1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
#include "compat.h"
#include "crypt.h"
#include "utils.h"
#ifndef __MINGW32__
#include <time.h>
#endif
static inline int xor32_crypt(uint32_t u32, uint32_t key)
{
return u32 ^ key;
}
uint32_t xor32n_pcbc_crypt_buf(uint32_t* buf, uint32_t siz, const uint32_t* iv, const uint32_t* key, uint32_t ivkeysiz)
{
uint32_t pad = siz % (ivkeysiz*sizeof(uint32_t));
if (pad) {
siz += (ivkeysiz*sizeof(uint32_t)) - pad;
}
uint32_t msiz = (uint32_t)(siz/sizeof(uint32_t));
uint32_t prev[ivkeysiz];
for (register uint32_t i = 0; i < ivkeysiz; ++i) {
prev[i] = iv[i];
}
for (register uint32_t i = 0; i < msiz; ++i) {
register uint32_t plain = buf[i];
register uint32_t arridx = i % ivkeysiz;
register uint32_t tmp = xor32_crypt(plain, prev[arridx]);
register uint32_t crypt = xor32_crypt(tmp, key[arridx]);
prev[arridx] = xor32_crypt(crypt, plain);
buf[i] = crypt;
}
return siz;
}
unsigned char* xor32_byte_crypt(unsigned char* buf, uint32_t siz, unsigned int key)
{
uint32_t bsiz = siz - (siz%4);
uint32_t i;
for (i = 0; i < bsiz/4; ++i) {
unsigned int* src = (unsigned int*)buf;
unsigned int* dst = (unsigned int*)buf;
*(dst+i) = *(src+i) ^ key;
}
for (i = bsiz; i < bsiz+(siz%4); ++i) {
unsigned char k = (unsigned char)(key & (0xFF << i*8)) >> i*8;
buf[i] = buf[i] ^ k;
}
return buf;
}
uint32_t xor32_randomkey(void)
{
#ifdef __MINGW32__
SYSTEMTIME st;
volatile unsigned int seed, retval;
_GetSystemTime(&st);
seed = (seed*retval)+(st.wYear + st.wMonth + st.wDayOfWeek +
st.wDay + st.wMinute) * (st.wSecond + 1);
for (int i = 0; i < 100; ++i) {
_GetSystemTime(&st);
retval = (volatile unsigned int)(seed * st.wMilliseconds);
seed++;
}
return (volatile unsigned int)((retval * st.wMilliseconds));
#else
time_t st = time(NULL);
volatile unsigned int seed = st * __rdtsc(), retval;
for (uint32_t i = 0; i < 100; ++i) {
st = time(NULL);
retval = (volatile unsigned int)((seed * st) % 256),
seed++;
}
return (volatile unsigned int)(retval * st);
#endif
}
/* from: https://github.com/jwerle/murmurhash.c */
uint32_t murmurhash(const char *key, uint32_t len, uint32_t seed)
{
uint32_t c1 = 0xa1f3e2d1;
uint32_t c2 = 0x4df56a13;
uint32_t r1 = 15;
uint32_t r2 = 13;
uint32_t m = 5;
uint32_t n = 0xa24f697f;
register uint32_t h = 0;
register uint32_t k = 0;
uint8_t *d = (uint8_t *) key; // 32 bit extract from `key'
const uint32_t *chunks = NULL;
const uint8_t *tail = NULL; // tail - last 8 bytes
register int i = 0;
int l = len / 4; // chunk length
h = seed;
chunks = (const uint32_t *) (d + l * 4); // body
tail = (const uint8_t *) (d + l * 4); // last 8 byte chunk of `key'
// for each 4 byte chunk of `key'
for (i = -l; i != 0; ++i) {
// next 4 byte chunk of `key'
k = chunks[i];
// encode next 4 byte chunk of `key'
k *= c1;
k = (k << r1) | (k >> (32 - r1));
k *= c2;
// append to hash
h ^= k;
h = (h << r2) | (h >> (32 - r2));
h = h * m + n;
}
k = 0;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
// remainder
switch (len & 3) { // `len % 4'
case 3: k ^= (tail[2] << 16);
case 2: k ^= (tail[1] << 8);
case 1:
k ^= tail[0];
k *= c1;
k = (k << r1) | (k >> (32 - r1));
k *= c2;
h ^= k;
}
#pragma GCC diagnostic pop
h ^= len;
h ^= (h >> 16);
h *= 0x85ebca6b;
h ^= (h >> 13);
h *= 0xc2b2ae35;
h ^= (h >> 16);
return h;
}
|