))) { + return 0; + } + B->vt_hash = frame(container.table.vt_hash); + B->id_end = frame(container.table.id_end); + B->vs = vs_ptr(frame(container.table.vs_end)); + B->pl = pl_ptr(frame(container.table.pl_end)); + exit_frame(B); + return table_ref; +} + +flatcc_builder_ref_t flatcc_builder_create_vector(flatcc_builder_t *B, + const void *data, size_t count, size_t elem_size, uint16_t align, size_t max_count) +{ + /* + * Note: it is important that vec_size is uoffset not size_t + * in case sizeof(uoffset_t) > sizeof(size_t) because max_count is + * defined in terms of uoffset_t representation size, and also + * because we risk accepting too large a vector even if max_count is + * not violated. + */ + uoffset_t vec_size, vec_pad, length_prefix; + iov_state_t iov; + + check_error(count <= max_count, 0, "vector max_count violated"); + get_min_align(&align, field_size); + set_min_align(B, align); + vec_size = (uoffset_t)count * (uoffset_t)elem_size; + /* + * That can happen on 32 bit systems when uoffset_t is defined as 64-bit. + * `emit_front/back` captures overflow, but not if our size type wraps first. + */ +#if FLATBUFFERS_UOFFSET_MAX > SIZE_MAX + check_error(vec_size < SIZE_MAX, 0, "vector larger than address space"); +#endif + write_uoffset(&length_prefix, (uoffset_t)count); + /* Alignment is calculated for the first element, not the header. */ + vec_pad = front_pad(B, vec_size, align); + init_iov(); + push_iov(&length_prefix, field_size); + push_iov(data, vec_size); + push_iov(_pad, vec_pad); + return emit_front(B, &iov); +} + +/* + * Note: FlatBuffers official documentation states that the size field of a + * vector is a 32-bit element count. It is not quite clear if the + * intention is to have the size field be of type uoffset_t since tables + * also have a uoffset_t sized header, or if the vector size should + * remain unchanged if uoffset is changed to 16- or 64-bits + * respectively. Since it makes most sense to have a vector compatible + * with the addressable space, we choose to use uoffset_t as size field, + * which remains compatible with the default 32-bit version of uoffset_t. + */ +flatcc_builder_ref_t flatcc_builder_end_vector(flatcc_builder_t *B) +{ + flatcc_builder_ref_t vector_ref; + + check(frame(type) == flatcc_builder_vector, "expected vector frame"); + + if (0 == (vector_ref = flatcc_builder_create_vector(B, B->ds, + frame(container.vector.count), frame(container.vector.elem_size), + B->align, frame(container.vector.max_count)))) { + return 0; + } + exit_frame(B); + return vector_ref; +} + +size_t flatcc_builder_vector_count(flatcc_builder_t *B) +{ + return frame(container.vector.count); +} + +void *flatcc_builder_vector_edit(flatcc_builder_t *B) +{ + return B->ds; +} + +/* This function destroys the source content but avoids stack allocation. */ +static flatcc_builder_ref_t _create_offset_vector_direct(flatcc_builder_t *B, + flatcc_builder_ref_t *vec, size_t count, const utype_t *types) +{ + uoffset_t vec_size, vec_pad; + uoffset_t length_prefix, offset; + uoffset_t i; + soffset_t base; + iov_state_t iov; + + if ((uoffset_t)count > max_offset_count) { + return 0; + } + set_min_align(B, field_size); + vec_size = (uoffset_t)(count * field_size); + write_uoffset(&length_prefix, (uoffset_t)count); + /* Alignment is calculated for the first element, not the header. */ + vec_pad = front_pad(B, vec_size, field_size); + init_iov(); + push_iov(&length_prefix, field_size); + push_iov(vec, vec_size); + push_iov(_pad, vec_pad); + base = B->emit_start - (soffset_t)iov.len; + for (i = 0; i < (uoffset_t)count; ++i) { + /* + * 0 is either end of buffer, start of vtables, or start of + * buffer depending on the direction in which the buffer is + * built. None of these can create a valid 0 reference but it + * is easy to create by mistake when manually building offset + * vectors. + * + * Unions do permit nulls, but only when the type is NONE. + */ + if (vec[i] != 0) { + offset = (uoffset_t) + (vec[i] - base - (soffset_t)(i * field_size) - (soffset_t)field_size); + write_uoffset(&vec[i], offset); + if (types) { + check(types[i] != 0, "union vector cannot have non-null element with type NONE"); + } + } else { + if (types) { + check(types[i] == 0, "union vector cannot have null element without type NONE"); + } else { + check(0, "offset vector cannot have null element"); + } + } + } + return emit_front(B, &iov); +} + +flatcc_builder_ref_t flatcc_builder_create_offset_vector_direct(flatcc_builder_t *B, + flatcc_builder_ref_t *vec, size_t count) +{ + return _create_offset_vector_direct(B, vec, count, 0); +} + +flatcc_builder_ref_t flatcc_builder_end_offset_vector(flatcc_builder_t *B) +{ + flatcc_builder_ref_t vector_ref; + + check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame"); + if (0 == (vector_ref = flatcc_builder_create_offset_vector_direct(B, + (flatcc_builder_ref_t *)B->ds, frame(container.vector.count)))) { + return 0; + } + exit_frame(B); + return vector_ref; +} + +flatcc_builder_ref_t flatcc_builder_end_offset_vector_for_unions(flatcc_builder_t *B, const utype_t *types) +{ + flatcc_builder_ref_t vector_ref; + + check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame"); + if (0 == (vector_ref = _create_offset_vector_direct(B, + (flatcc_builder_ref_t *)B->ds, frame(container.vector.count), types))) { + return 0; + } + exit_frame(B); + return vector_ref; +} + +void *flatcc_builder_offset_vector_edit(flatcc_builder_t *B) +{ + return B->ds; +} + +size_t flatcc_builder_offset_vector_count(flatcc_builder_t *B) +{ + return frame(container.vector.count); +} + +int flatcc_builder_table_add_union(flatcc_builder_t *B, int id, + flatcc_builder_union_ref_t uref) +{ + flatcc_builder_ref_t *pref; + flatcc_builder_utype_t *putype; + + check(frame(type) == flatcc_builder_table, "expected table frame"); + check_error(uref.type != 0 || uref.value == 0, -1, "expected null value for type NONE"); + if (uref.value != 0) { + pref = flatcc_builder_table_add_offset(B, id); + check_error(pref != 0, -1, "unable to add union value"); + *pref = uref.value; + } + putype = flatcc_builder_table_add(B, id - 1, utype_size, utype_size); + check_error(putype != 0, -1, "unable to add union type"); + write_utype(putype, uref.type); + return 0; +} + +int flatcc_builder_table_add_union_vector(flatcc_builder_t *B, int id, + flatcc_builder_union_vec_ref_t uvref) +{ + flatcc_builder_ref_t *pref; + + check(frame(type) == flatcc_builder_table, "expected table frame"); + check_error((uvref.type == 0) == (uvref.value == 0), -1, "expected both type and value vector, or neither"); + if (uvref.type != 0) { + pref = flatcc_builder_table_add_offset(B, id - 1); + check_error(pref != 0, -1, "unable to add union member"); + *pref = uvref.type; + + pref = flatcc_builder_table_add_offset(B, id); + check_error(pref != 0, -1, "unable to add union member"); + *pref = uvref.value; + } + return 0; +} + +flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector(flatcc_builder_t *B, + const flatcc_builder_union_ref_t *urefs, size_t count) +{ + flatcc_builder_union_vec_ref_t uvref = { 0, 0 }; + flatcc_builder_utype_t *types; + flatcc_builder_ref_t *refs; + size_t i; + + if (flatcc_builder_start_offset_vector(B)) { + return uvref; + } + if (0 == flatcc_builder_extend_offset_vector(B, count)) { + return uvref; + } + if (0 == (types = push_ds(B, (uoffset_t)(utype_size * count)))) { + return uvref; + } + + /* Safe even if push_ds caused stack reallocation. */ + refs = flatcc_builder_offset_vector_edit(B); + + for (i = 0; i < count; ++i) { + types[i] = urefs[i].type; + refs[i] = urefs[i].value; + } + uvref = flatcc_builder_create_union_vector_direct(B, + types, refs, count); + /* No need to clean up after out temporary types vector. */ + exit_frame(B); + return uvref; +} + +flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector_direct(flatcc_builder_t *B, + const flatcc_builder_utype_t *types, flatcc_builder_ref_t *data, size_t count) +{ + flatcc_builder_union_vec_ref_t uvref = { 0, 0 }; + + if (0 == (uvref.value = _create_offset_vector_direct(B, data, count, types))) { + return uvref; + } + if (0 == (uvref.type = flatcc_builder_create_type_vector(B, types, count))) { + return uvref; + } + return uvref; +} + +flatcc_builder_ref_t flatcc_builder_create_type_vector(flatcc_builder_t *B, + const flatcc_builder_utype_t *types, size_t count) +{ + return flatcc_builder_create_vector(B, types, count, + utype_size, utype_size, max_utype_count); +} + +int flatcc_builder_start_union_vector(flatcc_builder_t *B) +{ + if (enter_frame(B, field_size)) { + return -1; + } + frame(container.vector.elem_size) = union_size; + frame(container.vector.count) = 0; + frame(type) = flatcc_builder_union_vector; + refresh_ds(B, data_limit); + return 0; +} + +flatcc_builder_union_vec_ref_t flatcc_builder_end_union_vector(flatcc_builder_t *B) +{ + flatcc_builder_union_vec_ref_t uvref = { 0, 0 }; + flatcc_builder_utype_t *types; + flatcc_builder_union_ref_t *urefs; + flatcc_builder_ref_t *refs; + size_t i, count; + + check(frame(type) == flatcc_builder_union_vector, "expected union vector frame"); + + /* + * We could split the union vector in-place, but then we would have + * to deal with strict pointer aliasing rules which is not worthwhile + * so we create a new offset and type vector on the stack. + * + * We assume the stack is sufficiently aligned as is. + */ + count = flatcc_builder_union_vector_count(B); + if (0 == (refs = push_ds(B, (uoffset_t)(count * (utype_size + field_size))))) { + return uvref; + } + types = (flatcc_builder_utype_t *)(refs + count); + + /* Safe even if push_ds caused stack reallocation. */ + urefs = flatcc_builder_union_vector_edit(B); + + for (i = 0; i < count; ++i) { + types[i] = urefs[i].type; + refs[i] = urefs[i].value; + } + uvref = flatcc_builder_create_union_vector_direct(B, types, refs, count); + /* No need to clean up after out temporary types vector. */ + exit_frame(B); + return uvref; +} + +void *flatcc_builder_union_vector_edit(flatcc_builder_t *B) +{ + return B->ds; +} + +size_t flatcc_builder_union_vector_count(flatcc_builder_t *B) +{ + return frame(container.vector.count); +} + +flatcc_builder_union_ref_t *flatcc_builder_extend_union_vector(flatcc_builder_t *B, size_t count) +{ + if (vector_count_add(B, (uoffset_t)count, max_union_count)) { + return 0; + } + return push_ds(B, (uoffset_t)(union_size * count)); +} + +int flatcc_builder_truncate_union_vector(flatcc_builder_t *B, size_t count) +{ + check(frame(type) == flatcc_builder_union_vector, "expected union vector frame"); + check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty"); + frame(container.vector.count) -= (uoffset_t)count; + unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count); + return 0; +} + +flatcc_builder_union_ref_t *flatcc_builder_union_vector_push(flatcc_builder_t *B, + flatcc_builder_union_ref_t uref) +{ + flatcc_builder_union_ref_t *p; + + check(frame(type) == flatcc_builder_union_vector, "expected union vector frame"); + if (frame(container.vector.count) == max_union_count) { + return 0; + } + frame(container.vector.count) += 1; + if (0 == (p = push_ds(B, union_size))) { + return 0; + } + *p = uref; + return p; +} + +flatcc_builder_union_ref_t *flatcc_builder_append_union_vector(flatcc_builder_t *B, + const flatcc_builder_union_ref_t *urefs, size_t count) +{ + check(frame(type) == flatcc_builder_union_vector, "expected union vector frame"); + if (vector_count_add(B, (uoffset_t)count, max_union_count)) { + return 0; + } + return push_ds_copy(B, urefs, (uoffset_t)(union_size * count)); +} + +flatcc_builder_ref_t flatcc_builder_create_string(flatcc_builder_t *B, const char *s, size_t len) +{ + uoffset_t s_pad; + uoffset_t length_prefix; + iov_state_t iov; + + if (len > max_string_len) { + return 0; + } + write_uoffset(&length_prefix, (uoffset_t)len); + /* Add 1 for zero termination. */ + s_pad = front_pad(B, (uoffset_t)len + 1, field_size) + 1; + init_iov(); + push_iov(&length_prefix, field_size); + push_iov(s, len); + push_iov(_pad, s_pad); + return emit_front(B, &iov); +} + +flatcc_builder_ref_t flatcc_builder_create_string_str(flatcc_builder_t *B, const char *s) +{ + return flatcc_builder_create_string(B, s, strlen(s)); +} + +flatcc_builder_ref_t flatcc_builder_create_string_strn(flatcc_builder_t *B, const char *s, size_t max_len) +{ + return flatcc_builder_create_string(B, s, strnlen(s, max_len)); +} + +flatcc_builder_ref_t flatcc_builder_end_string(flatcc_builder_t *B) +{ + flatcc_builder_ref_t string_ref; + + check(frame(type) == flatcc_builder_string, "expected string frame"); + FLATCC_ASSERT(frame(container.vector.count) == B->ds_offset); + if (0 == (string_ref = flatcc_builder_create_string(B, + (const char *)B->ds, B->ds_offset))) { + return 0; + } + exit_frame(B); + return string_ref; +} + +char *flatcc_builder_string_edit(flatcc_builder_t *B) +{ + return (char *)B->ds; +} + +size_t flatcc_builder_string_len(flatcc_builder_t *B) +{ + return frame(container.vector.count); +} + +void *flatcc_builder_table_add(flatcc_builder_t *B, int id, size_t size, uint16_t align) +{ + /* + * We align the offset relative to the first table field, excluding + * the header holding the vtable reference. On the stack, `ds_first` + * is aligned to 8 bytes thanks to the `enter_frame` logic, and this + * provides a safe way to update the fields on the stack, but here + * we are concerned with the target buffer alignment. + * + * We could also have aligned relative to the end of the table which + * would allow us to emit each field immediately, but it would be a + * confusing user experience wrt. field ordering, and it would add + * more variability to vtable layouts, thus reducing reuse, and + * frequent emissions to external emitter interface would be + * sub-optimal. Also, with that appoach, the vtable offsets would + * have to be adjusted at table end. + * + * As we have it, each emit occur at table end, vector end, string + * end, or buffer end, which might be helpful to various backend + * processors. + */ + check(frame(type) == flatcc_builder_table, "expected table frame"); + check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range"); + if (align > B->align) { + B->align = align; + } +#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD + if (B->vs[id] != 0) { + return B->ds + B->vs[id] - field_size; + } +#else + if (B->vs[id] != 0) { + check(0, "table field already set"); + return 0; + } +#endif + FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)size); + return push_ds_field(B, (uoffset_t)size, align, (voffset_t)id); +} + +void *flatcc_builder_table_edit(flatcc_builder_t *B, size_t size) +{ + check(frame(type) == flatcc_builder_table, "expected table frame"); + + return B->ds + B->ds_offset - size; +} + +void *flatcc_builder_table_add_copy(flatcc_builder_t *B, int id, const void *data, size_t size, uint16_t align) +{ + void *p; + + if ((p = flatcc_builder_table_add(B, id, size, align))) { + memcpy(p, data, size); + } + return p; +} + +flatcc_builder_ref_t *flatcc_builder_table_add_offset(flatcc_builder_t *B, int id) +{ + check(frame(type) == flatcc_builder_table, "expected table frame"); + check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range"); +#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD + if (B->vs[id] != 0) { + return B->ds + B->vs[id] - field_size; + } +#else + if (B->vs[id] != 0) { + check(0, "table field already set"); + return 0; + } +#endif + FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)field_size); + return push_ds_offset_field(B, (voffset_t)id); +} + +uint16_t flatcc_builder_push_buffer_alignment(flatcc_builder_t *B) +{ + uint16_t old_min_align = B->min_align; + + B->min_align = field_size; + return old_min_align; +} + +void flatcc_builder_pop_buffer_alignment(flatcc_builder_t *B, uint16_t pushed_align) +{ + set_min_align(B, pushed_align); +} + +uint16_t flatcc_builder_get_buffer_alignment(flatcc_builder_t *B) +{ + return B->min_align; +} + +void flatcc_builder_set_vtable_clustering(flatcc_builder_t *B, int enable) +{ + /* Inverted because we zero all memory in B on init. */ + B->disable_vt_clustering = !enable; +} + +void flatcc_builder_set_block_align(flatcc_builder_t *B, uint16_t align) +{ + B->block_align = align; +} + +int flatcc_builder_get_level(flatcc_builder_t *B) +{ + return B->level; +} + +void flatcc_builder_set_max_level(flatcc_builder_t *B, int max_level) +{ + B->max_level = max_level; + if (B->limit_level < B->max_level) { + B->limit_level = B->max_level; + } +} + +size_t flatcc_builder_get_buffer_size(flatcc_builder_t *B) +{ + return (size_t)(B->emit_end - B->emit_start); +} + +flatcc_builder_ref_t flatcc_builder_get_buffer_start(flatcc_builder_t *B) +{ + return B->emit_start; +} + +flatcc_builder_ref_t flatcc_builder_get_buffer_end(flatcc_builder_t *B) +{ + return B->emit_end; +} + +void flatcc_builder_set_vtable_cache_limit(flatcc_builder_t *B, size_t size) +{ + B->vb_flush_limit = size; +} + +void flatcc_builder_set_identifier(flatcc_builder_t *B, const char identifier[identifier_size]) +{ + set_identifier(identifier); +} + +enum flatcc_builder_type flatcc_builder_get_type(flatcc_builder_t *B) +{ + return B->frame ? frame(type) : flatcc_builder_empty; +} + +enum flatcc_builder_type flatcc_builder_get_type_at(flatcc_builder_t *B, int level) +{ + if (level < 1 || level > B->level) { + return flatcc_builder_empty; + } + return B->frame[level - B->level].type; +} + +void *flatcc_builder_get_direct_buffer(flatcc_builder_t *B, size_t *size_out) +{ + if (B->is_default_emitter) { + return flatcc_emitter_get_direct_buffer(&B->default_emit_context, size_out); + } else { + if (size_out) { + *size_out = 0; + } + } + return 0; +} + +void *flatcc_builder_copy_buffer(flatcc_builder_t *B, void *buffer, size_t size) +{ + /* User is allowed to call tentatively to see if there is support. */ + if (!B->is_default_emitter) { + return 0; + } + buffer = flatcc_emitter_copy_buffer(&B->default_emit_context, buffer, size); + check(buffer, "default emitter declined to copy buffer"); + return buffer; +} + +void *flatcc_builder_finalize_buffer(flatcc_builder_t *B, size_t *size_out) +{ + void * buffer; + size_t size; + + size = flatcc_builder_get_buffer_size(B); + + if (size_out) { + *size_out = size; + } + + buffer = FLATCC_BUILDER_ALLOC(size); + + if (!buffer) { + check(0, "failed to allocated memory for finalized buffer"); + goto done; + } + if (!flatcc_builder_copy_buffer(B, buffer, size)) { + check(0, "default emitter declined to copy buffer"); + FLATCC_BUILDER_FREE(buffer); + buffer = 0; + } +done: + if (!buffer && size_out) { + *size_out = 0; + } + return buffer; +} + +void *flatcc_builder_finalize_aligned_buffer(flatcc_builder_t *B, size_t *size_out) +{ + void * buffer; + size_t align; + size_t size; + + size = flatcc_builder_get_buffer_size(B); + + if (size_out) { + *size_out = size; + } + align = flatcc_builder_get_buffer_alignment(B); + + size = (size + align - 1) & ~(align - 1); + buffer = FLATCC_BUILDER_ALIGNED_ALLOC(align, size); + + if (!buffer) { + goto done; + } + if (!flatcc_builder_copy_buffer(B, buffer, size)) { + FLATCC_BUILDER_ALIGNED_FREE(buffer); + buffer = 0; + goto done; + } +done: + if (!buffer && size_out) { + *size_out = 0; + } + return buffer; +} + +void *flatcc_builder_aligned_alloc(size_t alignment, size_t size) +{ + return FLATCC_BUILDER_ALIGNED_ALLOC(alignment, size); +} + +void flatcc_builder_aligned_free(void *p) +{ + FLATCC_BUILDER_ALIGNED_FREE(p); +} + +void *flatcc_builder_alloc(size_t size) +{ + return FLATCC_BUILDER_ALLOC(size); +} + +void flatcc_builder_free(void *p) +{ + FLATCC_BUILDER_FREE(p); +} + +void *flatcc_builder_get_emit_context(flatcc_builder_t *B) +{ + return B->emit_context; +} diff --git a/flatcc/src/runtime/emitter.c b/flatcc/src/runtime/emitter.c new file mode 100644 index 0000000..089ea00 --- /dev/null +++ b/flatcc/src/runtime/emitter.c @@ -0,0 +1,269 @@ +#include <stdlib.h> + +#include "flatcc/flatcc_rtconfig.h" +#include "flatcc/flatcc_emitter.h" + +static int advance_front(flatcc_emitter_t *E) +{ + flatcc_emitter_page_t *p = 0; + + if (E->front && E->front->prev != E->back) { + E->front->prev->page_offset = E->front->page_offset - FLATCC_EMITTER_PAGE_SIZE; + E->front = E->front->prev; + goto done; + } + if (!(p = FLATCC_EMITTER_ALLOC(sizeof(flatcc_emitter_page_t)))) { + return -1; + } + E->capacity += FLATCC_EMITTER_PAGE_SIZE; + if (E->front) { + p->prev = E->back; + p->next = E->front; + E->front->prev = p; + E->back->next = p; + E->front = p; + goto done; + } + /* + * The first page is shared between front and back to avoid + * double unecessary extra allocation. + */ + E->front = p; + E->back = p; + p->next = p; + p->prev = p; + E->front_cursor = E->front->page + FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_cursor = E->front_cursor; + E->front_left = FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_left = FLATCC_EMITTER_PAGE_SIZE - E->front_left; + p->page_offset = -(flatbuffers_soffset_t)E->front_left; + return 0; +done: + E->front_cursor = E->front->page + FLATCC_EMITTER_PAGE_SIZE; + E->front_left = FLATCC_EMITTER_PAGE_SIZE; + E->front->page_offset = E->front->next->page_offset - FLATCC_EMITTER_PAGE_SIZE; + return 0; +} + +static int advance_back(flatcc_emitter_t *E) +{ + flatcc_emitter_page_t *p = 0; + + if (E->back && E->back->next != E->front) { + E->back = E->back->next; + goto done; + } + if (!(p = FLATCC_EMITTER_ALLOC(sizeof(flatcc_emitter_page_t)))) { + return -1; + } + E->capacity += FLATCC_EMITTER_PAGE_SIZE; + if (E->back) { + p->prev = E->back; + p->next = E->front; + E->front->prev = p; + E->back->next = p; + E->back = p; + goto done; + } + /* + * The first page is shared between front and back to avoid + * double unecessary extra allocation. + */ + E->front = p; + E->back = p; + p->next = p; + p->prev = p; + E->front_cursor = E->front->page + FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_cursor = E->front_cursor; + E->front_left = FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_left = FLATCC_EMITTER_PAGE_SIZE - E->front_left; + p->page_offset = -(flatbuffers_soffset_t)E->front_left; + return 0; +done: + E->back_cursor = E->back->page; + E->back_left = FLATCC_EMITTER_PAGE_SIZE; + E->back->page_offset = E->back->prev->page_offset + FLATCC_EMITTER_PAGE_SIZE; + return 0; +} + +static int copy_front(flatcc_emitter_t *E, uint8_t *data, size_t size) +{ + size_t k; + + data += size; + while (size) { + k = size; + if (k > E->front_left) { + k = E->front_left; + if (k == 0) { + if (advance_front(E)) { + return -1; + } + continue; + } + } + E->front_cursor -= k; + E->front_left -= k; + data -= k; + size -= k; + memcpy(E->front_cursor, data, k); + }; + return 0; +} + +static int copy_back(flatcc_emitter_t *E, uint8_t *data, size_t size) +{ + size_t k; + + while (size) { + k = size; + if (k > E->back_left) { + k = E->back_left; + if (k == 0) { + if (advance_back(E)) { + return -1; + } + continue; + } + } + memcpy(E->back_cursor, data, k); + size -= k; + data += k; + E->back_cursor += k; + E->back_left -= k; + } + return 0; +} + +int flatcc_emitter_recycle_page(flatcc_emitter_t *E, flatcc_emitter_page_t *p) +{ + if (p == E->front || p == E->back) { + return -1; + } + p->next->prev = p->prev; + p->prev->next = p->next; + p->prev = E->front->prev; + p->next = E->front; + p->prev->next = p; + p->next->prev = p; + return 0; +} + +void flatcc_emitter_reset(flatcc_emitter_t *E) +{ + flatcc_emitter_page_t *p = E->front; + + if (!E->front) { + return; + } + E->back = E->front; + E->front_cursor = E->front->page + FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_cursor = E->front_cursor; + E->front_left = FLATCC_EMITTER_PAGE_SIZE / 2; + E->back_left = FLATCC_EMITTER_PAGE_SIZE - FLATCC_EMITTER_PAGE_SIZE / 2; + E->front->page_offset = -(flatbuffers_soffset_t)E->front_left; + /* Heuristic to reduce peak allocation over time. */ + if (E->used_average == 0) { + E->used_average = E->used; + } + E->used_average = E->used_average * 3 / 4 + E->used / 4; + E->used = 0; + while (E->used_average * 2 < E->capacity && E->back->next != E->front) { + /* We deallocate the page after back since it is less likely to be hot in cache. */ + p = E->back->next; + E->back->next = p->next; + p->next->prev = E->back; + FLATCC_EMITTER_FREE(p); + E->capacity -= FLATCC_EMITTER_PAGE_SIZE; + } +} + +void flatcc_emitter_clear(flatcc_emitter_t *E) +{ + flatcc_emitter_page_t *p = E->front; + + if (!p) { + return; + } + p->prev->next = 0; + while (p->next) { + p = p->next; + FLATCC_EMITTER_FREE(p->prev); + } + FLATCC_EMITTER_FREE(p); + memset(E, 0, sizeof(*E)); +} + +int flatcc_emitter(void *emit_context, + const flatcc_iovec_t *iov, int iov_count, + flatbuffers_soffset_t offset, size_t len) +{ + flatcc_emitter_t *E = emit_context; + uint8_t *p; + + E->used += len; + if (offset < 0) { + if (len <= E->front_left) { + E->front_cursor -= len; + E->front_left -= len; + p = E->front_cursor; + goto copy; + } + iov += iov_count; + while (iov_count--) { + --iov; + if (copy_front(E, iov->iov_base, iov->iov_len)) { + return -1; + } + } + } else { + if (len <= E->back_left) { + p = E->back_cursor; + E->back_cursor += len; + E->back_left -= len; + goto copy; + } + while (iov_count--) { + if (copy_back(E, iov->iov_base, iov->iov_len)) { + return -1; + } + ++iov; + } + } + return 0; +copy: + while (iov_count--) { + memcpy(p, iov->iov_base, iov->iov_len); + p += iov->iov_len; + ++iov; + } + return 0; +} + +void *flatcc_emitter_copy_buffer(flatcc_emitter_t *E, void *buf, size_t size) +{ + flatcc_emitter_page_t *p; + size_t len; + + if (size < E->used) { + return 0; + } + if (!E->front) { + return 0; + } + if (E->front == E->back) { + memcpy(buf, E->front_cursor, E->used); + return buf; + } + len = FLATCC_EMITTER_PAGE_SIZE - E->front_left; + memcpy(buf, E->front_cursor, len); + buf = (uint8_t *)buf + len; + p = E->front->next; + while (p != E->back) { + memcpy(buf, p->page, FLATCC_EMITTER_PAGE_SIZE); + buf = (uint8_t *)buf + FLATCC_EMITTER_PAGE_SIZE; + p = p->next; + } + memcpy(buf, p->page, FLATCC_EMITTER_PAGE_SIZE - E->back_left); + return buf; +} diff --git a/flatcc/src/runtime/json_parser.c b/flatcc/src/runtime/json_parser.c new file mode 100644 index 0000000..4472af2 --- /dev/null +++ b/flatcc/src/runtime/json_parser.c @@ -0,0 +1,1297 @@ +#include "flatcc/flatcc_rtconfig.h" +#include "flatcc/flatcc_json_parser.h" +#include "flatcc/flatcc_assert.h" + +#define uoffset_t flatbuffers_uoffset_t +#define soffset_t flatbuffers_soffset_t +#define voffset_t flatbuffers_voffset_t +#define utype_t flatbuffers_utype_t + +#define uoffset_size sizeof(uoffset_t) +#define soffset_size sizeof(soffset_t) +#define voffset_size sizeof(voffset_t) +#define utype_size sizeof(utype_t) + +#define offset_size uoffset_size +#if FLATCC_USE_GRISU3 && !defined(PORTABLE_USE_GRISU3) +#define PORTABLE_USE_GRISU3 1 +#endif +#include "flatcc/portable/pparsefp.h" +#include "flatcc/portable/pbase64.h" + +#if FLATCC_USE_SSE4_2 +#ifdef __SSE4_2__ +#define USE_SSE4_2 +#endif +#endif + +#ifdef USE_SSE4_2 +#include <nmmintrin.h> +#define cmpistri(end, haystack, needle, flags) \ + if (end - haystack >= 16) do { \ + int i; \ + __m128i a = _mm_loadu_si128((const __m128i *)(needle)); \ + do { \ + __m128i b = _mm_loadu_si128((const __m128i *)(haystack)); \ + i = _mm_cmpistri(a, b, flags); \ + haystack += i; \ + } while (i == 16 && end - haystack >= 16); \ + } while(0) +#endif + +const char *flatcc_json_parser_error_string(int err) +{ + switch (err) { +#define XX(no, str) \ + case flatcc_json_parser_error_##no: \ + return str; + FLATCC_JSON_PARSE_ERROR_MAP(XX) +#undef XX + default: + return "unknown"; + } +} + +const char *flatcc_json_parser_set_error(flatcc_json_parser_t *ctx, const char *loc, const char *end, int err) +{ + if (!ctx->error) { + ctx->error = err; + ctx->pos = (int)(loc - ctx->line_start + 1); + ctx->error_loc = loc; + } + return end; +} + +const char *flatcc_json_parser_string_part(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ +/* + * Disabled because it doesn't catch all control characters, but is + * useful for performance testing. + */ +#if 0 +//#ifdef USE_SSE4_2 + cmpistri(end, buf, "\"\\\0\r\n\t\v\f", _SIDD_POSITIVE_POLARITY); +#else + /* + * Testing for signed char >= 0x20 would also capture UTF-8 + * encodings that we could verify, and also invalid encodings like + * 0xff, but we do not wan't to enforce strict UTF-8. + */ + while (buf != end && *buf != '\"' && ((unsigned char)*buf) >= 0x20 && *buf != '\\') { + ++buf; + } +#endif + if (buf == end) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unterminated_string); + } + if (*buf == '"') { + return buf; + } + if (*buf < 0x20) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_character); + } + return buf; +} + +const char *flatcc_json_parser_space_ext(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ +again: +#ifdef USE_SSE4_2 + /* + * We can include line break, but then error reporting suffers and + * it really makes no big difference. + */ + //cmpistri(end, buf, "\x20\t\v\f\r\n", _SIDD_NEGATIVE_POLARITY); + cmpistri(end, buf, "\x20\t\v\f", _SIDD_NEGATIVE_POLARITY); +#else +#if FLATCC_ALLOW_UNALIGNED_ACCESS + while (end - buf >= 16) { + if (*buf > 0x20) { + return buf; + } +#if FLATCC_JSON_PARSE_WIDE_SPACE + if (((uint64_t *)buf)[0] != 0x2020202020202020) { +descend: + if (((uint32_t *)buf)[0] == 0x20202020) { + buf += 4; + } +#endif + if (((uint16_t *)buf)[0] == 0x2020) { + buf += 2; + } + if (*buf == 0x20) { + ++buf; + } + if (*buf > 0x20) { + return buf; + } + break; +#if FLATCC_JSON_PARSE_WIDE_SPACE + } + if (((uint64_t *)buf)[1] != 0x2020202020202020) { + buf += 8; + goto descend; + } + buf += 16; +#endif + } +#endif +#endif + while (buf != end && *buf == 0x20) { + ++buf; + } + while (buf != end && *buf <= 0x20) { + switch (*buf) { + case 0x0d: buf += (end - buf > 1 && buf[1] == 0x0a); + /* Consume following LF or treating CR as LF. */ + ++ctx->line; ctx->line_start = ++buf; continue; + case 0x0a: ++ctx->line; ctx->line_start = ++buf; continue; + case 0x09: ++buf; continue; + case 0x20: goto again; /* Don't consume here, sync with power of 2 spaces. */ + default: return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unexpected_character); + } + } + return buf; +} + +static int decode_hex4(const char *buf, uint32_t *result) +{ + uint32_t u, x; + char c; + + u = 0; + c = buf[0]; + if (c >= '0' && c <= '9') { + x = (uint32_t)(c - '0'); + u = x << 12; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + x = (uint32_t)(c - 'a' + 10); + u |= x << 12; + } else { + return -1; + } + } + c = buf[1]; + if (c >= '0' && c <= '9') { + x = (uint32_t)(c - '0'); + u |= x << 8; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + x = (uint32_t)(c - 'a' + 10); + u |= x << 8; + } else { + return -1; + } + } + c = buf[2]; + if (c >= '0' && c <= '9') { + x = (uint32_t)(c - '0'); + u |= x << 4; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + x = (uint32_t)(c - 'a' + 10); + u |= x << 4; + } else { + return -1; + } + } + c = buf[3]; + if (c >= '0' && c <= '9') { + x = (uint32_t)(c - '0'); + u |= x; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + x = (uint32_t)(c - 'a' + 10); + u |= x; + } else { + return -1; + } + } + *result = u; + return 0; +} + +static int decode_unicode_char(uint32_t u, char *code) +{ + if (u <= 0x7f) { + code[0] = 1; + code[1] = (char)u; + } else if (u <= 0x7ff) { + code[0] = 2; + code[1] = (char)(0xc0 | (u >> 6)); + code[2] = (char)(0x80 | (u & 0x3f)); + } else if (u <= 0xffff) { + code[0] = 3; + code[1] = (char)(0xe0 | (u >> 12)); + code[2] = (char)(0x80 | ((u >> 6) & 0x3f)); + code[3] = (char)(0x80 | (u & 0x3f)); + } else if (u <= 0x10ffff) { + code[0] = 4; + code[1] = (char)(0xf0 | (u >> 18)); + code[2] = (char)(0x80 | ((u >> 12) & 0x3f)); + code[3] = (char)(0x80 | ((u >> 6) & 0x3f)); + code[4] = (char)(0x80 | (u & 0x3f)); + } else { + code[0] = 0; + return -1; + } + return 0; +} + +static inline uint32_t combine_utf16_surrogate_pair(uint32_t high, uint32_t low) +{ + return (high - 0xd800) * 0x400 + (low - 0xdc00) + 0x10000; +} + +static inline int decode_utf16_surrogate_pair(uint32_t high, uint32_t low, char *code) +{ + return decode_unicode_char(combine_utf16_surrogate_pair(high, low), code); +} + + +/* + * UTF-8 code points can have up to 4 bytes but JSON can only + * encode up to 3 bytes via the \uXXXX syntax. + * To handle the range U+10000..U+10FFFF two UTF-16 surrogate + * pairs must be used. If this is not detected, the pairs + * survive in the output which is not valid but often tolerated. + * Emojis generally require such a pair, unless encoded + * unescaped in UTF-8. + * + * If a high surrogate pair is detected and a low surrogate pair + * follows, the combined sequence is decoded as a 4 byte + * UTF-8 sequence. Unpaired surrogate halves are decoded as is + * despite being an invalid UTF-8 value. + */ + +const char *flatcc_json_parser_string_escape(flatcc_json_parser_t *ctx, const char *buf, const char *end, flatcc_json_parser_escape_buffer_t code) +{ + char c, v; + uint32_t u, u2; + + if (end - buf < 2 || buf[0] != '\\') { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + switch (buf[1]) { + case 'x': + v = 0; + code[0] = 1; + if (end - buf < 4) { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + c = buf[2]; + if (c >= '0' && c <= '9') { + v |= (c - '0') << 4; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + v |= (c - 'a' + 10) << 4; + } else { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + } + c = buf[3]; + if (c >= '0' && c <= '9') { + v |= c - '0'; + } else { + /* Lower case. */ + c |= 0x20; + if (c >= 'a' && c <= 'f') { + v |= c - 'a' + 10; + } else { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + } + code[1] = v; + return buf + 4; + case 'u': + if (end - buf < 6) { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + if (decode_hex4(buf + 2, &u)) { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + }; + /* If a high UTF-16 surrogate half pair was detected */ + if (u >= 0xd800 && u <= 0xdbff && + /* and there is space for a matching low half pair */ + end - buf >= 12 && + /* and there is a second escape following immediately */ + buf[6] == '\\' && buf[7] == 'u' && + /* and it is valid hex */ + decode_hex4(buf + 8, &u2) == 0 && + /* and it is a low UTF-16 surrogate pair */ + u2 >= 0xdc00 && u2 <= 0xdfff) { + /* then decode the pair into a single 4 byte utf-8 sequence. */ + if (decode_utf16_surrogate_pair(u, u2, code)) { + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } + return buf + 12; + /* + * Otherwise decode unmatched surrogate pairs as is any + * other UTF-8. Some systems might depend on these surviving. + * Leave ignored errors for the next parse step. + */ + } + decode_unicode_char(u, code); + return buf + 6; + case 't': + code[0] = 1; + code[1] = '\t'; + return buf + 2; + case 'n': + code[0] = 1; + code[1] = '\n'; + return buf + 2; + case 'r': + code[0] = 1; + code[1] = '\r'; + return buf + 2; + case 'b': + code[0] = 1; + code[1] = '\b'; + return buf + 2; + case 'f': + code[0] = 1; + code[1] = '\f'; + return buf + 2; + case '\"': + code[0] = 1; + code[1] = '\"'; + return buf + 2; + case '\\': + code[0] = 1; + code[1] = '\\'; + return buf + 2; + case '/': + code[0] = 1; + code[1] = '/'; + return buf + 2; + default: + code[0] = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + } +} + +/* Only applies to unquoted constants during generic parsring, otherwise it is skipped as a string. */ +const char *flatcc_json_parser_skip_constant(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ + char c; + const char *k; + + while (buf != end) { + c = *buf; + if ((c & 0x80) || (c == '_') || (c >= '0' && c <= '9') || c == '.') { + ++buf; + continue; + } + /* Upper case. */ + c |= 0x20; + if (c >= 'a' && c <= 'z') { + ++buf; + continue; + } + buf = flatcc_json_parser_space(ctx, (k = buf), end); + if (buf == k) { + return buf; + } + } + return buf; +} + +const char *flatcc_json_parser_match_constant(flatcc_json_parser_t *ctx, const char *buf, const char *end, int pos, int *more) +{ + const char *mark = buf, *k = buf + pos; + + if (end - buf <= pos) { + *more = 0; + return buf; + } +#if FLATCC_JSON_PARSE_ALLOW_UNQUOTED + if (ctx->unquoted) { + buf = flatcc_json_parser_space(ctx, k, end); + if (buf == end) { + /* + * We cannot make a decision on more. + * Just return end and let parser handle sync point in + * case it is able to resume parse later on. + * For the same reason we do not lower ctx->unquoted. + */ + *more = 0; + return buf; + } + if (buf != k) { + char c = *buf; + /* + * Space was seen - and thus we have a valid match. + * If the next char is an identifier start symbol + * we raise the more flag to support syntax like: + * + * `flags: Hungry Sleepy Awake, ...` + */ + if (c == '_' || (c & 0x80)) { + *more = 1; + return buf; + } + c |= 0x20; + if (c >= 'a' && c <= 'z') { + *more = 1; + return buf; + } + } + /* + * Space was not seen, so the match is only valid if followed + * by a JSON separator symbol, and there cannot be more values + * following so `more` is lowered. + */ + *more = 0; + if (*buf == ',' || *buf == '}' || *buf == ']') { + return buf; + } + return mark; + } +#endif + buf = k; + if (*buf == 0x20) { + ++buf; + while (buf != end && *buf == 0x20) { + ++buf; + } + if (buf == end) { + *more = 0; + return buf; + } + /* We accept untrimmed space like " Green Blue ". */ + if (*buf != '\"') { + *more = 1; + return buf; + } + } + switch (*buf) { + case '\\': + *more = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_escape); + case '\"': + buf = flatcc_json_parser_space(ctx, buf + 1, end); + *more = 0; + return buf; + } + *more = 0; + return mark; +} + +const char *flatcc_json_parser_unmatched_symbol(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ + if (ctx->flags & flatcc_json_parser_f_skip_unknown) { + buf = flatcc_json_parser_symbol_end(ctx, buf, end); + buf = flatcc_json_parser_space(ctx, buf, end); + if (buf != end && *buf == ':') { + ++buf; + buf = flatcc_json_parser_space(ctx, buf, end); + } else { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_expected_colon); + } + return flatcc_json_parser_generic_json(ctx, buf, end); + } else { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unknown_symbol); + } +} + +static const char *__flatcc_json_parser_number(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ + if (buf == end) { + return buf; + } + if (*buf == '-') { + ++buf; + if (buf == end) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + } + if (*buf == '0') { + ++buf; + } else { + if (*buf < '1' || *buf > '9') { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + ++buf; + while (buf != end && *buf >= '0' && *buf <= '9') { + ++buf; + } + } + if (buf != end) { + if (*buf == '.') { + ++buf; + if (*buf < '0' || *buf > '9') { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + ++buf; + while (buf != end && *buf >= '0' && *buf <= '9') { + ++buf; + } + } + } + if (buf != end && (*buf == 'e' || *buf == 'E')) { + ++buf; + if (buf == end) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + if (*buf == '+' || *buf == '-') { + ++buf; + } + if (buf == end || *buf < '0' || *buf > '9') { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + ++buf; + while (buf != end && *buf >= '0' && *buf <= '9') { + ++buf; + } + } + + /* + * For strtod termination we must ensure the tail is not valid + * including non-json exponent types. The simplest approach is + * to accept anything that could be valid json successor + * characters and reject end of buffer since we expect a closing + * '}'. + * + * The ',' is actually not safe if strtod uses a non-POSIX locale. + */ + if (buf != end) { + switch (*buf) { + case ',': + case ':': + case ']': + case '}': + case ' ': + case '\r': + case '\t': + case '\n': + case '\v': + return buf; + } + } + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); +} + +const char *flatcc_json_parser_double(flatcc_json_parser_t *ctx, const char *buf, const char *end, double *v) +{ + const char *next, *k; + + *v = 0.0; + if (buf == end) { + return buf; + } + k = buf; + if (*buf == '-') ++k; + if (end - k > 1 && (k[0] == '.' || (k[0] == '0' && k[1] == '0'))) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + next = parse_double(buf, (size_t)(end - buf), v); + if (next == 0 || next == buf) { + if (parse_double_isinf(*v)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_overflow); + } + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + return next; +} + +const char *flatcc_json_parser_float(flatcc_json_parser_t *ctx, const char *buf, const char *end, float *v) +{ + const char *next, *k; + + *v = 0.0; + if (buf == end) { + return buf; + } + k = buf; + if (*buf == '-') ++k; + if (end - k > 1 && (k[0] == '.' || (k[0] == '0' && k[1] == '0'))) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + next = parse_float(buf, (size_t)(end - buf), v); + if (next == 0 || next == buf) { + if (parse_float_isinf(*v)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_overflow); + } + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_invalid_numeric); + } + return next; +} + +const char *flatcc_json_parser_generic_json(flatcc_json_parser_t *ctx, const char *buf, const char *end) +{ + char stack[FLATCC_JSON_PARSE_GENERIC_MAX_NEST]; + char *sp, *spend; + const char *k; + flatcc_json_parser_escape_buffer_t code; + int more = 0; + + sp = stack; + spend = sp + FLATCC_JSON_PARSE_GENERIC_MAX_NEST; + +again: + if (buf == end) { + return buf; + } + if (sp != stack && sp[-1] == '}') { + /* Inside an object, about to read field name. */ + buf = flatcc_json_parser_symbol_start(ctx, buf, end); + buf = flatcc_json_parser_symbol_end(ctx, buf, end); + buf = flatcc_json_parser_space(ctx, buf, end); + if (buf == end) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unbalanced_object); + } + if (*buf != ':') { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_expected_colon); + } + buf = flatcc_json_parser_space(ctx, buf + 1, end); + } + switch (*buf) { + case '\"': + buf = flatcc_json_parser_string_start(ctx, buf, end); + while (buf != end && *buf != '\"') { + buf = flatcc_json_parser_string_part(ctx, buf, end); + if (buf != end && *buf == '\"') { + break; + } + buf = flatcc_json_parser_string_escape(ctx, buf, end, code); + } + buf = flatcc_json_parser_string_end(ctx, buf, end); + break; + case '-': + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': + buf = __flatcc_json_parser_number(ctx, buf, end); + break; +#if !FLATCC_JSON_PARSE_ALLOW_UNQUOTED + case 't': case 'f': + { + uint8_t v; + buf = flatcc_json_parser_bool(ctx, (k = buf), end, &v); + if (k == buf) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unexpected_character); + } + } + break; + case 'n': + buf = flatcc_json_parser_null((k = buf), end); + if (k == buf) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unexpected_character); + } + break; +#endif + case '[': + if (sp == spend) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_deep_nesting); + } + *sp++ = ']'; + buf = flatcc_json_parser_space(ctx, buf + 1, end); + if (buf != end && *buf == ']') { + break; + } + goto again; + case '{': + if (sp == spend) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_deep_nesting); + } + *sp++ = '}'; + buf = flatcc_json_parser_space(ctx, buf + 1, end); + if (buf != end && *buf == '}') { + break; + } + goto again; + + default: +#if FLATCC_JSON_PARSE_ALLOW_UNQUOTED + buf = flatcc_json_parser_skip_constant(ctx, (k = buf), end); + if (k == buf) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unexpected_character); + } + break; +#else + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unexpected_character); +#endif + } + while (buf != end && sp != stack) { + --sp; + if (*sp == ']') { + buf = flatcc_json_parser_array_end(ctx, buf, end, &more); + } else { + buf = flatcc_json_parser_object_end(ctx, buf, end, &more); + } + if (more) { + ++sp; + goto again; + } + } + if (buf == end && sp != stack) { + return flatcc_json_parser_set_error(ctx, buf, end, sp[-1] == ']' ? + flatcc_json_parser_error_unbalanced_array : + flatcc_json_parser_error_unbalanced_object); + } + /* Any ',', ']', or '}' belongs to parent context. */ + return buf; +} + +const char *flatcc_json_parser_integer(flatcc_json_parser_t *ctx, const char *buf, const char *end, + int *value_sign, uint64_t *value) +{ + uint64_t x0, x = 0; + const char *k; + + if (buf == end) { + return buf; + } + k = buf; + *value_sign = *buf == '-'; + buf += *value_sign; + while (buf != end && *buf >= '0' && *buf <= '9') { + x0 = x; + x = x * 10 + (uint64_t)(*buf - '0'); + if (x0 > x) { + return flatcc_json_parser_set_error(ctx, buf, end, value_sign ? + flatcc_json_parser_error_underflow : flatcc_json_parser_error_overflow); + } + ++buf; + } + if (buf == k) { + /* Give up, but don't fail the parse just yet, it might be a valid symbol. */ + return buf; + } + if (buf != end && (*buf == 'e' || *buf == 'E' || *buf == '.')) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_float_unexpected); + } + *value = x; + return buf; +} + +/* Array Creation - depends on flatcc builder. */ + +const char *flatcc_json_parser_build_uint8_vector_base64(flatcc_json_parser_t *ctx, + const char *buf, const char *end, flatcc_builder_ref_t *ref, int urlsafe) +{ + const char *mark; + uint8_t *pval; + size_t max_len; + size_t decoded_len, src_len; + int mode; + int ret; + + mode = urlsafe ? base64_mode_url : base64_mode_rfc4648; + buf = flatcc_json_parser_string_start(ctx, buf, end); + buf = flatcc_json_parser_string_part(ctx, (mark = buf), end); + if (buf == end || *buf != '\"') { + goto base64_failed; + } + max_len = base64_decoded_size((size_t)(buf - mark)); + if (flatcc_builder_start_vector(ctx->ctx, 1, 1, FLATBUFFERS_COUNT_MAX((utype_size)))) { + goto failed; + } + if (!(pval = flatcc_builder_extend_vector(ctx->ctx, max_len))) { + goto failed; + } + src_len = (size_t)(buf - mark); + decoded_len = max_len; + if ((ret = base64_decode(pval, (const uint8_t *)mark, &decoded_len, &src_len, mode))) { + buf = mark + src_len; + goto base64_failed; + } + if (src_len != (size_t)(buf - mark)) { + buf = mark + src_len; + goto base64_failed; + } + if (decoded_len < max_len) { + if (flatcc_builder_truncate_vector(ctx->ctx, max_len - decoded_len)) { + goto failed; + } + } + if (!(*ref = flatcc_builder_end_vector(ctx->ctx))) { + goto failed; + } + return flatcc_json_parser_string_end(ctx, buf, end); + +failed: + *ref = 0; + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_runtime); + +base64_failed: + *ref = 0; + return flatcc_json_parser_set_error(ctx, buf, end, + urlsafe ? flatcc_json_parser_error_base64url : flatcc_json_parser_error_base64); +} + +const char *flatcc_json_parser_char_array(flatcc_json_parser_t *ctx, + const char *buf, const char *end, char *s, size_t n) +{ + flatcc_json_parser_escape_buffer_t code; + const char *mark; + size_t k = 0; + + buf = flatcc_json_parser_string_start(ctx, buf, end); + if (buf != end) + while (*buf != '\"') { + buf = flatcc_json_parser_string_part(ctx, (mark = buf), end); + if (buf == end) return end; + k = (size_t)(buf - mark); + if (k > n) { + if (!(ctx->flags & flatcc_json_parser_f_skip_array_overflow)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_array_overflow); + } + k = n; /* Might truncate UTF-8. */ + } + memcpy(s, mark, k); + s += k; + n -= k; + if (*buf == '\"') break; + buf = flatcc_json_parser_string_escape(ctx, buf, end, code); + if (buf == end) return end; + k = (size_t)code[0]; + mark = code + 1; + if (k > n) { + if (!(ctx->flags & flatcc_json_parser_f_skip_array_overflow)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_array_overflow); + } + k = n; /* Might truncate UTF-8. */ + } + memcpy(s, mark, k); + s += k; + n -= k; + } + if (n != 0) { + if (ctx->flags & flatcc_json_parser_f_reject_array_underflow) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_array_underflow); + } + memset(s, 0, n); + } + return flatcc_json_parser_string_end(ctx, buf, end); +} + + +/* String Creation - depends on flatcc builder. */ + +const char *flatcc_json_parser_build_string(flatcc_json_parser_t *ctx, + const char *buf, const char *end, flatcc_builder_ref_t *ref) +{ + flatcc_json_parser_escape_buffer_t code; + const char *mark; + + buf = flatcc_json_parser_string_start(ctx, buf, end); + buf = flatcc_json_parser_string_part(ctx, (mark = buf), end); + if (buf != end && *buf == '\"') { + *ref = flatcc_builder_create_string(ctx->ctx, mark, (size_t)(buf - mark)); + } else { + if (flatcc_builder_start_string(ctx->ctx) || + 0 == flatcc_builder_append_string(ctx->ctx, mark, (size_t)(buf - mark))) goto failed; + while (buf != end && *buf != '\"') { + buf = flatcc_json_parser_string_escape(ctx, buf, end, code); + if (0 == flatcc_builder_append_string(ctx->ctx, code + 1, (size_t)code[0])) goto failed; + if (end != (buf = flatcc_json_parser_string_part(ctx, (mark = buf), end))) { + if (0 == flatcc_builder_append_string(ctx->ctx, mark, (size_t)(buf - mark))) goto failed; + } + } + *ref = flatcc_builder_end_string(ctx->ctx); + } + return flatcc_json_parser_string_end(ctx, buf, end); + +failed: + *ref = 0; + return buf; +} + +/* UNIONS */ + +/* + * Unions are difficult to parse because the type field may appear after + * the union table and because having two fields opens up for many more + * possible error scenarios. We must store each union of a table + * temporarily - this cannot be in the generated table parser function + * because there could be many unions (about 2^15 with default voffsets) + * although usually there will be only a few. We can also not store the + * data encoded in the existing table buffer in builder because we may + * have to remove it due to schema forwarding and removing it messes up + * the table layout. We also cannot naively allocate it dynamically for + * performance reasons. Instead we place the temporary union data in a + * separate frame from the table buffer, but on a similar stack. This is + * called the user stack and we manage one frame per table that is known + * to contain unions. + * + * Even the temporary structures in place we still cannot parse a union + * before we know its type. Due to JSON typically sorting fields + * alphabetically in various pretty printers, we are likely to receive + * the type late with (`<union_name>_type` following `<union_name>`. + * To deal with this we store a backtracking pointer and parses the + * table generically in a first pass and reparse the table once the type + * is known. This can happen recursively with nested tables containing + * unions which is why we need to have a stack frame. + * + * If the type field is stored first we just store the type in the + * custom frame and immediately parses the table with the right type + * once we see it. The parse will be much faster and we can strongly + * recommend that flatbuffer serializers do this, but we cannot require + * it. + * + * The actual overhead of dealing with the custom stack frame is fairly + * cheap once we get past the first custom stack allocation. + * + * We cannot update the builder before both the table and table type + * has been parsed because the the type might have to be ingored due + * to schema forwarding. Therefore the union type must be cached or + * reread. This happens trivially be calling the union parser with the + * type as argument, but it is important to be aware of before + * refactoring the code. + * + * The user frame is created at table start and remains valid until + * table exit, but we cannot assume the pointers to the frame remain + * valid. Specifically we cannot use frame pointers after calling + * the union parser. This means the union type must be cached or reread + * so it can be added to the table. Because the type is passed to + * the union parser this caching happens automatically but it is still + * important to be aware that it is required. + * + * The frame reserves temporary information for all unions the table + * holds, enumerated 0 <= `union_index` < `union_total` + * where the `union_total` is fixed type specific number. + * + * The `type_present` is needed because union types range from 0..255 + * and we need an extra bit do distinguish not present from union type + * `NONE = 0`. + */ + +typedef struct { + const char *backtrace; + const char *line_start; + int line; + uint8_t type_present; + uint8_t type; + /* Union vectors: */ + uoffset_t count; + size_t h_types; +} __flatcc_json_parser_union_entry_t; + +typedef struct { + size_t union_total; + size_t union_count; + __flatcc_json_parser_union_entry_t unions[1]; +} __flatcc_json_parser_union_frame_t; + +const char *flatcc_json_parser_prepare_unions(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t union_total, size_t *handle) +{ + __flatcc_json_parser_union_frame_t *f; + + if (!(*handle = flatcc_builder_enter_user_frame(ctx->ctx, + sizeof(__flatcc_json_parser_union_frame_t) + (union_total - 1) * + sizeof(__flatcc_json_parser_union_entry_t)))) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_runtime); + } + f = flatcc_builder_get_user_frame_ptr(ctx->ctx, *handle); + /* Frames have zeroed memory. */ + f->union_total = union_total; + return buf; +} + +const char *flatcc_json_parser_finalize_unions(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t handle) +{ + __flatcc_json_parser_union_frame_t *f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + + if (f->union_count) { + buf = flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_union_incomplete); + } + flatcc_builder_exit_user_frame_at(ctx->ctx, handle); + return buf; +} + +const char *flatcc_json_parser_union(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t union_index, + flatbuffers_voffset_t id, size_t handle, flatcc_json_parser_union_f *union_parser) +{ + __flatcc_json_parser_union_frame_t *f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + __flatcc_json_parser_union_entry_t *e = &f->unions[union_index]; + flatcc_builder_union_ref_t uref; + + if (e->backtrace) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + if (!e->type_present) { + /* If we supported table: null, we should not count it, but we don't. */ + ++f->union_count; + e->line = ctx->line; + e->line_start = ctx->line_start; + buf = flatcc_json_parser_generic_json(ctx, (e->backtrace = buf), end); + } else { + uref.type = e->type; + if (e->type == 0) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_union_none_present); + } + --f->union_count; + buf = union_parser(ctx, buf, end, e->type, &uref.value); + if (buf != end) { + if (flatcc_builder_table_add_union(ctx->ctx, id, uref)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + } + } + return buf; +} + +const char *flatcc_json_parser_union_type(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t union_index, flatbuffers_voffset_t id, + size_t handle, + flatcc_json_parser_integral_symbol_f *type_parsers[], + flatcc_json_parser_union_f *union_parser) +{ + __flatcc_json_parser_union_frame_t *f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + __flatcc_json_parser_union_entry_t *e = f->unions + union_index; + + flatcc_builder_union_ref_t uref; + const char *mark; + int line; + const char *line_start; + + if (e->type_present) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + e->type_present = 1; + buf = flatcc_json_parser_uint8(ctx, (mark = buf), end, &e->type); + if (mark == buf) { + buf = flatcc_json_parser_symbolic_uint8(ctx, buf, end, type_parsers, &e->type); + } + /* Only count the union if the type is not NONE. */ + if (e->backtrace == 0) { + f->union_count += e->type != 0; + return buf; + } + FLATCC_ASSERT(f->union_count); + --f->union_count; + /* + * IMPORTANT: we cannot access any value in the frame or entry + * pointer after calling union parse because it might cause the + * stack to reallocate. We should read the frame pointer again if + * needed - we don't but remember it if refactoring code. + * + * IMPORTANT 2: Do not assign buf here. We are backtracking. + */ + line = ctx->line; + line_start = ctx->line_start; + ctx->line = e->line; + ctx->line_start = e->line_start; + uref.type = e->type; + if (end == union_parser(ctx, e->backtrace, end, e->type, &uref.value)) { + return end; + } + if (flatcc_builder_table_add_union(ctx->ctx, id, uref)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + ctx->line = line; + ctx->line_start = line_start; + return buf; +} + +static const char *_parse_union_vector(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t h_types, uoffset_t count, + flatbuffers_voffset_t id, flatcc_json_parser_union_f *union_parser) +{ + flatcc_builder_ref_t ref = 0, *pref; + utype_t *types; + int more; + size_t i; + + if (flatcc_builder_start_offset_vector(ctx->ctx)) goto failed; + buf = flatcc_json_parser_array_start(ctx, buf, end, &more); + i = 0; + while (more) { + if (i == count) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_union_vector_length); + } + /* Frame must be restored between calls to table parser. */ + types = flatcc_builder_get_user_frame_ptr(ctx->ctx, h_types); + buf = union_parser(ctx, buf, end, types[i], &ref); + if (buf == end) { + return buf; + } + if (!(pref = flatcc_builder_extend_offset_vector(ctx->ctx, 1))) goto failed; + *pref = ref; + buf = flatcc_json_parser_array_end(ctx, buf, end, &more); + ++i; + } + if (i != count) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_union_vector_length); + } + /* Frame must be restored between calls to table parser. */ + types = flatcc_builder_get_user_frame_ptr(ctx->ctx, h_types); + if (!(ref = flatcc_builder_end_offset_vector_for_unions(ctx->ctx, types))) goto failed; + if (!(pref = flatcc_builder_table_add_offset(ctx->ctx, id))) goto failed; + *pref = ref; + return buf; +failed: + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_runtime); +} + +const char *flatcc_json_parser_union_vector(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t union_index, + flatbuffers_voffset_t id, size_t handle, flatcc_json_parser_union_f *union_parser) +{ + __flatcc_json_parser_union_frame_t *f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + __flatcc_json_parser_union_entry_t *e = f->unions + union_index; + + if (e->backtrace) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + if (!e->type_present) { + ++f->union_count; + e->line = ctx->line; + e->line_start = ctx->line_start; + buf = flatcc_json_parser_generic_json(ctx, (e->backtrace = buf), end); + } else { + --f->union_count; + buf = _parse_union_vector(ctx, buf, end, e->h_types, e->count, id, union_parser); + } + return buf; +} + +const char *flatcc_json_parser_union_type_vector(flatcc_json_parser_t *ctx, + const char *buf, const char *end, size_t union_index, flatbuffers_voffset_t id, + size_t handle, + flatcc_json_parser_integral_symbol_f *type_parsers[], + flatcc_json_parser_union_f *union_parser, + flatcc_json_parser_is_known_type_f accept_type) +{ + __flatcc_json_parser_union_frame_t *f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + __flatcc_json_parser_union_entry_t *e = f->unions + union_index; + + const char *mark; + int line; + const char *line_start; + int more; + utype_t val; + void *pval; + flatcc_builder_ref_t ref, *pref; + utype_t *types; + size_t size; + size_t h_types; + uoffset_t count; + +#if FLATBUFFERS_UTYPE_MAX != UINT8_MAX +#error "Update union vector parser to support current union type definition." +#endif + + if (e->type_present) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_duplicate); + } + e->type_present = 1; + if (flatcc_builder_start_vector(ctx->ctx, 1, 1, FLATBUFFERS_COUNT_MAX((utype_size)))) goto failed; + buf = flatcc_json_parser_array_start(ctx, buf, end, &more); + while (more) { + if (!(pval = flatcc_builder_extend_vector(ctx->ctx, 1))) goto failed; + buf = flatcc_json_parser_uint8(ctx, (mark = buf), end, &val); + if (mark == buf) { + buf = flatcc_json_parser_symbolic_uint8(ctx, (mark = buf), end, type_parsers, &val); + if (buf == mark || buf == end) goto failed; + } + /* Parse unknown types as NONE */ + if (!accept_type(val)) { + if (!(ctx->flags & flatcc_json_parser_f_skip_unknown)) { + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_unknown_union); + } + val = 0; + } + flatbuffers_uint8_write_to_pe(pval, val); + buf = flatcc_json_parser_array_end(ctx, buf, end, &more); + } + count = (uoffset_t)flatcc_builder_vector_count(ctx->ctx); + e->count = count; + size = count * utype_size; + /* Store type vector so it is accessible to the table vector parser. */ + h_types = flatcc_builder_enter_user_frame(ctx->ctx, size); + types = flatcc_builder_get_user_frame_ptr(ctx->ctx, h_types); + memcpy(types, flatcc_builder_vector_edit(ctx->ctx), size); + if (!((ref = flatcc_builder_end_vector(ctx->ctx)))) goto failed; + if (!(pref = flatcc_builder_table_add_offset(ctx->ctx, id - 1))) goto failed; + *pref = ref; + + /* Restore union frame after possible invalidation due to types frame allocation. */ + f = flatcc_builder_get_user_frame_ptr(ctx->ctx, handle); + e = f->unions + union_index; + + e->h_types = h_types; + if (e->backtrace == 0) { + ++f->union_count; + return buf; + } + FLATCC_ASSERT(f->union_count); + --f->union_count; + line = ctx->line; + line_start = ctx->line_start; + ctx->line = e->line; + ctx->line_start = e->line_start; + /* We must not assign buf here because we are backtracking. */ + if (end == _parse_union_vector(ctx, e->backtrace, end, h_types, count, id, union_parser)) return end; + /* + * NOTE: We do not need the user frame anymore, but if we did, it + * would have to be restored from its handle due to the above parse. + */ + ctx->line = line; + ctx->line_start = line_start; + return buf; +failed: + return flatcc_json_parser_set_error(ctx, buf, end, flatcc_json_parser_error_runtime); +} + +int flatcc_json_parser_table_as_root(flatcc_builder_t *B, flatcc_json_parser_t *ctx, + const char *buf, size_t bufsiz, flatcc_json_parser_flags_t flags, const char *fid, + flatcc_json_parser_table_f *parser) +{ + flatcc_json_parser_t _ctx; + flatcc_builder_ref_t root; + flatcc_builder_buffer_flags_t builder_flags = flags & flatcc_json_parser_f_with_size ? flatcc_builder_with_size : 0; + + ctx = ctx ? ctx : &_ctx; + flatcc_json_parser_init(ctx, B, buf, buf + bufsiz, flags); + if (flatcc_builder_start_buffer(B, fid, 0, builder_flags)) return -1; + buf = parser(ctx, buf, buf + bufsiz, &root); + if (ctx->error) { + return ctx->error; + } + if (!flatcc_builder_end_buffer(B, root)) return -1; + ctx->end_loc = buf; + return 0; +} + +int flatcc_json_parser_struct_as_root(flatcc_builder_t *B, flatcc_json_parser_t *ctx, + const char *buf, size_t bufsiz, flatcc_json_parser_flags_t flags, const char *fid, + flatcc_json_parser_table_f *parser) +{ + flatcc_json_parser_t _ctx; + flatcc_builder_ref_t root; + flatcc_builder_buffer_flags_t builder_flags = flags & flatcc_json_parser_f_with_size ? flatcc_builder_with_size : 0; + + ctx = ctx ? ctx : &_ctx; + flatcc_json_parser_init(ctx, B, buf, buf + bufsiz, flags); + if (flatcc_builder_start_buffer(B, fid, 0, builder_flags)) return -1; + buf = parser(ctx, buf, buf + bufsiz, &root); + if (ctx->error) { + return ctx->error; + } + if (!flatcc_builder_end_buffer(B, root)) return -1; + ctx->end_loc = buf; + return 0; +} diff --git a/flatcc/src/runtime/json_printer.c b/flatcc/src/runtime/json_printer.c new file mode 100644 index 0000000..4ebe1c1 --- /dev/null +++ b/flatcc/src/runtime/json_printer.c @@ -0,0 +1,1486 @@ +/* + * Runtime support for printing flatbuffers to JSON. + */ + +#include <stdio.h> +#include <string.h> +#include <stdlib.h> + +#include "flatcc/flatcc_rtconfig.h" +#include "flatcc/flatcc_assert.h" + +/* + * Grisu significantly improves printing speed of floating point values + * and also the overall printing speed when floating point values are + * present in non-trivial amounts. (Also applies to parsing). + */ +#if FLATCC_USE_GRISU3 && !defined(PORTABLE_USE_GRISU3) +#define PORTABLE_USE_GRISU3 1 +#endif + +#include "flatcc/flatcc_flatbuffers.h" +#include "flatcc/flatcc_json_printer.h" +#include "flatcc/flatcc_identifier.h" + +#include "flatcc/portable/pprintint.h" +#include "flatcc/portable/pprintfp.h" +#include "flatcc/portable/pbase64.h" + + +#define RAISE_ERROR(err) flatcc_json_printer_set_error(ctx, flatcc_json_printer_error_##err) + +const char *flatcc_json_printer_error_string(int err) +{ + switch (err) { +#define XX(no, str) \ + case flatcc_json_printer_error_##no: \ + return str; + FLATCC_JSON_PRINT_ERROR_MAP(XX) +#undef XX + default: + return "unknown"; + } +} + +#define flatcc_json_printer_utype_enum_f flatcc_json_printer_union_type_f +#define flatbuffers_utype_read_from_pe __flatbuffers_utype_read_from_pe + +#define uoffset_t flatbuffers_uoffset_t +#define soffset_t flatbuffers_soffset_t +#define voffset_t flatbuffers_voffset_t +#define utype_t flatbuffers_utype_t + +#define uoffset_size sizeof(uoffset_t) +#define soffset_size sizeof(soffset_t) +#define voffset_size sizeof(voffset_t) +#define utype_size sizeof(utype_t) + +#define offset_size uoffset_size + +#if FLATBUFFERS_UTYPE_MAX == UINT8_MAX +#define print_utype print_uint8 +#else +#ifdef FLATBUFFERS_UTYPE_MIN +#define print_utype print_int64 +#else +#define print_utype print_uint64 +#endif +#endif + +static inline const void *read_uoffset_ptr(const void *p) +{ + return (uint8_t *)p + __flatbuffers_uoffset_read_from_pe(p); +} + +static inline voffset_t read_voffset(const void *p, uoffset_t base) +{ + return __flatbuffers_voffset_read_from_pe((uint8_t *)p + base); +} + +static inline const void *get_field_ptr(flatcc_json_printer_table_descriptor_t *td, int id) +{ + uoffset_t vo = (uoffset_t)(id + 2) * (uoffset_t)sizeof(voffset_t); + + if (vo >= (uoffset_t)td->vsize) { + return 0; + } + vo = read_voffset(td->vtable, vo); + if (vo == 0) { + return 0; + } + return (uint8_t *)td->table + vo; +} + +#define print_char(c) *ctx->p++ = (c) + +#define print_null() do { \ + print_char('n'); \ + print_char('u'); \ + print_char('l'); \ + print_char('l'); \ +} while (0) + +#define print_start(c) do { \ + ++ctx->level; \ + *ctx->p++ = c; \ +} while (0) + +#define print_end(c) do { \ + if (ctx->indent) { \ + *ctx->p++ = '\n'; \ + --ctx->level; \ + print_indent(ctx); \ + } \ + *ctx->p++ = c; \ +} while (0) + +#define print_space() do { \ + *ctx->p = ' '; \ + ctx->p += !!ctx->indent; \ +} while (0) + +#define print_nl() do { \ + if (ctx->indent) { \ + *ctx->p++ = '\n'; \ + print_indent(ctx); \ + } else { \ + flatcc_json_printer_flush_partial(ctx); \ + } \ +} while (0) + +/* Call at the end so print_end does not have to check for level. */ +#define print_last_nl() do { \ + if (ctx->indent && ctx->level == 0) { \ + *ctx->p++ = '\n'; \ + } \ + ctx->flush(ctx, 1); \ +} while (0) + +int flatcc_json_printer_fmt_float(char *buf, float n) +{ +#if FLATCC_JSON_PRINT_HEX_FLOAT + return print_hex_float(buf, n); +#else + return print_float(n, buf); +#endif +} + +int flatcc_json_printer_fmt_double(char *buf, double n) +{ +#if FLATCC_JSON_PRINT_HEX_FLOAT + return print_hex_double(buf, n); +#else + return print_double(n, buf); +#endif +} + +int flatcc_json_printer_fmt_bool(char *buf, int n) +{ + if (n) { + memcpy(buf, "true", 4); + return 4; + } + memcpy(buf, "false", 5); + return 5; +} + +static void print_ex(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + size_t k; + + if (ctx->p >= ctx->pflush) { + ctx->flush(ctx, 0); + } + k = (size_t)(ctx->pflush - ctx->p); + while (n > k) { + memcpy(ctx->p, s, k); + ctx->p += k; + s += k; + n -= k; + ctx->flush(ctx, 0); + k = (size_t)(ctx->pflush - ctx->p); + } + memcpy(ctx->p, s, n); + ctx->p += n; +} + +static inline void print(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + if (ctx->p + n >= ctx->pflush) { + print_ex(ctx, s, n); + } else { + memcpy(ctx->p, s, n); + ctx->p += n; + } +} + +static void print_escape(flatcc_json_printer_t *ctx, unsigned char c) +{ + unsigned char x; + + print_char('\\'); + switch (c) { + case '"': print_char('\"'); break; + case '\\': print_char('\\'); break; + case '\t' : print_char('t'); break; + case '\f' : print_char('f'); break; + case '\r' : print_char('r'); break; + case '\n' : print_char('n'); break; + case '\b' : print_char('b'); break; + default: + print_char('u'); + print_char('0'); + print_char('0'); + x = c >> 4; + x += x < 10 ? '0' : 'a' - 10; + print_char((char)x); + x = c & 15; + x += x < 10 ? '0' : 'a' - 10; + print_char((char)x); + break; + } +} + +/* + * Even though we know the the string length, we need to scan for escape + * characters. There may be embedded zeroes. Because FlatBuffer strings + * are always zero terminated, we assume and optimize for this. + * + * We enforce \u00xx for control characters, but not for invalid + * characters like 0xff - this makes it possible to handle some other + * codepages transparently while formally not valid. (Formally JSON + * also supports UTF-16/32 little/big endian but flatbuffers only + * support UTF-8 and we expect this in JSON input/output too). + */ +static void print_string(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + const char *p = s; + /* Unsigned is important. */ + unsigned char c; + size_t k; + + print_char('\"'); + for (;;) { + c = (unsigned char)*p; + while (c >= 0x20 && c != '\"' && c != '\\') { + c = (unsigned char)*++p; + } + k = (size_t)(p - s); + /* Even if k == 0, print ensures buffer flush. */ + print(ctx, s, k); + n -= k; + if (n == 0) break; + s += k; + print_escape(ctx, c); + ++p; + --n; + ++s; + } + print_char('\"'); +} + +/* + * Similar to print_string, but null termination is not guaranteed, and + * trailing nulls are stripped. + */ +static void print_char_array(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + const char *p = s; + /* Unsigned is important. */ + unsigned char c = 0; + size_t k; + + while (n > 0 && s[n - 1] == '\0') --n; + + print_char('\"'); + for (;;) { + while (n) { + c = (unsigned char)*p; + if (c < 0x20 || c == '\"' || c == '\\') break; + ++p; + --n; + } + k = (size_t)(p - s); + /* Even if k == 0, print ensures buffer flush. */ + print(ctx, s, k); + if (n == 0) break; + s += k; + print_escape(ctx, c); + ++p; + --n; + ++s; + } + print_char('\"'); +} + +static void print_uint8_vector_base64_object(flatcc_json_printer_t *ctx, const void *p, int mode) +{ + const int unpadded_mode = mode & ~base64_enc_modifier_padding; + size_t k, n, len; + const uint8_t *data; + size_t data_len, src_len; + + data_len = (size_t)__flatbuffers_uoffset_read_from_pe(p); + data = (const uint8_t *)p + uoffset_size; + + print_char('\"'); + + len = base64_encoded_size(data_len, mode); + if (ctx->p + len >= ctx->pflush) { + ctx->flush(ctx, 0); + } + while (ctx->p + len > ctx->pflush) { + /* Multiples of 4 output chars consumes exactly 3 bytes before final padding. */ + k = (size_t)(ctx->pflush - ctx->p) & ~(size_t)3; + n = k * 3 / 4; + FLATCC_ASSERT(n > 0); + src_len = k * 3 / 4; + base64_encode((uint8_t *)ctx->p, data, 0, &src_len, unpadded_mode); + ctx->p += k; + data += n; + data_len -= n; + ctx->flush(ctx, 0); + len = base64_encoded_size(data_len, mode); + } + base64_encode((uint8_t *)ctx->p, data, 0, &data_len, mode); + ctx->p += len; + print_char('\"'); +} + +static void print_indent_ex(flatcc_json_printer_t *ctx, size_t n) +{ + size_t k; + + if (ctx->p >= ctx->pflush) { + ctx->flush(ctx, 0); + } + k = (size_t)(ctx->pflush - ctx->p); + while (n > k) { + memset(ctx->p, ' ', k); + ctx->p += k; + n -= k; + ctx->flush(ctx, 0); + k = (size_t)(ctx->pflush - ctx->p); + } + memset(ctx->p, ' ', n); + ctx->p += n; +} + +static inline void print_indent(flatcc_json_printer_t *ctx) +{ + size_t n = (size_t)(ctx->level * ctx->indent); + + if (ctx->p + n > ctx->pflush) { + print_indent_ex(ctx, n); + } else { + memset(ctx->p, ' ', n); + ctx->p += n; + } +} + +/* + * Helpers for external use - does not do autmatic pretty printing, but + * does escape strings. + */ +void flatcc_json_printer_string(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + print_string(ctx, s, n); +} + +void flatcc_json_printer_write(flatcc_json_printer_t *ctx, const char *s, size_t n) +{ + print(ctx, s, n); +} + +void flatcc_json_printer_nl(flatcc_json_printer_t *ctx) +{ + print_char('\n'); + flatcc_json_printer_flush_partial(ctx); +} + +void flatcc_json_printer_char(flatcc_json_printer_t *ctx, char c) +{ + print_char(c); +} + +void flatcc_json_printer_indent(flatcc_json_printer_t *ctx) +{ + /* + * This is only needed when indent is 0 but helps external users + * to avoid flushing when indenting. + */ + print_indent(ctx); +} + +void flatcc_json_printer_add_level(flatcc_json_printer_t *ctx, int n) +{ + ctx->level += n; +} + +int flatcc_json_printer_get_level(flatcc_json_printer_t *ctx) +{ + return ctx->level; +} + +static inline void print_symbol(flatcc_json_printer_t *ctx, const char *name, size_t len) +{ + *ctx->p = '\"'; + ctx->p += !ctx->unquote; + if (ctx->p + len < ctx->pflush) { + memcpy(ctx->p, name, len); + ctx->p += len; + } else { + print(ctx, name, len); + } + *ctx->p = '\"'; + ctx->p += !ctx->unquote; +} + +static inline void print_name(flatcc_json_printer_t *ctx, const char *name, size_t len) +{ + print_nl(); + print_symbol(ctx, name, len); + print_char(':'); + print_space(); +} + +#define __flatcc_define_json_printer_scalar(TN, T) \ +void flatcc_json_printer_ ## TN( \ + flatcc_json_printer_t *ctx, T v) \ +{ \ + ctx->p += print_ ## TN(v, ctx->p); \ +} + +__flatcc_define_json_printer_scalar(uint8, uint8_t) +__flatcc_define_json_printer_scalar(uint16, uint16_t) +__flatcc_define_json_printer_scalar(uint32, uint32_t) +__flatcc_define_json_printer_scalar(uint64, uint64_t) +__flatcc_define_json_printer_scalar(int8, int8_t) +__flatcc_define_json_printer_scalar(int16, int16_t) +__flatcc_define_json_printer_scalar(int32, int32_t) +__flatcc_define_json_printer_scalar(int64, int64_t) +__flatcc_define_json_printer_scalar(float, float) +__flatcc_define_json_printer_scalar(double, double) + +void flatcc_json_printer_enum(flatcc_json_printer_t *ctx, const char *symbol, size_t len) +{ + print_symbol(ctx, symbol, len); +} + +void flatcc_json_printer_delimit_enum_flags(flatcc_json_printer_t *ctx, int multiple) +{ +#if FLATCC_JSON_PRINT_ALWAYS_QUOTE_MULTIPLE_FLAGS + int quote = !ctx->unquote || multiple; +#else + int quote = !ctx->unquote; +#endif + *ctx->p = '"'; + ctx->p += quote; +} + +void flatcc_json_printer_enum_flag(flatcc_json_printer_t *ctx, int count, const char *symbol, size_t len) +{ + *ctx->p = ' '; + ctx->p += count > 0; + print(ctx, symbol, len); +} + +static inline void print_string_object(flatcc_json_printer_t *ctx, const void *p) +{ + size_t len; + const char *s; + + len = (size_t)__flatbuffers_uoffset_read_from_pe(p); + s = (const char *)p + uoffset_size; + print_string(ctx, s, len); +} + +#define __define_print_scalar_struct_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _struct_field(flatcc_json_printer_t *ctx,\ + int index, const void *p, size_t offset, \ + const char *name, size_t len) \ +{ \ + T x = flatbuffers_ ## TN ## _read_from_pe((uint8_t *)p + offset); \ + \ + if (index) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + ctx->p += print_ ## TN (x, ctx->p); \ +} + +void flatcc_json_printer_char_array_struct_field( + flatcc_json_printer_t *ctx, + int index, const void *p, size_t offset, + const char *name, size_t len, size_t count) +{ + p = (void *)((size_t)p + offset); + if (index) { + print_char(','); + } + print_name(ctx, name, len); + print_char_array(ctx, p, count); +} + +#define __define_print_scalar_array_struct_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _array_struct_field( \ + flatcc_json_printer_t *ctx, \ + int index, const void *p, size_t offset, \ + const char *name, size_t len, size_t count) \ +{ \ + p = (void *)((size_t)p + offset); \ + if (index) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + print_start('['); \ + if (count) { \ + print_nl(); \ + ctx->p += print_ ## TN ( \ + flatbuffers_ ## TN ## _read_from_pe(p), \ + ctx->p); \ + p = (void *)((size_t)p + sizeof(T)); \ + --count; \ + } \ + while (count--) { \ + print_char(','); \ + print_nl(); \ + ctx->p += print_ ## TN ( \ + flatbuffers_ ## TN ## _read_from_pe(p), \ + ctx->p); \ + p = (void *)((size_t)p + sizeof(T)); \ + } \ + print_end(']'); \ +} + +#define __define_print_enum_array_struct_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _enum_array_struct_field( \ + flatcc_json_printer_t *ctx, \ + int index, const void *p, size_t offset, \ + const char *name, size_t len, size_t count, \ + flatcc_json_printer_ ## TN ##_enum_f *pf) \ +{ \ + T x; \ + \ + p = (void *)((size_t)p + offset); \ + if (index) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + print_start('['); \ + if (count) { \ + print_nl(); \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (ctx->noenum) { \ + ctx->p += print_ ## TN (x, ctx->p); \ + } else { \ + pf(ctx, x); \ + } \ + p = (void *)((size_t)p + sizeof(T)); \ + --count; \ + } \ + while (count--) { \ + print_char(','); \ + print_nl(); \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (ctx->noenum) { \ + ctx->p += print_ ## TN (x, ctx->p); \ + } else { \ + pf(ctx, x); \ + } \ + p = (void *)((size_t)p + sizeof(T)); \ + } \ + print_end(']'); \ +} + +#define __define_print_enum_struct_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _enum_struct_field( \ + flatcc_json_printer_t *ctx, \ + int index, const void *p, size_t offset, \ + const char *name, size_t len, \ + flatcc_json_printer_ ## TN ##_enum_f *pf) \ +{ \ + T x = flatbuffers_ ## TN ## _read_from_pe((uint8_t *)p + offset); \ + \ + if (index) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + if (ctx->noenum) { \ + ctx->p += print_ ## TN (x, ctx->p); \ + } else { \ + pf(ctx, x); \ + } \ +} + +#define __define_print_scalar_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _field(flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len, T v) \ +{ \ + T x; \ + const void *p = get_field_ptr(td, id); \ + \ + if (p) { \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (x == v && ctx->skip_default) { \ + return; \ + } \ + } else { \ + if (!ctx->force_default) { \ + return; \ + } \ + x = v; \ + } \ + if (td->count++) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + ctx->p += print_ ## TN (x, ctx->p); \ +} + +#define __define_print_scalar_optional_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _optional_field( \ + flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len) \ +{ \ + T x; \ + const void *p = get_field_ptr(td, id); \ + \ + if (!p) return; \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (td->count++) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + ctx->p += print_ ## TN (x, ctx->p); \ +} + + +#define __define_print_enum_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _enum_field(flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len, T v, \ + flatcc_json_printer_ ## TN ##_enum_f *pf) \ +{ \ + T x; \ + const void *p = get_field_ptr(td, id); \ + \ + if (p) { \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (x == v && ctx->skip_default) { \ + return; \ + } \ + } else { \ + if (!ctx->force_default) { \ + return; \ + } \ + x = v; \ + } \ + if (td->count++) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + if (ctx->noenum) { \ + ctx->p += print_ ## TN (x, ctx->p); \ + } else { \ + pf(ctx, x); \ + } \ +} + +#define __define_print_enum_optional_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _enum_optional_field( \ + flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len, \ + flatcc_json_printer_ ## TN ##_enum_f *pf) \ +{ \ + T x; \ + const void *p = get_field_ptr(td, id); \ + \ + if (!p) return; \ + x = flatbuffers_ ## TN ## _read_from_pe(p); \ + if (td->count++) { \ + print_char(','); \ + } \ + print_name(ctx, name, len); \ + if (ctx->noenum) { \ + ctx->p += print_ ## TN (x, ctx->p); \ + } else { \ + pf(ctx, x); \ + } \ +} + +static inline void print_table_object(flatcc_json_printer_t *ctx, + const void *p, int ttl, flatcc_json_printer_table_f pf) +{ + flatcc_json_printer_table_descriptor_t td; + + if (!--ttl) { + flatcc_json_printer_set_error(ctx, flatcc_json_printer_error_deep_recursion); + return; + } + print_start('{'); + td.count = 0; + td.ttl = ttl; + td.table = p; + td.vtable = (uint8_t *)p - __flatbuffers_soffset_read_from_pe(p); + td.vsize = __flatbuffers_voffset_read_from_pe(td.vtable); + pf(ctx, &td); + print_end('}'); +} + +void flatcc_json_printer_string_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len) +{ + const void *p = get_field_ptr(td, id); + + if (p) { + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_string_object(ctx, read_uoffset_ptr(p)); + } +} + +void flatcc_json_printer_uint8_vector_base64_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, int urlsafe) +{ + const void *p = get_field_ptr(td, id); + int mode; + + mode = urlsafe ? base64_mode_url : base64_mode_rfc4648; + mode |= base64_enc_modifier_padding; + + if (p) { + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_uint8_vector_base64_object(ctx, read_uoffset_ptr(p), mode); + } +} + +#define __define_print_scalar_vector_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _vector_field( \ + flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len) \ +{ \ + const void *p = get_field_ptr(td, id); \ + uoffset_t count; \ + \ + if (p) { \ + if (td->count++) { \ + print_char(','); \ + } \ + p = read_uoffset_ptr(p); \ + count = __flatbuffers_uoffset_read_from_pe(p); \ + p = (void *)((size_t)p + uoffset_size); \ + print_name(ctx, name, len); \ + print_start('['); \ + if (count) { \ + print_nl(); \ + ctx->p += print_ ## TN ( \ + flatbuffers_ ## TN ## _read_from_pe(p), \ + ctx->p); \ + p = (void *)((size_t)p + sizeof(T)); \ + --count; \ + } \ + while (count--) { \ + print_char(','); \ + print_nl(); \ + ctx->p += print_ ## TN ( \ + flatbuffers_ ## TN ## _read_from_pe(p), \ + ctx->p); \ + p = (void *)((size_t)p + sizeof(T)); \ + } \ + print_end(']'); \ + } \ +} + +#define __define_print_enum_vector_field(TN, T) \ +void flatcc_json_printer_ ## TN ## _enum_vector_field( \ + flatcc_json_printer_t *ctx, \ + flatcc_json_printer_table_descriptor_t *td, \ + int id, const char *name, size_t len, \ + flatcc_json_printer_ ## TN ##_enum_f *pf) \ +{ \ + const void *p; \ + uoffset_t count; \ + \ + if (ctx->noenum) { \ + flatcc_json_printer_ ## TN ## _vector_field(ctx, td, id, name, len);\ + return; \ + } \ + p = get_field_ptr(td, id); \ + if (p) { \ + if (td->count++) { \ + print_char(','); \ + } \ + p = read_uoffset_ptr(p); \ + count = __flatbuffers_uoffset_read_from_pe(p); \ + p = (void *)((size_t)p + uoffset_size); \ + print_name(ctx, name, len); \ + print_start('['); \ + if (count) { \ + print_nl(); \ + pf(ctx, flatbuffers_ ## TN ## _read_from_pe(p)); \ + p = (void *)((size_t)p + sizeof(T)); \ + --count; \ + } \ + while (count--) { \ + print_char(','); \ + print_nl(); \ + pf(ctx, flatbuffers_ ## TN ## _read_from_pe(p)); \ + p = (void *)((size_t)p + sizeof(T)); \ + } \ + print_end(']'); \ + } \ +} + +__define_print_scalar_field(uint8, uint8_t) +__define_print_scalar_field(uint16, uint16_t) +__define_print_scalar_field(uint32, uint32_t) +__define_print_scalar_field(uint64, uint64_t) +__define_print_scalar_field(int8, int8_t) +__define_print_scalar_field(int16, int16_t) +__define_print_scalar_field(int32, int32_t) +__define_print_scalar_field(int64, int64_t) +__define_print_scalar_field(bool, flatbuffers_bool_t) +__define_print_scalar_field(float, float) +__define_print_scalar_field(double, double) + +__define_print_enum_field(uint8, uint8_t) +__define_print_enum_field(uint16, uint16_t) +__define_print_enum_field(uint32, uint32_t) +__define_print_enum_field(uint64, uint64_t) +__define_print_enum_field(int8, int8_t) +__define_print_enum_field(int16, int16_t) +__define_print_enum_field(int32, int32_t) +__define_print_enum_field(int64, int64_t) +__define_print_enum_field(bool, flatbuffers_bool_t) + +__define_print_scalar_optional_field(uint8, uint8_t) +__define_print_scalar_optional_field(uint16, uint16_t) +__define_print_scalar_optional_field(uint32, uint32_t) +__define_print_scalar_optional_field(uint64, uint64_t) +__define_print_scalar_optional_field(int8, int8_t) +__define_print_scalar_optional_field(int16, int16_t) +__define_print_scalar_optional_field(int32, int32_t) +__define_print_scalar_optional_field(int64, int64_t) +__define_print_scalar_optional_field(bool, flatbuffers_bool_t) +__define_print_scalar_optional_field(float, float) +__define_print_scalar_optional_field(double, double) + +__define_print_enum_optional_field(uint8, uint8_t) +__define_print_enum_optional_field(uint16, uint16_t) +__define_print_enum_optional_field(uint32, uint32_t) +__define_print_enum_optional_field(uint64, uint64_t) +__define_print_enum_optional_field(int8, int8_t) +__define_print_enum_optional_field(int16, int16_t) +__define_print_enum_optional_field(int32, int32_t) +__define_print_enum_optional_field(int64, int64_t) +__define_print_enum_optional_field(bool, flatbuffers_bool_t) + +__define_print_scalar_struct_field(uint8, uint8_t) +__define_print_scalar_struct_field(uint16, uint16_t) +__define_print_scalar_struct_field(uint32, uint32_t) +__define_print_scalar_struct_field(uint64, uint64_t) +__define_print_scalar_struct_field(int8, int8_t) +__define_print_scalar_struct_field(int16, int16_t) +__define_print_scalar_struct_field(int32, int32_t) +__define_print_scalar_struct_field(int64, int64_t) +__define_print_scalar_struct_field(bool, flatbuffers_bool_t) +__define_print_scalar_struct_field(float, float) +__define_print_scalar_struct_field(double, double) + +__define_print_scalar_array_struct_field(uint8, uint8_t) +__define_print_scalar_array_struct_field(uint16, uint16_t) +__define_print_scalar_array_struct_field(uint32, uint32_t) +__define_print_scalar_array_struct_field(uint64, uint64_t) +__define_print_scalar_array_struct_field(int8, int8_t) +__define_print_scalar_array_struct_field(int16, int16_t) +__define_print_scalar_array_struct_field(int32, int32_t) +__define_print_scalar_array_struct_field(int64, int64_t) +__define_print_scalar_array_struct_field(bool, flatbuffers_bool_t) +__define_print_scalar_array_struct_field(float, float) +__define_print_scalar_array_struct_field(double, double) + +__define_print_enum_array_struct_field(uint8, uint8_t) +__define_print_enum_array_struct_field(uint16, uint16_t) +__define_print_enum_array_struct_field(uint32, uint32_t) +__define_print_enum_array_struct_field(uint64, uint64_t) +__define_print_enum_array_struct_field(int8, int8_t) +__define_print_enum_array_struct_field(int16, int16_t) +__define_print_enum_array_struct_field(int32, int32_t) +__define_print_enum_array_struct_field(int64, int64_t) +__define_print_enum_array_struct_field(bool, flatbuffers_bool_t) + +__define_print_enum_struct_field(uint8, uint8_t) +__define_print_enum_struct_field(uint16, uint16_t) +__define_print_enum_struct_field(uint32, uint32_t) +__define_print_enum_struct_field(uint64, uint64_t) +__define_print_enum_struct_field(int8, int8_t) +__define_print_enum_struct_field(int16, int16_t) +__define_print_enum_struct_field(int32, int32_t) +__define_print_enum_struct_field(int64, int64_t) +__define_print_enum_struct_field(bool, flatbuffers_bool_t) + +__define_print_scalar_vector_field(utype, flatbuffers_utype_t) +__define_print_scalar_vector_field(uint8, uint8_t) +__define_print_scalar_vector_field(uint16, uint16_t) +__define_print_scalar_vector_field(uint32, uint32_t) +__define_print_scalar_vector_field(uint64, uint64_t) +__define_print_scalar_vector_field(int8, int8_t) +__define_print_scalar_vector_field(int16, int16_t) +__define_print_scalar_vector_field(int32, int32_t) +__define_print_scalar_vector_field(int64, int64_t) +__define_print_scalar_vector_field(bool, flatbuffers_bool_t) +__define_print_scalar_vector_field(float, float) +__define_print_scalar_vector_field(double, double) + +__define_print_enum_vector_field(utype, flatbuffers_utype_t) +__define_print_enum_vector_field(uint8, uint8_t) +__define_print_enum_vector_field(uint16, uint16_t) +__define_print_enum_vector_field(uint32, uint32_t) +__define_print_enum_vector_field(uint64, uint64_t) +__define_print_enum_vector_field(int8, int8_t) +__define_print_enum_vector_field(int16, int16_t) +__define_print_enum_vector_field(int32, int32_t) +__define_print_enum_vector_field(int64, int64_t) +__define_print_enum_vector_field(bool, flatbuffers_bool_t) + +void flatcc_json_printer_struct_vector_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + size_t size, + flatcc_json_printer_struct_f pf) +{ + const uint8_t *p = get_field_ptr(td, id); + uoffset_t count; + + if (p) { + if (td->count++) { + print_char(','); + } + p = read_uoffset_ptr(p); + count = __flatbuffers_uoffset_read_from_pe(p); + p += uoffset_size; + print_name(ctx, name, len); + print_start('['); + if (count) { + print_nl(); + print_start('{'); + pf(ctx, p); + print_end('}'); + --count; + } + while (count--) { + p += size; + print_char(','); + print_nl(); + print_start('{'); + pf(ctx, p); + print_end('}'); + } + print_end(']'); + } +} + +void flatcc_json_printer_string_vector_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len) +{ + const uoffset_t *p = get_field_ptr(td, id); + uoffset_t count; + + if (p) { + if (td->count++) { + print_char(','); + } + p = read_uoffset_ptr(p); + count = __flatbuffers_uoffset_read_from_pe(p); + ++p; + print_name(ctx, name, len); + print_start('['); + if (count) { + print_nl(); + print_string_object(ctx, read_uoffset_ptr(p)); + --count; + } + while (count--) { + ++p; + print_char(','); + print_nl(); + print_string_object(ctx, read_uoffset_ptr(p)); + } + print_end(']'); + } +} + +void flatcc_json_printer_table_vector_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + flatcc_json_printer_table_f pf) +{ + const uoffset_t *p = get_field_ptr(td, id); + uoffset_t count; + + if (p) { + if (td->count++) { + print_char(','); + } + p = read_uoffset_ptr(p); + count = __flatbuffers_uoffset_read_from_pe(p); + ++p; + print_name(ctx, name, len); + print_start('['); + if (count) { + print_table_object(ctx, read_uoffset_ptr(p), td->ttl, pf); + --count; + } + while (count--) { + ++p; + print_char(','); + print_table_object(ctx, read_uoffset_ptr(p), td->ttl, pf); + } + print_end(']'); + } +} + +void flatcc_json_printer_union_vector_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + flatcc_json_printer_union_type_f ptf, + flatcc_json_printer_union_f pf) +{ + const uoffset_t *pt = get_field_ptr(td, id - 1); + const uoffset_t *p = get_field_ptr(td, id); + utype_t *types, type; + uoffset_t count; + char type_name[FLATCC_JSON_PRINT_NAME_LEN_MAX + 5]; + flatcc_json_printer_union_descriptor_t ud; + + ud.ttl = td->ttl; + if (len > FLATCC_JSON_PRINT_NAME_LEN_MAX) { + RAISE_ERROR(bad_input); + FLATCC_ASSERT(0 && "identifier too long"); + return; + } + memcpy(type_name, name, len); + memcpy(type_name + len, "_type", 5); + if (p && pt) { + flatcc_json_printer_utype_enum_vector_field(ctx, td, id - 1, + type_name, len + 5, ptf); + if (td->count++) { + print_char(','); + } + p = read_uoffset_ptr(p); + pt = read_uoffset_ptr(pt); + count = __flatbuffers_uoffset_read_from_pe(p); + ++p; + ++pt; + types = (utype_t *)pt; + print_name(ctx, name, len); + print_start('['); + + if (count) { + type = __flatbuffers_utype_read_from_pe(types); + if (type != 0) { + ud.type = type; + ud.member = p; + pf(ctx, &ud); + } else { + print_null(); + } + --count; + } + while (count--) { + ++p; + ++types; + type = __flatbuffers_utype_read_from_pe(types); + print_char(','); + if (type != 0) { + ud.type = type; + ud.member = p; + pf(ctx, &ud); + } else { + print_null(); + } + } + print_end(']'); + } +} + +void flatcc_json_printer_table_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + flatcc_json_printer_table_f pf) +{ + const void *p = get_field_ptr(td, id); + + if (p) { + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_table_object(ctx, read_uoffset_ptr(p), td->ttl, pf); + } +} + +void flatcc_json_printer_union_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + flatcc_json_printer_union_type_f ptf, + flatcc_json_printer_union_f pf) +{ + const void *pt = get_field_ptr(td, id - 1); + const void *p = get_field_ptr(td, id); + utype_t type; + flatcc_json_printer_union_descriptor_t ud; + + if (!p || !pt) { + return; + } + type = __flatbuffers_utype_read_from_pe(pt); + if (td->count++) { + print_char(','); + } + print_nl(); + *ctx->p = '\"'; + ctx->p += !ctx->unquote; + if (ctx->p + len < ctx->pflush) { + memcpy(ctx->p, name, len); + ctx->p += len; + } else { + print(ctx, name, len); + } + print(ctx, "_type", 5); + *ctx->p = '\"'; + ctx->p += !ctx->unquote; + print_char(':'); + print_space(); + if (ctx->noenum) { + ctx->p += print_utype(type, ctx->p); + } else { + ptf(ctx, type); + } + if (type != 0) { + print_char(','); + print_name(ctx, name, len); + ud.ttl = td->ttl; + ud.type = type; + ud.member = p; + pf(ctx, &ud); + } +} + +void flatcc_json_printer_union_table(flatcc_json_printer_t *ctx, + flatcc_json_printer_union_descriptor_t *ud, + flatcc_json_printer_table_f pf) +{ + print_table_object(ctx, read_uoffset_ptr(ud->member), ud->ttl, pf); +} + +void flatcc_json_printer_union_struct(flatcc_json_printer_t *ctx, + flatcc_json_printer_union_descriptor_t *ud, + flatcc_json_printer_struct_f pf) +{ + print_start('{'); + pf(ctx, read_uoffset_ptr(ud->member)); + print_end('}'); +} + +void flatcc_json_printer_union_string(flatcc_json_printer_t *ctx, + flatcc_json_printer_union_descriptor_t *ud) +{ + print_string_object(ctx, read_uoffset_ptr(ud->member)); +} + +void flatcc_json_printer_embedded_struct_field(flatcc_json_printer_t *ctx, + int index, const void *p, size_t offset, + const char *name, size_t len, + flatcc_json_printer_struct_f pf) +{ + if (index) { + print_char(','); + } + print_name(ctx, name, len); + print_start('{'); + pf(ctx, (uint8_t *)p + offset); + print_end('}'); +} + +void flatcc_json_printer_embedded_struct_array_field(flatcc_json_printer_t *ctx, + int index, const void *p, size_t offset, + const char *name, size_t len, + size_t size, size_t count, + flatcc_json_printer_struct_f pf) +{ + size_t i; + if (index) { + print_char(','); + } + print_name(ctx, name, len); + print_start('['); + for (i = 0; i < count; ++i) { + if (i > 0) { + print_char(','); + } + print_start('{'); \ + pf(ctx, (uint8_t *)p + offset + i * size); + print_end('}'); + } + print_end(']'); +} + +void flatcc_json_printer_struct_field(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + flatcc_json_printer_struct_f *pf) +{ + const void *p = get_field_ptr(td, id); + + if (p) { + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_start('{'); + pf(ctx, p); + print_end('}'); + } +} + +/* + * Make sure the buffer identifier is valid before assuming the rest of + * the buffer is sane. + * NOTE: this won't work with type hashes because these can contain + * nulls in the fid string. In this case use null as fid to disable + * check. + */ +static int accept_header(flatcc_json_printer_t * ctx, + const void *buf, size_t bufsiz, const char *fid) +{ + flatbuffers_thash_t id, id2 = 0; + + if (buf == 0 || bufsiz < offset_size + FLATBUFFERS_IDENTIFIER_SIZE) { + RAISE_ERROR(bad_input); + FLATCC_ASSERT(0 && "buffer header too small"); + return 0; + } + if (fid != 0) { + id2 = flatbuffers_type_hash_from_string(fid); + id = __flatbuffers_thash_read_from_pe((uint8_t *)buf + offset_size); + if (!(id2 == 0 || id == id2)) { + RAISE_ERROR(bad_input); + FLATCC_ASSERT(0 && "identifier mismatch"); + return 0; + } + } + return 1; +} + +int flatcc_json_printer_struct_as_root(flatcc_json_printer_t *ctx, + const void *buf, size_t bufsiz, const char *fid, + flatcc_json_printer_struct_f *pf) +{ + if (!accept_header(ctx, buf, bufsiz, fid)) { + return -1; + } + print_start('{'); + pf(ctx, read_uoffset_ptr(buf)); + print_end('}'); + print_last_nl(); + return flatcc_json_printer_get_error(ctx) ? -1 : (int)ctx->total + (int)(ctx->p - ctx->buf); +} + +int flatcc_json_printer_table_as_root(flatcc_json_printer_t *ctx, + const void *buf, size_t bufsiz, const char *fid, flatcc_json_printer_table_f *pf) +{ + if (!accept_header(ctx, buf, bufsiz, fid)) { + return -1; + } + print_table_object(ctx, read_uoffset_ptr(buf), FLATCC_JSON_PRINT_MAX_LEVELS, pf); + print_last_nl(); + return flatcc_json_printer_get_error(ctx) ? -1 : (int)ctx->total + (int)(ctx->p - ctx->buf); +} + +void flatcc_json_printer_struct_as_nested_root(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + const char *fid, + flatcc_json_printer_struct_f *pf) +{ + const uoffset_t *buf; + uoffset_t bufsiz; + + if (0 == (buf = get_field_ptr(td, id))) { + return; + } + buf = (const uoffset_t *)((size_t)buf + __flatbuffers_uoffset_read_from_pe(buf)); + bufsiz = __flatbuffers_uoffset_read_from_pe(buf); + if (!accept_header(ctx, buf, bufsiz, fid)) { + return; + } + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_start('{'); + pf(ctx, read_uoffset_ptr(buf)); + print_end('}'); +} + +void flatcc_json_printer_table_as_nested_root(flatcc_json_printer_t *ctx, + flatcc_json_printer_table_descriptor_t *td, + int id, const char *name, size_t len, + const char *fid, + flatcc_json_printer_table_f pf) +{ + const uoffset_t *buf; + uoffset_t bufsiz; + + if (0 == (buf = get_field_ptr(td, id))) { + return; + } + buf = (const uoffset_t *)((size_t)buf + __flatbuffers_uoffset_read_from_pe(buf)); + bufsiz = __flatbuffers_uoffset_read_from_pe(buf); + ++buf; + if (!accept_header(ctx, buf, bufsiz, fid)) { + return; + } + if (td->count++) { + print_char(','); + } + print_name(ctx, name, len); + print_table_object(ctx, read_uoffset_ptr(buf), td->ttl, pf); +} + +static void __flatcc_json_printer_flush(flatcc_json_printer_t *ctx, int all) +{ + if (!all && ctx->p >= ctx->pflush) { + size_t spill = (size_t)(ctx->p - ctx->pflush); + + fwrite(ctx->buf, ctx->flush_size, 1, ctx->fp); + memcpy(ctx->buf, ctx->buf + ctx->flush_size, spill); + ctx->p = ctx->buf + spill; + ctx->total += ctx->flush_size; + } else { + size_t len = (size_t)(ctx->p - ctx->buf); + + fwrite(ctx->buf, len, 1, ctx->fp); + ctx->p = ctx->buf; + ctx->total += len; + } + *ctx->p = '\0'; +} + +int flatcc_json_printer_init(flatcc_json_printer_t *ctx, void *fp) +{ + memset(ctx, 0, sizeof(*ctx)); + ctx->fp = fp ? fp : stdout; + ctx->flush = __flatcc_json_printer_flush; + if (!(ctx->buf = FLATCC_JSON_PRINTER_ALLOC(FLATCC_JSON_PRINT_BUFFER_SIZE))) { + return -1; + } + ctx->own_buffer = 1; + ctx->size = FLATCC_JSON_PRINT_BUFFER_SIZE; + ctx->flush_size = FLATCC_JSON_PRINT_FLUSH_SIZE; + ctx->p = ctx->buf; + ctx->pflush = ctx->buf + ctx->flush_size; + /* + * Make sure we have space for primitive operations such as printing numbers + * without having to flush. + */ + FLATCC_ASSERT(ctx->flush_size + FLATCC_JSON_PRINT_RESERVE <= ctx->size); + return 0; +} + +static void __flatcc_json_printer_flush_buffer(flatcc_json_printer_t *ctx, int all) +{ + (void)all; + + if (ctx->p >= ctx->pflush) { + RAISE_ERROR(overflow); + ctx->total += (size_t)(ctx->p - ctx->buf); + ctx->p = ctx->buf; + } + *ctx->p = '\0'; +} + +int flatcc_json_printer_init_buffer(flatcc_json_printer_t *ctx, char *buffer, size_t buffer_size) +{ + FLATCC_ASSERT(buffer_size >= FLATCC_JSON_PRINT_RESERVE); + if (buffer_size < FLATCC_JSON_PRINT_RESERVE) { + return -1; + } + memset(ctx, 0, sizeof(*ctx)); + ctx->buf = buffer; + ctx->size = buffer_size; + ctx->flush_size = ctx->size - FLATCC_JSON_PRINT_RESERVE; + ctx->p = ctx->buf; + ctx->pflush = ctx->buf + ctx->flush_size; + ctx->flush = __flatcc_json_printer_flush_buffer; + return 0; +} + +static void __flatcc_json_printer_flush_dynamic_buffer(flatcc_json_printer_t *ctx, int all) +{ + size_t len = (size_t)(ctx->p - ctx->buf); + char *p; + + (void)all; + + *ctx->p = '\0'; + if (ctx->p < ctx->pflush) { + return; + } + p = FLATCC_JSON_PRINTER_REALLOC(ctx->buf, ctx->size * 2); + if (!p) { + RAISE_ERROR(overflow); + ctx->total += len; + ctx->p = ctx->buf; + } else { + ctx->size *= 2; + ctx->flush_size = ctx->size - FLATCC_JSON_PRINT_RESERVE; + ctx->buf = p; + ctx->p = p + len; + ctx->pflush = p + ctx->flush_size; + } + *ctx->p = '\0'; +} + +int flatcc_json_printer_init_dynamic_buffer(flatcc_json_printer_t *ctx, size_t buffer_size) +{ + if (buffer_size == 0) { + buffer_size = FLATCC_JSON_PRINT_DYN_BUFFER_SIZE; + } + if (buffer_size < FLATCC_JSON_PRINT_RESERVE) { + buffer_size = FLATCC_JSON_PRINT_RESERVE; + } + memset(ctx, 0, sizeof(*ctx)); + ctx->buf = FLATCC_JSON_PRINTER_ALLOC(buffer_size); + ctx->own_buffer = 1; + ctx->size = buffer_size; + ctx->flush_size = ctx->size - FLATCC_JSON_PRINT_RESERVE; + ctx->p = ctx->buf; + ctx->pflush = ctx->buf + ctx->flush_size; + ctx->flush = __flatcc_json_printer_flush_dynamic_buffer; + if (!ctx->buf) { + RAISE_ERROR(overflow); + return -1; + } + return 0; +} + +void *flatcc_json_printer_get_buffer(flatcc_json_printer_t *ctx, size_t *buffer_size) +{ + ctx->flush(ctx, 0); + if (buffer_size) { + *buffer_size = (size_t)(ctx->p - ctx->buf); + } + return ctx->buf; +} + +void *flatcc_json_printer_finalize_dynamic_buffer(flatcc_json_printer_t *ctx, size_t *buffer_size) +{ + void *buffer; + + buffer = flatcc_json_printer_get_buffer(ctx, buffer_size); + memset(ctx, 0, sizeof(*ctx)); + return buffer; +} + +void flatcc_json_printer_clear(flatcc_json_printer_t *ctx) +{ + if (ctx->own_buffer && ctx->buf) { + FLATCC_JSON_PRINTER_FREE(ctx->buf); + } + memset(ctx, 0, sizeof(*ctx)); +} diff --git a/flatcc/src/runtime/refmap.c b/flatcc/src/runtime/refmap.c new file mode 100644 index 0000000..a2497f0 --- /dev/null +++ b/flatcc/src/runtime/refmap.c @@ -0,0 +1,248 @@ +/* + * Optional file that can be included in runtime library to support DAG + * cloning with the builder and may also be used for custom purposes + * standalone. See also comments in `flatcc/flatcc_builder.h`. + * + * Note that dynamic construction takes place and that large offset + * vectors might consume significant space if there are not many shared + * references. In the basic use case no allocation takes place because a + * few references can be held using only a small stack allocated hash + * table. + */ + +#include <stdlib.h> +#include <string.h> + +#include "flatcc/flatcc_rtconfig.h" +#include "flatcc/flatcc_refmap.h" +#include "flatcc/flatcc_alloc.h" +#include "flatcc/flatcc_assert.h" + +#define _flatcc_refmap_calloc FLATCC_CALLOC +#define _flatcc_refmap_free FLATCC_FREE + +/* Can be used as a primitive defense against collision attacks. */ +#ifdef FLATCC_HASH_SEED +#define _flatcc_refmap_seed FLATCC_HASH_SEED +#else +#define _flatcc_refmap_seed 0x2f693b52 +#endif + +static inline size_t _flatcc_refmap_above_load_factor(size_t count, size_t buckets) +{ + static const size_t d = 256; + static const size_t n = (size_t)((FLATCC_REFMAP_LOAD_FACTOR) * 256.0f); + + return count >= buckets * n / d; +} + +#define _flatcc_refmap_probe(k, i, N) ((k + i) & N) + +void flatcc_refmap_clear(flatcc_refmap_t *refmap) +{ + if (refmap->table && refmap->table != refmap->min_table) { + _flatcc_refmap_free(refmap->table); + } + flatcc_refmap_init(refmap); +} + +static inline size_t _flatcc_refmap_hash(const void *src) +{ + /* MurmurHash3 64-bit finalizer */ + uint64_t x; + + x = (uint64_t)((size_t)src) ^ _flatcc_refmap_seed; + + x ^= x >> 33; + x *= 0xff51afd7ed558ccdULL; + x ^= x >> 33; + x *= 0xc4ceb9fe1a85ec53ULL; + x ^= x >> 33; + return (size_t)x; +} + +void flatcc_refmap_reset(flatcc_refmap_t *refmap) +{ + if (refmap->count) { + memset(refmap->table, 0, sizeof(refmap->table[0]) * refmap->buckets); + } + refmap->count = 0; +} + +/* + * Technically resize also supports shrinking which may be useful for + * adapations, but the current hash table never deletes individual items. + */ +int flatcc_refmap_resize(flatcc_refmap_t *refmap, size_t count) +{ + const size_t min_buckets = sizeof(refmap->min_table) / sizeof(refmap->min_table[0]); + + size_t i; + size_t buckets; + size_t buckets_old; + struct flatcc_refmap_item *T_old; + + if (count < refmap->count) { + count = refmap->count; + } + buckets = min_buckets; + + while (_flatcc_refmap_above_load_factor(count, buckets)) { + buckets *= 2; + } + if (refmap->buckets == buckets) { + return 0; + } + T_old = refmap->table; + buckets_old = refmap->buckets; + if (buckets == min_buckets) { + memset(refmap->min_table, 0, sizeof(refmap->min_table)); + refmap->table = refmap->min_table; + } else { + refmap->table = _flatcc_refmap_calloc(buckets, sizeof(refmap->table[0])); + if (refmap->table == 0) { + refmap->table = T_old; + FLATCC_ASSERT(0); /* out of memory */ + return -1; + } + } + refmap->buckets = buckets; + refmap->count = 0; + for (i = 0; i < buckets_old; ++i) { + if (T_old[i].src) { + flatcc_refmap_insert(refmap, T_old[i].src, T_old[i].ref); + } + } + if (T_old && T_old != refmap->min_table) { + _flatcc_refmap_free(T_old); + } + return 0; +} + +flatcc_refmap_ref_t flatcc_refmap_insert(flatcc_refmap_t *refmap, const void *src, flatcc_refmap_ref_t ref) +{ + struct flatcc_refmap_item *T; + size_t N, i, j, k; + + if (src == 0) return ref; + if (_flatcc_refmap_above_load_factor(refmap->count, refmap->buckets)) { + if (flatcc_refmap_resize(refmap, refmap->count * 2)) { + return flatcc_refmap_not_found; /* alloc failed */ + } + } + T = refmap->table; + N = refmap->buckets - 1; + k = _flatcc_refmap_hash(src); + i = 0; + j = _flatcc_refmap_probe(k, i, N); + while (T[j].src) { + if (T[j].src == src) { + return T[j].ref = ref; + } + ++i; + j = _flatcc_refmap_probe(k, i, N); + } + ++refmap->count; + T[j].src = src; + return T[j].ref = ref; +} + +flatcc_refmap_ref_t flatcc_refmap_find(flatcc_refmap_t *refmap, const void *src) +{ + struct flatcc_refmap_item *T; + size_t N, i, j, k; + + if (refmap->count == 0) { + return flatcc_refmap_not_found; + } + T = refmap->table; + N = refmap->buckets - 1; + k = _flatcc_refmap_hash(src); + i = 0; + j = _flatcc_refmap_probe(k, i, N); + while (T[j].src) { + if (T[j].src == src) return T[j].ref; + ++i; + j = _flatcc_refmap_probe(k, i, N); + } + return flatcc_refmap_not_found; +} + +/* + * To run test from project root: + * + * cc -D FLATCC_REFMAP_TEST -I include src/runtime/refmap.c -o test_refmap && ./test_refmap + * + */ +#ifdef FLATCC_REFMAP_TEST + +#include <stdio.h> + +#ifndef FLATCC_REFMAP_H +#include "flatcc/flatcc_refmap.h" +#endif + +#define test(x) do { if (!(x)) { fprintf(stderr, "%02d: refmap test failed\n", __LINE__); exit(-1); } } while (0) +#define test_start() fprintf(stderr, "starting refmap test ...\n") +#define test_ok() fprintf(stderr, "refmap test succeeded\n") + +int main() +{ + int i; + int data[1000]; + int a = 1; + int b = 2; + int c = 3; + flatcc_refmap_t refmap; + + flatcc_refmap_init(&refmap); + + test(flatcc_refmap_find(&refmap, &a) == flatcc_refmap_not_found); + test(flatcc_refmap_find(&refmap, &b) == flatcc_refmap_not_found); + test(flatcc_refmap_find(&refmap, &c) == flatcc_refmap_not_found); + test(flatcc_refmap_find(&refmap, 0) == flatcc_refmap_not_found); + test(flatcc_refmap_find(&refmap, &a) == 0); + + test(flatcc_refmap_insert(&refmap, &a, 42) == 42); + test(flatcc_refmap_find(&refmap, &a) == 42); + test(flatcc_refmap_find(&refmap, &b) == flatcc_refmap_not_found); + test(flatcc_refmap_find(&refmap, &c) == flatcc_refmap_not_found); + test(flatcc_refmap_insert(&refmap, &a, 42) == 42); + test(flatcc_refmap_find(&refmap, &a) == 42); + test(refmap.count == 1); + test(flatcc_refmap_insert(&refmap, &a, 43) == 43); + test(flatcc_refmap_find(&refmap, &a) == 43); + test(refmap.count == 1); + test(flatcc_refmap_insert(&refmap, &b, -10) == -10); + test(flatcc_refmap_insert(&refmap, &c, 100) == 100); + test(refmap.count == 3); + test(flatcc_refmap_find(&refmap, &a) == 43); + test(flatcc_refmap_find(&refmap, &b) == -10); + test(flatcc_refmap_find(&refmap, &c) == 100); + + test(flatcc_refmap_insert(&refmap, 0, 1000) == 1000); + test(flatcc_refmap_find(&refmap, 0) == 0); + test(refmap.count == 3); + + test(flatcc_refmap_insert(&refmap, &b, 0) == 0); + test(flatcc_refmap_find(&refmap, &b) == 0); + test(refmap.count == 3); + + flatcc_refmap_reset(&refmap); + test(refmap.count == 0); + test(refmap.buckets > 0); + for (i = 0; i < 1000; ++i) { + test(flatcc_refmap_insert(&refmap, data + i, i + 42) == i + 42); + } + test(refmap.count == 1000); + for (i = 0; i < 1000; ++i) { + test(flatcc_refmap_find(&refmap, data + i) == i + 42); + } + flatcc_refmap_clear(&refmap); + test(refmap.count == 0); + test(refmap.buckets == 0); + test_ok(); + return 0; +} + +#endif /* FLATCC_REFMAP_TEST */ diff --git a/flatcc/src/runtime/verifier.c b/flatcc/src/runtime/verifier.c new file mode 100644 index 0000000..9c43bf6 --- /dev/null +++ b/flatcc/src/runtime/verifier.c @@ -0,0 +1,617 @@ +/* + * Runtime support for verifying flatbuffers. + * + * Depends mutually on generated verifier functions for table types that + * call into this library. + */ +#include <string.h> + +#include "flatcc/flatcc_rtconfig.h" +#include "flatcc/flatcc_flatbuffers.h" +#include "flatcc/flatcc_verifier.h" +#include "flatcc/flatcc_identifier.h" + +/* Customization for testing. */ +#if FLATCC_DEBUG_VERIFY +#define FLATCC_VERIFIER_ASSERT_ON_ERROR 1 +#include <stdio.h> +#define FLATCC_VERIFIER_ASSERT(cond, reason) \ + if (!(cond)) { fprintf(stderr, "verifier assert: %s\n", \ + flatcc_verify_error_string(reason)); FLATCC_ASSERT(0); return reason; } +#endif + +#if FLATCC_TRACE_VERIFY +#include <stdio.h> +#define trace_verify(s, p) \ + fprintf(stderr, "trace verify: %s: 0x%02x\n", (s), (unsigned)(size_t)(p)); +#else +#define trace_verify(s, p) ((void)0) +#endif + +/* The runtime library does not use the global config file. */ + +/* This is a guideline, not an exact measure. */ +#ifndef FLATCC_VERIFIER_MAX_LEVELS +#define FLATCC_VERIFIER_MAX_LEVELS 100 +#endif + +#ifndef FLATCC_VERIFIER_ASSERT_ON_ERROR +#define FLATCC_VERIFIER_ASSERT_ON_ERROR 0 +#endif + +/* + * Generally a check should tell if a buffer is valid or not such + * that runtime can take appropriate actions rather than crash, + * also in debug, but assertions are helpful in debugging a problem. + * + * This must be compiled into the debug runtime library to take effect. + */ +#ifndef FLATCC_VERIFIER_ASSERT_ON_ERROR +#define FLATCC_VERIFIER_ASSERT_ON_ERROR 1 +#endif + +/* May be redefined for logging purposes. */ +#ifndef FLATCC_VERIFIER_ASSERT +#define FLATCC_VERIFIER_ASSERT(cond, reason) FLATCC_ASSERT(cond) +#endif + +#if FLATCC_VERIFIER_ASSERT_ON_ERROR +#define flatcc_verify(cond, reason) if (!(cond)) { FLATCC_VERIFIER_ASSERT(cond, reason); return reason; } +#else +#define flatcc_verify(cond, reason) if (!(cond)) { return reason; } +#endif + + +#define uoffset_t flatbuffers_uoffset_t +#define soffset_t flatbuffers_soffset_t +#define voffset_t flatbuffers_voffset_t +#define utype_t flatbuffers_utype_t +#define thash_t flatbuffers_thash_t + +#define uoffset_size sizeof(uoffset_t) +#define soffset_size sizeof(soffset_t) +#define voffset_size sizeof(voffset_t) +#define utype_size sizeof(utype_t) +#define thash_size sizeof(thash_t) +#define offset_size uoffset_size + +const char *flatcc_verify_error_string(int err) +{ + switch (err) { +#define XX(no, str) \ + case flatcc_verify_error_##no: \ + return str; + FLATCC_VERIFY_ERROR_MAP(XX) +#undef XX + default: + return "unknown"; + } +} + +/* `cond` may have side effects. */ +#define verify(cond, reason) do { int c = (cond); flatcc_verify(c, reason); } while(0) + +/* + * Identify checks related to runtime conditions (buffer size and + * alignment) as seperate from those related to buffer content. + */ +#define verify_runtime(cond, reason) verify(cond, reason) + +#define check_result(x) if (x) { return (x); } + +#define check_field(td, id, required, base) do { \ + int ret = get_offset_field(td, id, required, &base); \ + if (ret || !base) { return ret; }} while (0) + +static inline uoffset_t read_uoffset(const void *p, uoffset_t base) +{ + return __flatbuffers_uoffset_read_from_pe((uint8_t *)p + base); +} + +static inline thash_t read_thash_identifier(const char *identifier) +{ + return flatbuffers_type_hash_from_string(identifier); +} + +static inline thash_t read_thash(const void *p, uoffset_t base) +{ + return __flatbuffers_thash_read_from_pe((uint8_t *)p + base); +} + +static inline voffset_t read_voffset(const void *p, uoffset_t base) +{ + return __flatbuffers_voffset_read_from_pe((uint8_t *)p + base); +} + +static inline int check_header(uoffset_t end, uoffset_t base, uoffset_t offset) +{ + uoffset_t k = base + offset; + + if (uoffset_size <= voffset_size && k + offset_size < k) { + return 0; + } + + /* The `k > base` rather than `k >= base` is to avoid null offsets. */ + return k > base && k + offset_size <= end && !(k & (offset_size - 1)); +} + +static inline int check_aligned_header(uoffset_t end, uoffset_t base, uoffset_t offset, uint16_t align) +{ + uoffset_t k = base + offset; + + if (uoffset_size <= voffset_size && k + offset_size < k) { + return 0; + } + /* Alignment refers to element 0 and header must also be aligned. */ + align = align < uoffset_size ? uoffset_size : align; + + /* Note to self: the builder can also use the mask OR trick to propagate `min_align`. */ + return k > base && k + offset_size <= end && !((k + offset_size) & ((offset_size - 1) | (align - 1u))); +} + +static inline int verify_struct(uoffset_t end, uoffset_t base, uoffset_t offset, uoffset_t size, uint16_t align) +{ + /* Structs can have zero size so `end` is a valid value. */ + if (offset == 0 || base + offset > end) { + return flatcc_verify_error_offset_out_of_range; + } + base += offset; + verify(base + size >= base, flatcc_verify_error_struct_size_overflow); + verify(base + size <= end, flatcc_verify_error_struct_out_of_range); + verify (!(base & (align - 1u)), flatcc_verify_error_struct_unaligned); + return flatcc_verify_ok; +} + +static inline voffset_t read_vt_entry(flatcc_table_verifier_descriptor_t *td, voffset_t id) +{ + voffset_t vo = (id + 2u) * sizeof(voffset_t); + + /* Assumes tsize has been verified for alignment. */ + if (vo >= td->vsize) { + return 0; + } + return read_voffset(td->vtable, vo); +} + +static inline const void *get_field_ptr(flatcc_table_verifier_descriptor_t *td, voffset_t id) +{ + voffset_t vte = read_vt_entry(td, id); + return vte ? (const uint8_t *)td->buf + td->table + vte : 0; +} + +static int verify_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, uoffset_t size, uint16_t align) +{ + uoffset_t k, k2; + voffset_t vte; + uoffset_t base = (uoffset_t)(size_t)td->buf; + + + /* + * Otherwise range check assumptions break, and normal access code likely also. + * We don't require voffset_size < uoffset_size, but some checks are faster if true. + */ + FLATCC_ASSERT(uoffset_size >= voffset_size); + FLATCC_ASSERT(soffset_size == uoffset_size); + + vte = read_vt_entry(td, id); + if (!vte) { + verify(!required, flatcc_verify_error_required_field_missing); + return flatcc_verify_ok; + } + trace_verify("table buffer", td->buf); + trace_verify("table", td->table); + trace_verify("id", id); + trace_verify("vte", vte); + + /* + * Note that we don't add td.table to k and we test against table + * size not table end or buffer end. Otherwise it would not be safe + * to optimized out the k <= k2 check for normal uoffset and voffset + * configurations. + */ + k = vte; + k2 = k + size; + verify(k2 <= td->tsize, flatcc_verify_error_table_field_out_of_range); + /* This normally optimizes to nop. */ + verify(uoffset_size > voffset_size || k <= k2, flatcc_verify_error_table_field_size_overflow); + trace_verify("table + vte", vte + td->table); + k += td->table + base; + trace_verify("entry: buf + table + vte", k); + trace_verify("align", align); + trace_verify("align masked entry", k & (align - 1u)); + verify(!(k & (align - 1u)), flatcc_verify_error_table_field_not_aligned); + /* We assume the table size has already been verified. */ + return flatcc_verify_ok; +} + +static int get_offset_field(flatcc_table_verifier_descriptor_t *td, voffset_t id, int required, uoffset_t *out) +{ + uoffset_t k, k2; + voffset_t vte; + + vte = read_vt_entry(td, id); + if (!vte) { + *out = 0; + if (required) { + return flatcc_verify_error_required_field_missing; + } + /* Missing, but not invalid. */ + return flatcc_verify_ok; + } + /* + * Note that we don't add td.table to k and we test against table + * size not table end or buffer end. Otherwise it would not be safe + * to optimized out the k <= k2 check for normal uoffset and voffset + * configurations. + */ + k = vte; + k2 = k + offset_size; + verify(k2 <= td->tsize, flatcc_verify_error_table_field_out_of_range); + /* This normally optimizes to nop. */ + verify(uoffset_size > voffset_size || k <= k2, flatcc_verify_error_table_field_size_overflow); + k += td->table; + verify(!(k & (offset_size - 1u)), flatcc_verify_error_table_field_not_aligned); + /* We assume the table size has already been verified. */ + *out = k; + return flatcc_verify_ok; +} + +static inline int verify_string(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset) +{ + uoffset_t n; + + verify(check_header(end, base, offset), flatcc_verify_error_string_header_out_of_range_or_unaligned); + base += offset; + n = read_uoffset(buf, base); + base += offset_size; + verify(end - base > n, flatcc_verify_error_string_out_of_range); + verify(((uint8_t *)buf + base)[n] == 0, flatcc_verify_error_string_not_zero_terminated); + return flatcc_verify_ok; +} + +/* + * Keep interface somwewhat similar ot flatcc_builder_start_vector. + * `max_count` is a precomputed division to manage overflow check on vector length. + */ +static inline int verify_vector(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset, uoffset_t elem_size, uint16_t align, uoffset_t max_count) +{ + uoffset_t n; + + verify(check_aligned_header(end, base, offset, align), flatcc_verify_error_vector_header_out_of_range_or_unaligned); + base += offset; + n = read_uoffset(buf, base); + base += offset_size; + /* `n * elem_size` can overflow uncontrollably otherwise. */ + verify(n <= max_count, flatcc_verify_error_vector_count_exceeds_representable_vector_size); + verify(end - base >= n * elem_size, flatcc_verify_error_vector_out_of_range); + return flatcc_verify_ok; +} + +static inline int verify_string_vector(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset) +{ + uoffset_t i, n; + + check_result(verify_vector(buf, end, base, offset, offset_size, offset_size, FLATBUFFERS_COUNT_MAX(offset_size))); + base += offset; + n = read_uoffset(buf, base); + base += offset_size; + for (i = 0; i < n; ++i, base += offset_size) { + check_result(verify_string(buf, end, base, read_uoffset(buf, base))); + } + return flatcc_verify_ok; +} + +static inline int verify_table(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset, + int ttl, flatcc_table_verifier_f tvf) +{ + uoffset_t vbase, vend; + flatcc_table_verifier_descriptor_t td; + + verify((td.ttl = ttl - 1), flatcc_verify_error_max_nesting_level_reached); + verify(check_header(end, base, offset), flatcc_verify_error_table_header_out_of_range_or_unaligned); + td.table = base + offset; + /* Read vtable offset - it is signed, but we want it unsigned, assuming 2's complement works. */ + vbase = td.table - read_uoffset(buf, td.table); + verify((soffset_t)vbase >= 0 && !(vbase & (voffset_size - 1)), flatcc_verify_error_vtable_offset_out_of_range_or_unaligned); + verify(vbase + voffset_size <= end, flatcc_verify_error_vtable_header_out_of_range); + /* Read vtable size. */ + td.vsize = read_voffset(buf, vbase); + vend = vbase + td.vsize; + verify(vend <= end && !(td.vsize & (voffset_size - 1)), flatcc_verify_error_vtable_size_out_of_range_or_unaligned); + /* Optimizes away overflow check if uoffset_t is large enough. */ + verify(uoffset_size > voffset_size || vend >= vbase, flatcc_verify_error_vtable_size_overflow); + + verify(td.vsize >= 2 * voffset_size, flatcc_verify_error_vtable_header_too_small); + /* Read table size. */ + td.tsize = read_voffset(buf, vbase + voffset_size); + verify(end - td.table >= td.tsize, flatcc_verify_error_table_size_out_of_range); + td.vtable = (uint8_t *)buf + vbase; + td.buf = buf; + td.end = end; + return tvf(&td); +} + +static inline int verify_table_vector(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset, int ttl, flatcc_table_verifier_f tvf) +{ + uoffset_t i, n; + + verify(ttl-- > 0, flatcc_verify_error_max_nesting_level_reached); + check_result(verify_vector(buf, end, base, offset, offset_size, offset_size, FLATBUFFERS_COUNT_MAX(offset_size))); + base += offset; + n = read_uoffset(buf, base); + base += offset_size; + for (i = 0; i < n; ++i, base += offset_size) { + check_result(verify_table(buf, end, base, read_uoffset(buf, base), ttl, tvf)); + } + return flatcc_verify_ok; +} + +static inline int verify_union_vector(const void *buf, uoffset_t end, uoffset_t base, uoffset_t offset, + uoffset_t count, const utype_t *types, int ttl, flatcc_union_verifier_f uvf) +{ + uoffset_t i, n, elem; + flatcc_union_verifier_descriptor_t ud; + + verify(ttl-- > 0, flatcc_verify_error_max_nesting_level_reached); + check_result(verify_vector(buf, end, base, offset, offset_size, offset_size, FLATBUFFERS_COUNT_MAX(offset_size))); + base += offset; + n = read_uoffset(buf, base); + verify(n == count, flatcc_verify_error_union_vector_length_mismatch); + base += offset_size; + + ud.buf = buf; + ud.end = end; + ud.ttl = ttl; + + for (i = 0; i < n; ++i, base += offset_size) { + /* Table vectors can never be null, but unions can when the type is NONE. */ + elem = read_uoffset(buf, base); + if (elem == 0) { + verify(types[i] == 0, flatcc_verify_error_union_element_absent_without_type_NONE); + } else { + verify(types[i] != 0, flatcc_verify_error_union_element_present_with_type_NONE); + ud.type = types[i]; + ud.base = base; + ud.offset = elem; + check_result(uvf(&ud)); + } + } + return flatcc_verify_ok; +} + +int flatcc_verify_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, size_t size, uint16_t align) +{ + check_result(verify_field(td, id, 0, (uoffset_t)size, align)); + return flatcc_verify_ok; +} + +int flatcc_verify_string_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required) +{ + uoffset_t base; + + check_field(td, id, required, base); + return verify_string(td->buf, td->end, base, read_uoffset(td->buf, base)); +} + +int flatcc_verify_vector_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, size_t elem_size, uint16_t align, size_t max_count) +{ + uoffset_t base; + + check_field(td, id, required, base); + return verify_vector(td->buf, td->end, base, read_uoffset(td->buf, base), + (uoffset_t)elem_size, align, (uoffset_t)max_count); +} + +int flatcc_verify_string_vector_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required) +{ + uoffset_t base; + + check_field(td, id, required, base); + return verify_string_vector(td->buf, td->end, base, read_uoffset(td->buf, base)); +} + +int flatcc_verify_table_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, flatcc_table_verifier_f tvf) +{ + uoffset_t base; + + check_field(td, id, required, base); + return verify_table(td->buf, td->end, base, read_uoffset(td->buf, base), td->ttl, tvf); +} + +int flatcc_verify_table_vector_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, flatcc_table_verifier_f tvf) +{ + uoffset_t base; + + check_field(td, id, required, base); + return verify_table_vector(td->buf, td->end, base, read_uoffset(td->buf, base), td->ttl, tvf); +} + +int flatcc_verify_union_table(flatcc_union_verifier_descriptor_t *ud, flatcc_table_verifier_f *tvf) +{ + return verify_table(ud->buf, ud->end, ud->base, ud->offset, ud->ttl, tvf); +} + +int flatcc_verify_union_struct(flatcc_union_verifier_descriptor_t *ud, size_t size, uint16_t align) +{ + return verify_struct(ud->end, ud->base, ud->offset, (uoffset_t)size, align); +} + +int flatcc_verify_union_string(flatcc_union_verifier_descriptor_t *ud) +{ + return verify_string(ud->buf, ud->end, ud->base, ud->offset); +} + +int flatcc_verify_buffer_header(const void *buf, size_t bufsiz, const char *fid) +{ + thash_t id, id2; + + verify_runtime(!(((size_t)buf) & (offset_size - 1)), flatcc_verify_error_runtime_buffer_header_not_aligned); + /* -8 ensures no scalar or offset field size can overflow. */ + verify_runtime(bufsiz <= FLATBUFFERS_UOFFSET_MAX - 8, flatcc_verify_error_runtime_buffer_size_too_large); + /* + * Even if we specify no fid, the user might later. Therefore + * require space for it. Not all buffer generators will take this + * into account, so it is possible to fail an otherwise valid buffer + * - but such buffers aren't safe. + */ + verify(bufsiz >= offset_size + FLATBUFFERS_IDENTIFIER_SIZE, flatcc_verify_error_buffer_header_too_small); + if (fid != 0) { + id2 = read_thash_identifier(fid); + id = read_thash(buf, offset_size); + verify(id2 == 0 || id == id2, flatcc_verify_error_identifier_mismatch); + } + return flatcc_verify_ok; +} + +int flatcc_verify_typed_buffer_header(const void *buf, size_t bufsiz, flatbuffers_thash_t thash) +{ + thash_t id, id2; + + verify_runtime(!(((size_t)buf) & (offset_size - 1)), flatcc_verify_error_runtime_buffer_header_not_aligned); + /* -8 ensures no scalar or offset field size can overflow. */ + verify_runtime(bufsiz <= FLATBUFFERS_UOFFSET_MAX - 8, flatcc_verify_error_runtime_buffer_size_too_large); + /* + * Even if we specify no fid, the user might later. Therefore + * require space for it. Not all buffer generators will take this + * into account, so it is possible to fail an otherwise valid buffer + * - but such buffers aren't safe. + */ + verify(bufsiz >= offset_size + FLATBUFFERS_IDENTIFIER_SIZE, flatcc_verify_error_buffer_header_too_small); + if (thash != 0) { + id2 = thash; + id = read_thash(buf, offset_size); + verify(id2 == 0 || id == id2, flatcc_verify_error_identifier_mismatch); + } + return flatcc_verify_ok; +} + +int flatcc_verify_struct_as_root(const void *buf, size_t bufsiz, const char *fid, size_t size, uint16_t align) +{ + check_result(flatcc_verify_buffer_header(buf, bufsiz, fid)); + return verify_struct((uoffset_t)bufsiz, 0, read_uoffset(buf, 0), (uoffset_t)size, align); +} + +int flatcc_verify_struct_as_typed_root(const void *buf, size_t bufsiz, flatbuffers_thash_t thash, size_t size, uint16_t align) +{ + check_result(flatcc_verify_typed_buffer_header(buf, bufsiz, thash)); + return verify_struct((uoffset_t)bufsiz, 0, read_uoffset(buf, 0), (uoffset_t)size, align); +} + +int flatcc_verify_table_as_root(const void *buf, size_t bufsiz, const char *fid, flatcc_table_verifier_f *tvf) +{ + check_result(flatcc_verify_buffer_header(buf, (uoffset_t)bufsiz, fid)); + return verify_table(buf, (uoffset_t)bufsiz, 0, read_uoffset(buf, 0), FLATCC_VERIFIER_MAX_LEVELS, tvf); +} + +int flatcc_verify_table_as_typed_root(const void *buf, size_t bufsiz, flatbuffers_thash_t thash, flatcc_table_verifier_f *tvf) +{ + check_result(flatcc_verify_typed_buffer_header(buf, (uoffset_t)bufsiz, thash)); + return verify_table(buf, (uoffset_t)bufsiz, 0, read_uoffset(buf, 0), FLATCC_VERIFIER_MAX_LEVELS, tvf); +} + +int flatcc_verify_struct_as_nested_root(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, const char *fid, size_t size, uint16_t align) +{ + const uoffset_t *buf; + uoffset_t bufsiz; + + check_result(flatcc_verify_vector_field(td, id, required, align, 1, FLATBUFFERS_COUNT_MAX(1))); + if (0 == (buf = get_field_ptr(td, id))) { + return flatcc_verify_ok; + } + buf = (const uoffset_t *)((size_t)buf + read_uoffset(buf, 0)); + bufsiz = read_uoffset(buf, 0); + ++buf; + return flatcc_verify_struct_as_root(buf, bufsiz, fid, size, align); +} + +int flatcc_verify_table_as_nested_root(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, const char *fid, + uint16_t align, flatcc_table_verifier_f tvf) +{ + const uoffset_t *buf; + uoffset_t bufsiz; + + check_result(flatcc_verify_vector_field(td, id, required, align, 1, FLATBUFFERS_COUNT_MAX(1))); + if (0 == (buf = get_field_ptr(td, id))) { + return flatcc_verify_ok; + } + buf = (const uoffset_t *)((size_t)buf + read_uoffset(buf, 0)); + bufsiz = read_uoffset(buf, 0); + ++buf; + /* + * Don't verify nested buffers identifier - information is difficult to get and + * might not be what is desired anyway. User can do it later. + */ + check_result(flatcc_verify_buffer_header(buf, bufsiz, fid)); + return verify_table(buf, bufsiz, 0, read_uoffset(buf, 0), td->ttl, tvf); +} + +int flatcc_verify_union_field(flatcc_table_verifier_descriptor_t *td, + voffset_t id, int required, flatcc_union_verifier_f uvf) +{ + voffset_t vte_type, vte_table; + const uint8_t *type; + uoffset_t base; + flatcc_union_verifier_descriptor_t ud; + + if (0 == (vte_type = read_vt_entry(td, id - 1))) { + vte_table = read_vt_entry(td, id); + verify(vte_table == 0, flatcc_verify_error_union_cannot_have_a_table_without_a_type); + verify(!required, flatcc_verify_error_type_field_absent_from_required_union_field); + return flatcc_verify_ok; + } + /* No need to check required here. */ + check_result(verify_field(td, id - 1, 0, 1, 1)); + /* Only now is it safe to read the type. */ + vte_table = read_vt_entry(td, id); + type = (const uint8_t *)td->buf + td->table + vte_type; + verify(*type || vte_table == 0, flatcc_verify_error_union_type_NONE_cannot_have_a_value); + + if (*type == 0) { + return flatcc_verify_ok; + } + check_field(td, id, required, base); + ud.buf = td->buf; + ud.end = td->end; + ud.ttl = td->ttl; + ud.base = base; + ud.offset = read_uoffset(td->buf, base); + ud.type = *type; + return uvf(&ud); +} + +int flatcc_verify_union_vector_field(flatcc_table_verifier_descriptor_t *td, + flatbuffers_voffset_t id, int required, flatcc_union_verifier_f uvf) +{ + voffset_t vte_type, vte_table; + const uoffset_t *buf; + const utype_t *types; + uoffset_t count, base; + + if (0 == (vte_type = read_vt_entry(td, id - 1))) { + if (0 == (vte_table = read_vt_entry(td, id))) { + verify(!required, flatcc_verify_error_type_field_absent_from_required_union_vector_field); + } + } + check_result(flatcc_verify_vector_field(td, id - 1, required, + utype_size, utype_size, FLATBUFFERS_COUNT_MAX(utype_size))); + if (0 == (buf = get_field_ptr(td, id - 1))) { + return flatcc_verify_ok; + } + buf = (const uoffset_t *)((size_t)buf + read_uoffset(buf, 0)); + count = read_uoffset(buf, 0); + ++buf; + types = (utype_t *)buf; + + check_field(td, id, required, base); + return verify_union_vector(td->buf, td->end, base, read_uoffset(td->buf, base), + count, types, td->ttl, uvf); +} |