aboutsummaryrefslogtreecommitdiff
path: root/source/tools/host/pycrypt.c
blob: ba15c7dc3d8ecfa7f44fd32f282db6751331968f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Module:  pcrypt.c
 * Author:  Toni Uhlig <matzeton@googlemail.com>
 * Purpose: Python loadable module for xor/plain buffer (en|de)cryption
 */

#include "helper.h" /* must be the first include if compiling a python module */

#include <stdio.h>
#include <stdlib.h>

#include "aes.h"
#include "crypt.h"
#include "compat.h"


static const char pname[] = "pycrypt";
static bool aesInit = false;


static PyObject* info(PyObject* self, PyObject* args)
{
    printf("%s: (en|de)crypt xor/plain buffer\n", pname);
    Py_RETURN_NONE;
}

static int init(void)
{
    if (aesInit)
        aes_cleanup();
    aes_init();
    aesInit = true;
    return 0;
}

static int __checkAESKeySize(unsigned int ksiz)
{
    if (ksiz != KEY_128 && ksiz != KEY_192 && ksiz != KEY_256) {
        PyErr_Format(PyExc_TypeError, "Argument keysize must be either KEY_128(%d bytes), KEY_192(%d bytes) or KEY_256(%d bytes)", KEY_128, KEY_192, KEY_256);
        return 0;
    }
    return 1;
}

static int __checkCtxSize(void* buf, Py_ssize_t len)
{
    if (len < sizeof(aes_ctx_t)) {
        PyErr_Format(PyExc_TypeError, "Invalid AES Context struct size: %lu < %lu", len, sizeof(aes_ctx_t));
        return 0;
    }
    aes_ctx_t* ctx = (aes_ctx_t*)buf;
    uint32_t ks_size = 4*(ctx->rounds+1)*sizeof(uint32_t);
    if (len != sizeof(aes_ctx_t)+ks_size) {
        PyErr_Format(PyExc_TypeError, "Invalid AES Context rounds size: %lu < %lu", len, sizeof(aes_ctx_t)+ks_size);
        return 0;
    }
    return 1;
}

static PyObject* __aes_randomkey(PyObject* self, PyObject* args)
{
    unsigned int ksiz = 0;
    if (! PyArg_ParseTuple(args, "I:aesRandomKey", &ksiz)) {
        return NULL;
    }

    if (__checkAESKeySize(ksiz) == 0) {
        return NULL;
    }

    unsigned char key[ksiz];
    memset(&key[0], '\0', ksiz);
    aes_randomkey(&key[0], ksiz);
    return PyByteArray_FromStringAndSize((const char*)&key[0], ksiz);
}

static PyObject* __aes_allocCtx(PyObject* self, PyObject* args)
{
    PyObject* pyByteArray = NULL;
    Py_buffer pyByteBuffer;
    char* buf = NULL;
    ssize_t len;

    if (! PyArg_ParseTuple(args, "O:aesAllocCtx", &pyByteArray)) {
        PyErr_SetString(PyExc_TypeError, "Missing argument key as bytearray");
        return NULL;
    }
    if (PyObject_GetBuffer(pyByteArray, &pyByteBuffer, PyBUF_SIMPLE) < 0) {
        PyErr_SetString(PyExc_TypeError, "Argument is not a valid Bytebuffer");
        return NULL;
    }
    len = pyByteBuffer.len;
    if (__checkAESKeySize(len) == 0) {
        return NULL;
    }

    buf = pyByteBuffer.buf;
    aes_ctx_t* aes_ctx = aes_alloc_ctx((unsigned char*)buf, len);

    PyObject* ctxByteArray = NULL;
    if (aes_ctx) {
        ssize_t size = sizeof(aes_ctx_t)+4*(aes_ctx->rounds+1)*sizeof(uint32_t);
        ctxByteArray = PyByteArray_FromStringAndSize((const char*)aes_ctx, size);
    }
    aes_free_ctx(aes_ctx);
    PyBuffer_Release(&pyByteBuffer);
    return ctxByteArray;
}

static PyObject* __aes_crypt(PyObject* self, PyObject* args)
{
    Py_buffer plainBuffer;
    PyObject* plainByteArray = NULL;
    char* plain = NULL;
    Py_buffer ctxBuffer;
    PyObject* ctxByteArray = NULL;
    aes_ctx_t* aes_ctx = NULL;
    PyObject* boolDoEncrypt = NULL;
    bool doEncrypt = true;

    if (! PyArg_ParseTuple(args, "O|O|O:aesEncrypt", &ctxByteArray, &plainByteArray, &boolDoEncrypt) ||
            ! ctxByteArray || ! plainByteArray || ! boolDoEncrypt) {
        PyErr_SetString(PyExc_TypeError, "Invalid arguments (signature: AES_CTX[bytearray] BUFFER[bytearray] DO_ENCRYPT[bool]");
        return NULL;
    }
    if (PyObject_GetBuffer(ctxByteArray, &ctxBuffer, PyBUF_SIMPLE) < 0 ||
            PyObject_GetBuffer(plainByteArray, &plainBuffer, PyBUF_SIMPLE) < 0 ) {
        return NULL;
    }
    if (__checkCtxSize(ctxBuffer.buf, ctxBuffer.len) == 0) {
        PyErr_SetString(PyExc_TypeError, "Invalid aes context");
        return NULL;
    }

    aes_ctx = (aes_ctx_t*)ctxBuffer.buf;
    doEncrypt = PyObject_IsTrue(boolDoEncrypt);
    plain = plainBuffer.buf;

    uint32_t newsiz = 0;
    char* new = aes_crypt_s(aes_ctx, plain, plainBuffer.len, &newsiz, doEncrypt);
    PyObject* out = PyByteArray_FromStringAndSize((const char*)new, newsiz);
    COMPAT(free)(new);
    PyBuffer_Release(&plainBuffer);
    PyBuffer_Release(&ctxBuffer);
    return out;
}

static int __check_xor32key(unsigned int ksiz)
{
    return ksiz <= 128;
}

static uint32_t __xor32_random(void)
{
    return xor32_randomkey();
}

static PyObject* __xor32_randomkeyiv(PyObject* self, PyObject* args)
{
    unsigned int ksiz = 0;
    if (! PyArg_ParseTuple(args, "I:xorRandomKey", &ksiz) ||
            __check_xor32key(ksiz) == 0) {
        PyErr_SetString(PyExc_TypeError, "Invalid argument for keysize");
        return NULL;
    }

    uint32_t buf[ksiz];
    memset(&buf[0], '\0', ksiz*sizeof(buf[0]));
    for (unsigned int i = 0; i < ksiz; ++i) {
        buf[i] = __xor32_random();
    }
    return PyByteArray_FromStringAndSize((const char*)&buf[0], ksiz*sizeof(buf[0]));
}

static PyObject* __xor32n_pcbc_crypt_buf(PyObject* self, PyObject* args)
{
    PyObject* result = NULL;
    PyObject* byteBuf = NULL;
    PyObject* keyBuf = NULL;
    PyObject* ivBuf = NULL;
    Py_buffer pyByteBuf, pyKeyBuf, pyIvBuf;

    if (! PyArg_ParseTuple(args, "O|O|O:xorCrypt", &byteBuf, &keyBuf, &ivBuf) ||
            ! byteBuf) {
        PyErr_SetString(PyExc_TypeError, "Invalid arguments (signature: BUFFER[bytearray] XORKEY[bytearray] IV[bytearray]");
        return NULL;
    }
    if (PyObject_GetBuffer(byteBuf, &pyByteBuf, PyBUF_SIMPLE) < 0 ||
            PyObject_GetBuffer(keyBuf, &pyKeyBuf, PyBUF_SIMPLE) < 0 ||
            PyObject_GetBuffer(ivBuf, &pyIvBuf, PyBUF_SIMPLE) < 0) {
        PyErr_SetString(PyExc_TypeError, "One or more arguments could not be exported into a Buffer View");
        goto failed;
    }

    if (pyKeyBuf.len != pyIvBuf.len) {
        PyErr_SetString(PyExc_TypeError, "Key and Iv length are not equal");
        goto failed;
    }
    if (pyKeyBuf.len % 4 != 0) {
        PyErr_SetString(PyExc_TypeError, "Key and Iv length must be a multiple of 4 bytes");
        goto failed;
    }

    size_t outsiz = pyByteBuf.len + sizeof(uint32_t)*pyKeyBuf.len;
    uint32_t* outbuf = PyMem_Malloc(outsiz);
    memset(outbuf, '\0', outsiz);
    memcpy(outbuf, pyByteBuf.buf, pyByteBuf.len);
    size_t newsiz = xor32n_pcbc_crypt_buf(outbuf, pyByteBuf.len, pyIvBuf.buf, pyKeyBuf.buf, pyKeyBuf.len / 4);
    result = PyByteArray_FromStringAndSize((const char*)outbuf, newsiz);
    PyMem_Free(outbuf);

failed:
    PyBuffer_Release(&pyByteBuf);
    PyBuffer_Release(&pyKeyBuf);
    PyBuffer_Release(&pyIvBuf);
    return result;
}


/* define module methods */
static PyMethodDef pycryptMethods[] = {
    {"info",           info,                    METH_NOARGS,  "print module info"},
    {"aesRandomKey",   __aes_randomkey,         METH_VARARGS, "generate random aes key"},
    {"aesAllocCtx",    __aes_allocCtx,          METH_VARARGS, "allocate memory for a aes encryption/decryption context"},
    {"aesCrypt",       __aes_crypt,             METH_VARARGS, "(en|de)crypt a memory buffer"},
    {"xorRandomKeyIv", __xor32_randomkeyiv,     METH_VARARGS, "generate a random xor key/iv 32-bit sequence"},
    {"xorCrypt",       __xor32n_pcbc_crypt_buf, METH_VARARGS, "(en|de)crypt a memory buffer"},
    {NULL, NULL, 0, NULL}
};

/* module initialization */
PyMODINIT_FUNC
initpycrypt(void)
{
    srandom(time(NULL));

    if (init() != 0) {
        printf("%s: Error while initializing module\n", pname);
    } else {
        printf("ENABLED %s\n", pname);
        PyObject* m = Py_InitModule(pname, pycryptMethods);
        if (m) {
            if (PyModule_AddIntMacro(m, KEY_128) != 0 ||
                    PyModule_AddIntMacro(m, KEY_192) != 0 ||
                    PyModule_AddIntMacro(m, KEY_256) != 0) {
                printf("Failed to add some Macro's ..\n");
            }
        }
    }
}