1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
* Optional file that can be included in runtime library to support DAG
* cloning with the builder and may also be used for custom purposes
* standalone. See also comments in `flatcc/flatcc_builder.h`.
*
* Note that dynamic construction takes place and that large offset
* vectors might consume significant space if there are not many shared
* references. In the basic use case no allocation takes place because a
* few references can be held using only a small stack allocated hash
* table.
*/
#include <stdlib.h>
#include <string.h>
#include "flatcc/flatcc_rtconfig.h"
#include "flatcc/flatcc_refmap.h"
#include "flatcc/flatcc_alloc.h"
#include "flatcc/flatcc_assert.h"
#define _flatcc_refmap_calloc FLATCC_CALLOC
#define _flatcc_refmap_free FLATCC_FREE
/* Can be used as a primitive defense against collision attacks. */
#ifdef FLATCC_HASH_SEED
#define _flatcc_refmap_seed FLATCC_HASH_SEED
#else
#define _flatcc_refmap_seed 0x2f693b52
#endif
static inline size_t _flatcc_refmap_above_load_factor(size_t count, size_t buckets)
{
static const size_t d = 256;
static const size_t n = (size_t)((FLATCC_REFMAP_LOAD_FACTOR) * 256.0f);
return count >= buckets * n / d;
}
#define _flatcc_refmap_probe(k, i, N) ((k + i) & N)
void flatcc_refmap_clear(flatcc_refmap_t *refmap)
{
if (refmap->table && refmap->table != refmap->min_table) {
_flatcc_refmap_free(refmap->table);
}
flatcc_refmap_init(refmap);
}
static inline size_t _flatcc_refmap_hash(const void *src)
{
/* MurmurHash3 64-bit finalizer */
uint64_t x;
x = (uint64_t)((size_t)src) ^ _flatcc_refmap_seed;
x ^= x >> 33;
x *= 0xff51afd7ed558ccdULL;
x ^= x >> 33;
x *= 0xc4ceb9fe1a85ec53ULL;
x ^= x >> 33;
return (size_t)x;
}
void flatcc_refmap_reset(flatcc_refmap_t *refmap)
{
if (refmap->count) {
memset(refmap->table, 0, sizeof(refmap->table[0]) * refmap->buckets);
}
refmap->count = 0;
}
/*
* Technically resize also supports shrinking which may be useful for
* adapations, but the current hash table never deletes individual items.
*/
int flatcc_refmap_resize(flatcc_refmap_t *refmap, size_t count)
{
const size_t min_buckets = sizeof(refmap->min_table) / sizeof(refmap->min_table[0]);
size_t i;
size_t buckets;
size_t buckets_old;
struct flatcc_refmap_item *T_old;
if (count < refmap->count) {
count = refmap->count;
}
buckets = min_buckets;
while (_flatcc_refmap_above_load_factor(count, buckets)) {
buckets *= 2;
}
if (refmap->buckets == buckets) {
return 0;
}
T_old = refmap->table;
buckets_old = refmap->buckets;
if (buckets == min_buckets) {
memset(refmap->min_table, 0, sizeof(refmap->min_table));
refmap->table = refmap->min_table;
} else {
refmap->table = _flatcc_refmap_calloc(buckets, sizeof(refmap->table[0]));
if (refmap->table == 0) {
refmap->table = T_old;
FLATCC_ASSERT(0); /* out of memory */
return -1;
}
}
refmap->buckets = buckets;
refmap->count = 0;
for (i = 0; i < buckets_old; ++i) {
if (T_old[i].src) {
flatcc_refmap_insert(refmap, T_old[i].src, T_old[i].ref);
}
}
if (T_old && T_old != refmap->min_table) {
_flatcc_refmap_free(T_old);
}
return 0;
}
flatcc_refmap_ref_t flatcc_refmap_insert(flatcc_refmap_t *refmap, const void *src, flatcc_refmap_ref_t ref)
{
struct flatcc_refmap_item *T;
size_t N, i, j, k;
if (src == 0) return ref;
if (_flatcc_refmap_above_load_factor(refmap->count, refmap->buckets)) {
if (flatcc_refmap_resize(refmap, refmap->count * 2)) {
return flatcc_refmap_not_found; /* alloc failed */
}
}
T = refmap->table;
N = refmap->buckets - 1;
k = _flatcc_refmap_hash(src);
i = 0;
j = _flatcc_refmap_probe(k, i, N);
while (T[j].src) {
if (T[j].src == src) {
return T[j].ref = ref;
}
++i;
j = _flatcc_refmap_probe(k, i, N);
}
++refmap->count;
T[j].src = src;
return T[j].ref = ref;
}
flatcc_refmap_ref_t flatcc_refmap_find(flatcc_refmap_t *refmap, const void *src)
{
struct flatcc_refmap_item *T;
size_t N, i, j, k;
if (refmap->count == 0) {
return flatcc_refmap_not_found;
}
T = refmap->table;
N = refmap->buckets - 1;
k = _flatcc_refmap_hash(src);
i = 0;
j = _flatcc_refmap_probe(k, i, N);
while (T[j].src) {
if (T[j].src == src) return T[j].ref;
++i;
j = _flatcc_refmap_probe(k, i, N);
}
return flatcc_refmap_not_found;
}
/*
* To run test from project root:
*
* cc -D FLATCC_REFMAP_TEST -I include src/runtime/refmap.c -o test_refmap && ./test_refmap
*
*/
#ifdef FLATCC_REFMAP_TEST
#include <stdio.h>
#ifndef FLATCC_REFMAP_H
#include "flatcc/flatcc_refmap.h"
#endif
#define test(x) do { if (!(x)) { fprintf(stderr, "%02d: refmap test failed\n", __LINE__); exit(-1); } } while (0)
#define test_start() fprintf(stderr, "starting refmap test ...\n")
#define test_ok() fprintf(stderr, "refmap test succeeded\n")
int main()
{
int i;
int data[1000];
int a = 1;
int b = 2;
int c = 3;
flatcc_refmap_t refmap;
flatcc_refmap_init(&refmap);
test(flatcc_refmap_find(&refmap, &a) == flatcc_refmap_not_found);
test(flatcc_refmap_find(&refmap, &b) == flatcc_refmap_not_found);
test(flatcc_refmap_find(&refmap, &c) == flatcc_refmap_not_found);
test(flatcc_refmap_find(&refmap, 0) == flatcc_refmap_not_found);
test(flatcc_refmap_find(&refmap, &a) == 0);
test(flatcc_refmap_insert(&refmap, &a, 42) == 42);
test(flatcc_refmap_find(&refmap, &a) == 42);
test(flatcc_refmap_find(&refmap, &b) == flatcc_refmap_not_found);
test(flatcc_refmap_find(&refmap, &c) == flatcc_refmap_not_found);
test(flatcc_refmap_insert(&refmap, &a, 42) == 42);
test(flatcc_refmap_find(&refmap, &a) == 42);
test(refmap.count == 1);
test(flatcc_refmap_insert(&refmap, &a, 43) == 43);
test(flatcc_refmap_find(&refmap, &a) == 43);
test(refmap.count == 1);
test(flatcc_refmap_insert(&refmap, &b, -10) == -10);
test(flatcc_refmap_insert(&refmap, &c, 100) == 100);
test(refmap.count == 3);
test(flatcc_refmap_find(&refmap, &a) == 43);
test(flatcc_refmap_find(&refmap, &b) == -10);
test(flatcc_refmap_find(&refmap, &c) == 100);
test(flatcc_refmap_insert(&refmap, 0, 1000) == 1000);
test(flatcc_refmap_find(&refmap, 0) == 0);
test(refmap.count == 3);
test(flatcc_refmap_insert(&refmap, &b, 0) == 0);
test(flatcc_refmap_find(&refmap, &b) == 0);
test(refmap.count == 3);
flatcc_refmap_reset(&refmap);
test(refmap.count == 0);
test(refmap.buckets > 0);
for (i = 0; i < 1000; ++i) {
test(flatcc_refmap_insert(&refmap, data + i, i + 42) == i + 42);
}
test(refmap.count == 1000);
for (i = 0; i < 1000; ++i) {
test(flatcc_refmap_find(&refmap, data + i) == i + 42);
}
flatcc_refmap_clear(&refmap);
test(refmap.count == 0);
test(refmap.buckets == 0);
test_ok();
return 0;
}
#endif /* FLATCC_REFMAP_TEST */
|