aboutsummaryrefslogtreecommitdiff
path: root/target/linux/ath79/generic/base-files/etc/hotplug.d
Commit message (Collapse)AuthorAge
* ath79: register ttyATH1 as OpenWrt console for ELECOM WAB-I1750-PSINAGAKI Hiroshi2024-03-24
| | | | | | | Add a hotplug script and add ttyATH1 on ELECOM WAB-I1750-PS to /etc/inittab while booting for using that console as an OpenWrt console. Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ath79: add support for D-Link COVR-C1200 A1Sebastian Schaper2024-03-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The COVR-C1200 devices are sold as "Whole Home Mesh Wi-Fi" sets in packs of two (COVR-C1202) and three (COVR-C1203). Specifications: * QCA9563, 16 MiB flash, 128 MiB RAM, 2x3:2 802.11n * QCA9886 2x2:2 801.11ac Wave 2 * AR8337, 2 Gigabit ports (1: WAN; 2: LAN) * USB Type-C power connector (5V, 3A) Installation COVR Point A: * In factory reset state: OEM Web UI is at 192.168.0.50 no DHCP, skip wizard by directly accessing: http://192.168.0.50/UpdateFirmware_Simple.html * After completing setup wizard: Web UI is at 192.168.0.1 DHCP enabled, login with empty password * Flash factory.bin * Perform a factory reset to restore OpenWrt UCI defaults Installation COVR Points B: * OEM Web UI is at 192.168.0.50, no DHCP, empty password * Flash factory.bin * Perform a factory reset to restore OpenWrt UCI defaults Recovery: * Keep reset button pressed during power on * Recovery Web UI is at 192.168.0.50, no DHCP * Flash factory.bin used to work best with Chromium-based browsers or curl: curl -F firmware=@factory.bin \ http://192.168.0.50/upgrade.cgi since this fails to work on modern Linux systems, there is also a script dlink_recovery_upload.py Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
* ath79: add support for ELECOM WAB-I1750-PSINAGAKI Hiroshi2024-03-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WAB-I1750-PS is a 2.4/5 GHz band 11ac (Wi-Fi 5) access point, based on QCA9558. Specification: - SoC : Qualcomm Atheros QCA9558 - RAM : DDR2 128 MiB (2x Winbond W9751G6KB251) - Flash : SPI-NOR 16 MiB (Macronix MX25L12835FMI-10G) - WLAN : 2.4/5 GHz 3T3R - 2.4 GHz : Qualcomm Atheros QCA9558 (SoC) - 5 GHz : Qualcomm Atheros QCA9880 - Ethernet : 2x 10/100/1000 Mbps - phy ("PD") : Atheros AR8035 - phy ("PSE") : Atheros AR8033 - LEDs/keys (GPIO) : 3x/3x - UART : 2x RJ-45 port - "SERVICE" : TTL (3.3V) - port : ttyS0 - assignment : 1:3.3V, 2:GND, 3:TX, 4:RX - settings : 115200n8 - note : no compatibility with "Cisco console cable" - "SERIAL" : RS232C (+-12V) - port : ? - assignment : 1:NC , 2:NC , 3:TXD, 4:GND, 5:GND, 6:RXD, 7:NC , 8:NC - settings : 115200n8 - note : compatible with "Cisco console cable" - Buzzer : 1x GPIO-controlled - USB : 1x USB 2.0 Type-A - Power : DC jack or PoE - DC jack : 12 VDC, 1.04 A (device only, rating) - PoE : 802.3af/at, 48 VDC, 0.26 A (device only, rating) - note : supports 802.3af supply on PSE (downstream) port when powered by DC adapter or 802.3at PoE Flash instruction using factory.bin image: 1. Boot WAB-I1750-PS without no upstream connection (or PoE connection without DHCP) 2. Access to the WebUI ("http://192.168.3.1") on the device and open firmware update page ("ツールボックス" -> "ファームウェア更新") 3. Select the OpenWrt factory.bin image and click update ("アップデート") button 4. Wait ~120 seconds to complete flashing Revert to OEM firmware: 1. Download the latest OEM firmware 2. Remove 128 bytes(0x80) header from firmware image 3. Decode by xor with a pattern "8844a2d168b45a2d" (hex val) 4. Upload the decoded firmware to the device 5. Flash to "firmware" partition by mtd command 6. Reboot Notes: - To use the "SERVICE" port, the connection of 3.3V line is also required to enable console output. The uart line of "SERVICE" is branched out from the internal pin header with 74HC126D and 3.3V line is connected to OE pin on it. - "SERIAL" port is provided by HS UART on QCA9558 SoC that has compatibility with qca,ar9330-uart, but QCA955x SoC's is not supported on Linux Kernel and OpenWrt. - To supply 802.3af PoE on "PSE" port when powered by DC adapter, 12 VDC 3.5 A adapter is recommended. (official: WAB-EX-ADP1) MAC addresses: Ethernet (PD, PSE): 00:90:FE:xx:xx:0A (Config, ethaddr (text)) 2.4GHz : 00:90:FE:xx:xx:0A (Config, ethaddr (text)) 5GHz : 00:90:FE:xx:xx:0B [original work] Signed-off-by: Yanase Yuki <dev@zpc.st> [update for NVMEM and others] Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ath79: add support for ELECOM WAB-S1167-PSINAGAKI Hiroshi2024-03-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WAB-S1167-PS is a 2.4/5 GHz band 11ac (Wi-Fi 5) access point, based on QCA9557. Specification: - SoC : Qualcomm Atheros QCA9557 - RAM : DDR2 128 MiB (2x Winbond W9751G6KB251) - Flash : SPI-NOR 16 MiB (Macronix MX25L12835FMI-10G) - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : Qualcomm Atheros QCA9557 (SoC) - 5 GHz : Qualcomm Atheros QCA9882 - Ethernet : 2x 10/100/1000 Mbps - phy ("PD") : Atheros AR8035 - phy ("PSE") : Atheros AR8033 - LEDs/keys (GPIO) : 3x/3x - UART : 1x RJ-45 port - "SERVICE" : TTL (3.3V) - port : ttyS0 - assignment : 1:3.3V, 2:GND, 3:TX, 4:RX - settings : 115200n8 - note : no compatibility with "Cisco console cable" - Buzzer : 1x GPIO-controlled - USB : 1x USB 2.0 Type-A - Power : DC jack or PoE - DC jack : 12 VDC, 1 A (device only, rating) - PoE : 802.3af/at, 48 VDC, 0.25 A (device only, rating) - note : supports 802.3af supply on PSE (downstream) port when powered by DC adapter or 802.3at PoE Flash instruction using factory.bin image: 1. Boot WAB-S1167-PS without no upstream connection (or PoE connection without DHCP) 2. Access to the WebUI ("http://192.168.3.1") on the device and open firmware update page ("ツールボックス" -> "ファームウェア更新") 3. Select the OpenWrt factory.bin image and click update ("アップデート") button 4. Wait ~120 seconds to complete flashing Revert to OEM firmware: 1. Download the latest OEM firmware 2. Remove 128 bytes(0x80) header from firmware image 3. Decode by xor with a pattern "8844a2d168b45a2d" (hex val) 4. Upload the decoded firmware to the device 5. Flash to "firmware" partition by mtd command 6. Reboot Notes: - To use the "SERVICE" port, the connection of 3.3V line is also required to enable console output. The uart line of "SERVICE" is branched out from the internal pin header with 74HC126D and 3.3V line is connected to OE pin on it. - The same PCB is used with WAB-S600-PS. - To supply 802.3af PoE on "PSE" port when powered by DC adapter, 12 VDC 3.5 A adapter is recommended. (official: WAB-EX-ADP1) MAC addresses: Ethernet (PD, PSE): 00:90:FE:xx:xx:04 (Config, ethaddr (text)) 2.4GHz : 00:90:FE:xx:xx:04 (Config, ethaddr (text)) 5GHz : 00:90:FE:xx:xx:05 Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ath79: add support for ELECOM WAB-S600-PSINAGAKI Hiroshi2024-03-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WAB-S600-PS is a 2.4/5 GHz band 11n (Wi-Fi 4) access point, based on QCA9557. This device also supports 11ac (Wi-Fi 5) with the another official firmware. Specification: - SoC : Qualcomm Atheros QCA9557 - RAM : DDR2 128 MiB (2x Winbond W9751G6KB251) - Flash : SPI-NOR 16 MiB (Macronix MX25L12835FMI-10G) - WLAN : 2.4/5 GHz 2T2R - 2.4 GHz : Qualcomm Atheros QCA9557 (SoC) - 5 GHz : Qualcomm Atheros QCA9882 - Ethernet : 2x 10/100/1000 Mbps - phy ("PD") : Atheros AR8035 - phy ("PSE") : Atheros AR8033 - LEDs/keys (GPIO) : 3x/3x - UART : 1x RJ-45 port - "SERVICE" : TTL (3.3V) - port : ttyS0 - assignment : 1:3.3V, 2:GND, 3:TX, 4:RX - settings : 115200n8 - note : no compatibility with "Cisco console cable" - Buzzer : 1x GPIO-controlled - USB : 1x USB 2.0 Type-A - Power : DC jack or PoE - DC jack : 12 VDC, 1 A (device only, rating) - PoE : 802.3af/at, 48 VDC, 0.25 A (device only, rating) - note : supports 802.3af supply on PSE (downstream) port when powered by DC adapter or 802.3at PoE Flash instruction using factory.bin image: 1. Boot WAB-S600-PS without no upstream connection (or PoE connection without DHCP) 2. Access to the WebUI ("http://192.168.3.1") on the device and open firmware update page ("ツールボックス" -> "ファームウェア更新") 3. Select the OpenWrt factory.bin image and click update ("アップデート") button 4. Wait ~120 seconds to complete flashing Revert to OEM firmware: 1. Download the latest OEM firmware 2. Remove 128 bytes(0x80) header from firmware image 3. Decode by xor with a pattern "8844a2d168b45a2d" (hex val) 4. Upload the decoded firmware to the device 5. Flash to "firmware" partition by mtd command 6. Reboot Notes: - To use the "SERVICE" port, the connection of 3.3V line is also required to enable console output. The uart line of "SERVICE" is branched out from the internal pin header with 74HC126D and 3.3V line is connected to OE pin on it. - The same PCB is used with WAB-S1167-PS. - To supply 802.3af PoE on "PSE" port when powered by DC adapter, 12 VDC 3.5 A adapter is recommended. (official: WAB-EX-ADP1) MAC addresses: Ethernet (PD, PSE): BC:5C:4C:xx:xx:7C (Config, ethaddr (text)) 2.4GHz : BC:5C:4C:xx:xx:7C (Config, ethaddr (text)) 5GHz : BC:5C:4C:xx:xx:7D [original work of common dtsi part for WAB-I1750-PS] Signed-off-by: Yanase Yuki <dev@zpc.st> [adding support for WAB-S600-PS] Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ath79: convert ath10k calibration data to NVMEM (ASCII MAC)Shiji Yang2024-02-01
| | | | | | | | | This patch converts ath10k calibration data to NVMEM format for wave 1 devices with mtd ASCII MAC address. The "calibration" NVMEM cell size is 0x844. All unportable MAC address settings have been moved to '10_fix_wifi_mac' scripts. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: convert ath10k calibration data to NVMEM (binary MAC)Shiji Yang2024-02-01
| | | | | | | | This patch converts ath10k calibration data to NVMEM format for wave 1 devices with mtd binary MAC address. The "calibration" NVMEM cell size is 0x844. The MAC addresses are assigned via dts. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: convert ath10k calibration data to NVMEM (built-in MAC)Shiji Yang2024-02-01
| | | | | | | | This patch converts ath10k calibration data to NVMEM format for wave 1 devices with built-in MAC address. The "calibration" NVMEM cell size is 0x844. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: convert ath10k pre-calibration data to NVMEM (ASCII MAC)Shiji Yang2024-02-01
| | | | | | | | | This patch converts ath10k pre-calibration data to NVMEM format for wave 2 devices with mtd ASCII MAC address. The "pre-calibration" NVMEM cell size is 0x2f20. All unportable MAC address settings have been moved to '10_fix_wifi_mac' scripts. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: convert ath10k pre-calibration data to NVMEM (binary MAC)Shiji Yang2024-02-01
| | | | | | | | This patch converts ath10k pre-calibration data to NVMEM format for wave 2 devices with mtd binary MAC address. The "pre-calibration" NVMEM cell size is 0x2f20. The MAC addresses are assigned via dts. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: convert ath10k pre-calibration data to NVMEM (built-in MAC)Shiji Yang2024-02-01
| | | | | | | | This patch converts ath10k pre-calibration data to NVMEM format for wave 2 devices with built-in MAC address. The "pre-calibration" NVMEM cell size is 0x2f20. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: add back board-2.bin to COMFAST devicesShiji Yang2024-02-01
| | | | | | | | The ath10k driver will load both pre-calibration data and board-2.bin if board-2.bin exists. So it's not necessary to remove it. And this change won't increase jffs2 image size. Signed-off-by: Shiji Yang <yangshiji66@qq.com>
* ath79: add support for UniFi UK-UltraDavid Bauer2024-01-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware -------- CPU: Qualcomm Atheros QCA9563 RAM: 128M DDR2 FLASH: 16MB SPI-NOR WiFi: Qualcomm Atheros QCA9563 2x2:2 802.11n 2.4GHz Qualcomm Atheros QCA9880 2x2:2 802.11ac 5GHz Antennas -------- The device features internal antennas as well as external antenna connectors. By default, the internal antennas are used. Two GPIOs are exported by name, which can be used to control the antenna-path mux. Writing a logical 0 enables the external antenna connectors. Installation ------------ 1. Download the OpenWrt sysupgrade image to the device. You can use scp for this task. The default username and password are "ubnt" and the device is reachable at 192.168.1.20. $ scp -O openwrt-sysupgrade.bin ubnt@192.168.1.20:/tmp/firmware.bin 2. Connect to the device using SSH. $ ssh ubnt@192.168.1.20 3. Disable the write-protect $ echo "5edfacbf" > /proc/ubnthal/.uf 4. Verify kernel0 and kernel1 match mtd2 and mtd3 $ cat /proc/mtd 5. Write the sysupgrade image to kernel0 and kernel1 $ dd if=/tmp/firmware.bin of=/dev/mtdblock2 $ dd if=/tmp/firmware.bin of=/dev/mtdblock3 6. Write the bootselect flag to boot from kernel0 $ dd if=/dev/zero bs=1 count=1 of=/dev/mtd4 7. Reboot the device $ reboot Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: fortinet-fap-221-b: convert to nvmem-layoutLech Perczak2023-11-27
| | | | | | | | | | | | | Now that MAC address parser supports the hex format (without delimiters), use the canonical MAC address stored in U-boot partition. Get rid of the userspace adjustments which are no longer necessary. While at that, move the mac-base to the common part, as it is again exactly the same in both models. And convert ART partition too - keep that one separate, as calibration data length differs between the models. Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
* ath79: add support for D-Link COVR-P2500 A1Daniel Linjama2023-11-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifications: * QCA9563, 16 MiB flash, 128 MiB RAM, 2T2R 802.11n * QCA9886 2T2R 801.11ac Wave 2 * QCA7550 Homeplug AV2 1300 * AR8337, 3 Gigabit ports (1, 2: LAN; 3: WAN) To make use of PLC functionality, firmware needs to be provided via plchost (QCA7550 comes without SPI NOR), patched with the Network Password and MAC. Flashing via OEM Web Interface * Flash 'factory.bin' using web-interface * Wait until firmware succesfully installed and device booted * Hold down reset button to reset factory defaults (~10 seconds) Flashing via Recovery Web Interface: * Hold down reset button during power-on (~10 seconds) * Recovery Web UI is at 192.168.0.50, no DHCP. * Flash 'recovery.bin' with scripts/flashing/dlink_recovery_upload.py (Recovery Web UI does not work with modern OSes) Return to stock * Hold down reset button during power-on (~10 seconds) * Recovery Web UI is at 192.168.0.50, no DHCP. * Flash unencrypted stock firmware with scripts/flashing/dlink_recovery_upload.py (Recovery Web UI does not work with modern OSes) Co-developed-by: Sebastian Schaper <openwrt@sebastianschaper.net> Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net> Signed-off-by: Daniel Linjama <daniel@dev.linjama.com>
* ath79: move ubnt-xm 64M RAM boards back to genericFelix Baumann2023-07-19
| | | | | | | | | return ubnt_rocket-m and ubnt_powerbridge-m back to ath79-generic They have enough RAM-ressources to not be considered as tiny. This reverts the commit f4415f7635164ec07ddc22f56df93555804b5767 partially Signed-off-by: Felix Baumann <felix.bau@gmx.de>
* ath79: add support for COMFAST CF-E380AC v2Joao Henrique Albuquerque2023-07-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | COMFAST CF-E380AC v2 is a ceiling mount AP with PoE support, based on Qualcomm/Atheros QCA9558+QCA9880+AR8035. There are two versions of this model, with different RAM and U-Boot mtd partition sizes: - v1: 128 MB of RAM, 128 KB U-Boot image size - v2: 256 MB of RAM, 256 KB U-Boot image size Version number is available only inside vendor GUI, hardware and markings are the same. Short specification: - 720/600/200 MHz (CPU/DDR/AHB) - 1x 10/100/1000 Mbps Ethernet, with PoE support - 128 or 256 MB of RAM (DDR2) - 16 MB of FLASH - 3T3R 2.4 GHz, with external PA (SE2576L), up to 28 dBm - 3T3R 5 GHz, with external PA (SE5003L1), up to 30 dBm - 6x internal antennas - 1x RGB LED, 1x button - UART (T11), LEDs/GPIO (J7) and USB (T12) headers on PCB - external watchdog (Pericon Technology PT7A7514) COMFAST MAC addresses : Though the OEM firmware has four adresses in the usual locations, it appears that the assigned addresses are just incremented in a different way: Interface address location Lan *:00 0x0 2.4g *:0A n/a (0x0 + 10) 5g *:02 0x6 Unused Addresses found in ART hexdump address location *:01 0x1002 *:03 0x5006 To keep code consistency the MAC address assignments are made based on increments of the one found in 0x0; Signed-off-by: Joao Henrique Albuquerque <joaohccalbu@gmail.com>
* ath79: Add support for MOXA AWK-1137CMaximilian Martin2023-06-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Device specifications: ====================== * Qualcomm/Atheros AR9344 * 128 MB of RAM * 16 MB of SPI NOR flash * 2x 10/100 Mbps Ethernet * 2T2R 2.4/5 GHz Wi-Fi * 4x GPIO-LEDs (1x wifi, 2x ethernet, 1x power) * 1x GPIO-button (reset) * 2x fast ethernet - lan1 + builtin switch port 1 + used as WAN interface - lan2 + builtin switch port 2 + used as LAN interface * 9-30V DC * external antennas Flashing instructions: ====================== Log in to https://192.168.127.253/ Username: admin Password: moxa Open Maintenance > Firmware Upgrade and install the factory image. Serial console access: ====================== Connect a RS232-USB converter to the maintenance port. Pinout: (reset button left) [GND] [NC] [RX] [TX] Firmware Recovery: ================== When the WLAN and SYS LEDs are flashing, the device is in recovery mode. Serial console access is required to proceed with recovery. Download the original image from MOXA and rename it to 'awk-1137c.rom'. Set up a TFTP server at 192.168.127.1 and connect to a lan port. Follow the instructions on the serial console to start the recovery. Signed-off-by: Maximilian Martin <mm@simonwunderlich.de>
* ath79: add support for Aruba AP-115David Bauer2023-06-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hardware ======== CPU Qualcomm Atheros QCA9558 RAM 256MB DDR2 FLASH 2x 16M SPI-NOR (Macronix MX25L12805D) WIFI Qualcomm Atheros QCA9558 Atheros AR9590 Installation ============ 1. Attach to the serial console of the AP-105. Interrupt autoboot and change the U-Boot env. $ setenv rb_openwrt "setenv ipaddr 192.168.1.1; setenv serverip 192.168.1.66; netget 0x80060000 ap115.bin; go 0x80060000" $ setenv fb_openwrt "bank 1; cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000" $ setenv bootcmd "run fb_openwrt" $ saveenv 2. Load the OpenWrt initramfs image on the device using TFTP. Place the initramfs image as "ap105.bin" in the TFTP server root directory, connect it to the AP and make the server reachable at 192.168.1.66/24. $ run rb_openwrt 3. Once OpenWrt booted, transfer the sysupgrade image to the device using scp and use sysupgrade to install the firmware. Signed-off-by: David Bauer <mail@david-bauer.net>
* ath79: Convert calibration data to nvmemJan Forman2023-05-20
| | | | | | | | | For D-link DIR-859 and DIR-869 Replace the mtd-cal-data by an nvmem-cell. Add the PCIe node for the ath10k radio to the devicetree. Thanks to DragonBlue for this patch Signed-off-by: Jan Forman <jforman@tuta.io>
* ath79: calibrate dlink dir-825 b1 with nvmemEdward Chow2023-03-26
| | | | | | | | | | | | | | | | | Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration data from the nvmem subsystem. This allows us to move the userspace caldata extraction for the pci-e ath9k supported wifi into the device-tree definition of the device. Currently, only ethernet devices uses the mac address of "mac-address-ascii" cells, while PCI ath9k devices uses the mac address within calibration data. Signed-off-by: Edward Chow <equu@openmail.cc> (restored switch configuration in 02_network, integrated caldata into partition) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ath79: convert Engenius EPG5000 radios to nvmem-cellsMichael Pratt2023-02-12
| | | | | | | | | | | Use nvmem kernel subsystem to pull radio calibration data with the devicetree instead of userspace scripts. Existing blocks for caldata_extract are reordered alphabetically. MAC address is set using the hotplug script. Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ESR1200Michael Pratt2023-02-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ESR900 Engenius ESR1200 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9557 SOC 2.4 GHz, 2x2 - QCA9882 WLAN PCIe mini card, 5 GHz, 2x2 - QCA8337N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is not similar to "ethaddr" eth0 *:c8 MAC u-boot-env ethaddr phy0 *:c8 MAC u-boot-env ethaddr phy1 *:c9 --- u-boot-env ethaddr +1 WAN *:66:44 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR1200' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the QCA8337 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ESR1750Michael Pratt2023-02-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ESR1750 Engenius ESR1750 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9558 SOC 2.4 GHz, 3x3 - QCA9880 WLAN PCIe mini card, 5 GHz, 3x3 - QCA8337N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is similar to "ethaddr" eth0 *:58 MAC u-boot-env ethaddr phy0 *:58 MAC u-boot-env ethaddr phy1 *:59 --- u-boot-env ethaddr +1 WAN *:10:58 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page NOTE: ESR1750 might require the factory.bin for ESR1200 instead, OEM provides 1 image for both. OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR1200' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the QCA8337 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: add support for Senao Engenius ESR900Michael Pratt2023-02-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: A8J-ESR900 Engenius ESR900 is an indoor wireless router with a gigabit ethernet switch, dual-band wireless, internal antenna plates, and a USB 2.0 port **Specification:** - QCA9558 SOC 2.4 GHz, 3x3 - AR9580 WLAN PCIe on board, 5 GHz, 3x3 - AR8327N SW 4 ports LAN, 1 port WAN - 40 MHz clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM - UART at J1 populated, RX grounded - 6 internal antenna plates (omni-directional) - 5 LEDs, 1 button (power, 2G, 5G, WAN, WPS) (reset) **MAC addresses:** Base MAC address labeled as "MAC ADDRESS" MAC "wanaddr" is not similar to "ethaddr" eth0 *:06 MAC u-boot-env ethaddr phy0 *:06 MAC u-boot-env ethaddr phy1 *:07 --- u-boot-env ethaddr +1 WAN *:6E:81 u-boot-env wanaddr **Serial Access:** RX on the board for UART is shorted to ground by resistor R176 therefore it must be removed to use the console but it is not necessary to remove to view boot log optionally, R175 can be replaced with a solder bridge short the resistors R175 and R176 are next to the UART RX pin **Installation:** Method 1: Firmware upgrade page OEM webpage at 192.168.0.1 username and password "admin" Navigate to Settings (gear icon) --> Tools --> Firmware select the factory.bin image confirm and wait 3 minutes Method 2: TFTP recovery Follow TFTP instructions using initramfs.bin use sysupgrade.bin to flash using openwrt web interface **Return to OEM:** MTD partitions should be backed up before flashing using TFTP to boot openwrt without overwriting flash Alternatively, it is possible to edit OEM firmware images to flash MTD partitions in openwrt to restore OEM firmware by removing the OEM header and writing the rest to "firmware" **TFTP recovery:** Requires serial console, reset button does nothing at boot rename initramfs.bin to 'uImageESR900' make available on TFTP server at 192.168.99.8 power board, interrupt boot by pressing '4' rapidly execute tftpboot and bootm **Note on ETH switch registers** Registers must be written to the ethernet switch in order to set up the switch's MAC interface. U-boot can write the registers on it's own which is needed, for example, in a TFTP transfer. The register bits from OEM for the AR8327 switch can be read from interrupted boot (tftpboot, bootm) by adding print lines in the switch driver ar8327.c before 'qca,ar8327-initvals' is parsed from DTS and written. for example: pr_info("0x04 %08x\n", ar8xxx_read(priv, AR8327_REG_PAD0_MODE)); Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: calibrate dlink dir-825 c1 and dir-835 a1 with nvmemEdward Chow2023-01-28
| | | | | | | | | | | | | Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration data from the nvmem subsystem. This allows us to move the userspace caldata extraction for the pci-e ath9k supported wifi into the device-tree definition of the device. Currently, "mac-address-ascii" cells only works for ethernet and wmac devices, so PCI ath9k device uses the old method to calibrate. Signed-off-by: Edward Chow <equu@openmail.cc>
* ath79: convert Netgear EX7300 caldata to nvmemWenli Looi2023-01-25
| | | | | | Transition to specify caldata in the DTS. Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
* ath79: consolidate Netgear EX7300 series imagesWenli Looi2023-01-25
| | | | | | | | | | | | | | | | | | | | | | | This change consolidates Netgear EX7300 series devices into two images corresponding to devices that share the same manufacturer firmware image. Similar to the manufacturer firmware, the actual device model is detected at runtime. The logic is taken from the netgear GPL dumps in a file called generate_board_conf.sh. Hardware details for EX7300 v2 variants --------------------------------------- SoC: QCN5502 Flash: 16 MiB RAM: 128 MiB Ethernet: 1 gigabit port Wireless 2.4GHz (currently unsupported due to lack of ath9k support): - EX6250 / EX6400 v2 / EX6410 / EX6420: QCN5502 3x3 - EX7300 v2 / EX7320: QCN5502 4x4 Wireless 5GHz: - EX6250: QCA9986 3x3 (detected by ath10k as QCA9984 3x3) - EX6400 v2 / EX6410 / EX6420 / EX7300 v2 / EX7320: QCA9984 4x4 Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
* ath79: convert UBNT Aircube AC WiFis to nvmem-cellsStefan Kalscheuer2023-01-06
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Stefan Kalscheuer <stefan@stklcode.de>
* ath79: add support for Fortinet FAP-221-BMichael Pratt2023-01-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FCC ID: U2M-CAP4100AG Fortinet FAP-221-B is an indoor access point with 1 Gb ethernet port, dual-band wireless, internal antenna plates, and 802.3at PoE+ Hardware and board design from Senao **Specification:** - AR9344 SOC 2G 2x2, 5G 2x2, 25 MHz CLK - AR9382 WLAN 2G 2x2 PCIe, 40 MHz CLK - AR8035-A PHY RGMII, PoE+ IN, 25 MHz CLK - 16 MB FLASH MX25L12845EMI-10G - 2x 32 MB RAM W9725G6JB-25 - UART at J11 populated, 9600 baud - 6 LEDs, 1 button power, ethernet, wlan, reset Note: ethernet LEDs are not enabled because a new netifd hotplug is required in order to operate like OEM. Board has 1 amber and 1 green for each of the 3 case viewports. **MAC addresses:** 1 MAC Address in flash at end of uboot ASCII encoded, no delimiters Labeled as "MAC Address" on case OEM firmware sets offsets 1 and 8 for wlan eth0 *:1e uboot 0x3ff80 phy0 *:1f uboot 0x3ff80 +1 phy1 *:26 uboot 0x3ff80 +8 **Serial Access:** Pinout: (arrow) VCC GND RX TX Pins are populated with a header and traces not blocked. Bootloader is set to 9600 baud, 8 data, 1 stop. **Console Access:** Bootloader: Interrupt boot with Ctrl+C Press "k" and enter password "1" OR Hold reset button for 5 sec during power on Interrupt the TFTP transfer with Ctrl+C to print commands available, enter "help" OEM: default username is "admin", password blank telnet is available at default address 192.168.1.2 serial is available with baud 9600 to print commands available, enter "help" or tab-tab (busybox list of commands) **Installation:** Use factory.bin with OEM upgrade procedures OR Use initramfs.bin with uboot TFTP commands. Then perform a sysupgrade with sysupgrade.bin **TFTP Recovery:** Using serial console, load initramfs.bin using TFTP to boot openwrt without touching the flash. TFTP is not reliable due to bugged bootloader, set MTU to 600 and try many times. If your TFTP server supports setting block size, higher block size is better. Splitting the file into 1 MB parts may be necessary example: $ tftpboot 0x80100000 image1.bin $ tftpboot 0x80200000 image2.bin $ tftpboot 0x80300000 image3.bin $ tftpboot 0x80400000 image4.bin $ tftpboot 0x80500000 image5.bin $ tftpboot 0x80600000 image6.bin $ bootm 0x80100000 **Return to OEM:** The best way to return to OEM firmware is to have a copy of the MTD partitions before flashing Openwrt. Backup copies should be made of partitions "fwconcat0", "loader", and "fwconcat1" which together is the same flash range as OEM's "rootfs" and "uimage" by loading an initramfs.bin and using LuCI to download the mtdblocks. It is also possible to extract from the OEM firmware upgrade image by splitting it up in parts of lengths that correspond to the partitions in openwrt and write them to flash, after gzip decompression. After writing to the firmware partitions, erase the "reserved" partition and reboot. **OEM firmware image format:** Images from Fortinet for this device ending with the suffix .out are actually a .gz file The gzip metadata stores the original filename before compression, which is a special string used to verify the image during OEM upgrade. After gzip decompression, the resulting file is an exact copy of the MTD partitions "rootfs" and "uimage" combined in the same order and size that they appear in /proc/mtd and as they are on flash. OEM upgrade is performed by a customized busybox with the command "upgrade". Another binary, "restore" is a wrapper for busybox's "tftp" and "upgrade". Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: convert Netgear WNDAP360 WiFis to nvmem-cellsNick Hainke2023-01-04
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: fix calibration-art for some boardsNick Hainke2022-12-28
| | | | | | | | | "0x1000" looks suspicious. By looking at data provided by @DragonBluep I was able to identify the correct size for AR9380, AR9287 WiFis. Furthermore, PowerCloud Systems CAP324 has a AR9344 WiFi. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert WiFis based on ar7241_ubnt_unifi.dtsi to nvmem-cellsNick Hainke2022-12-17
| | | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. While working on it remove stale uboot partition label and merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert Buffalo WZR-HP-G302H A1A0 WiFis to nvmem-cellsNick Hainke2022-12-17
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert OpenMesh OM2P v1 WiFis to nvmem-cellsNick Hainke2022-12-17
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert OpenMesh OM5P-AN WiFis to nvmem-cellsNick Hainke2022-12-17
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert boards based on ar9344_openmesh_mr600.dtsi to nvmem-cellsNick Hainke2022-12-17
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Merge art into partition node. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert Winchannel WB2000 WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org> (removed mtd-cal-data property, merged art + addr nodes back into partition) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ath79: convert Ubiquiti UniFi AP Pro WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org> (merged art node back into partition-node) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ath79: convert OCEDO Raccoon WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org> (merged art into partition node, removed stale uboot label) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ath79: Mercury MW4530R v1 already uses nvmem-cellsNick Hainke2022-12-15
| | | | | | | | Remove the caldata extraction in userspace. The board already uses nvmem-cells since commit e354b01baf88 ("ath79: calibrate all ar9344 tl-WDRxxxx with nvmem") Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert boards based on senao_ap-dual.dtsi WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: convert Atheros DB120 WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org> (merged art-node back into partition-node) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* ath79: convert Araknis AN-300-AP-I-N WiFis to nvmem-cellsNick Hainke2022-12-15
| | | | | | | Pull the calibration data from the nvmem subsystem. This allows us to move userspace caldata extraction into the device-tree definition. Signed-off-by: Nick Hainke <vincent@systemli.org>
* ath79: use nvmem-cells for radio calibration of EAP1200HMichael Pratt2022-11-27
| | | | | | Transition from userscript to DTS for all of ART. Signed-off-by: Michael Pratt <mcpratt@pm.me>
* ath79: calibrate TP-LINK TL-WR2543ND with nvmemEdward Chow2022-11-27
| | | | | | | | | | | | | | | | | Driver for and pci wlan card now pull the calibration data from the nvmem subsystem. This allows us to move the userspace caldata extraction for the pci-e ath9k supported wifi into the device-tree definition of the device. The wifi mac address remains correct after these changes, because When both "mac-address" and "calibration" are defined, the effective mac address comes from the cell corresponding to "mac-address" and mac-address-increment. Test passed on my tplink tl-wr2543nd. Signed-off-by: Edward Chow <equu@openmail.cc>
* ath79: calibrate all ar9344 tl-WDRxxxx with nvmemEdward Chow2022-11-18
| | | | | | | | | | | | | | | | | | | | Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration data from the nvmem subsystem. This allows us to move the userspace caldata extraction for the pci-e ath9k supported wifi into the device-tree definition of the device. wmac's nodes are also changed over to use nvmem-cells over OpenWrt's custom mtd-cal-data property. The wifi mac address remains correct after these changes, because When both "mac-address" and "calibration" are defined, the effective mac address comes from the cell corresponding to "mac-address" and mac-address-increment. Test passed on my tplink tl-wdr4310. Signed-off-by: Edward Chow <equu@openmail.cc>
* ath79: calibrate TL-WDR4900 v2 with nvmem-cellsEdward Chow2022-11-09
| | | | | | | | | | | | | Driver for both soc (2.4GHz Wifi) and pci (5 GHz) now pull the calibration data from the nvmem subsystem. This allows us to move the userspace caldata extraction for the pci-e ath9k supported wifi into the device-tree definition of the device. wmac's nodes are also changed over to use nvmem-cells over OpenWrt's custom mtd-cal-data property. Signed-off-by: Edward Chow <equu@openmail.cc>
* ath79: add support to TrendNet TEW-673GRUKorey Caro2022-11-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for the TrendNet TEW-673GRU to ath79. This device was supported in 19.07.9 but was deprecated with ar71xx. This is mostly a copy of D-Link DIR-825 B1. Updates have been completed to enable factory.bin and sysupgrade.bin both. Code improvements to DTS file and makefile. Architecture | MIPS Vendor | Qualcomm Atheros bootloader | U-Boot System-On-Chip | AR7161 rev 2 (MIPS 24Kc V7.4) CPU/Speed | 24Kc V7.4 680 MHz Flash-Chip | Macronix MX25L6405D Flash size | 8192 KiB RAM Chip: | ProMOS V58C2256164SCI5 × 2 RAM size | 64 MiB Wireless | 2 x Atheros AR922X 2.4GHz/5.0GHz 802.11abgn Ethernet | RealTek RTL8366S Gigabit w/ port based vlan support USB | Yes 2 x 2.0 Initial Flashing Process: 1) Download 22.03 tew-673gru factory bin 2) Flash 22.03 using TrendNet GUI OpenWRT Upgrade Process 3) Download 22.03 tew-673gru sysupgrade.bin 4) Flash 22.03 using OpenWRT GUI Signed-off-by: Korey Caro <korey.caro@gmail.com>
* ath79: use NVMEM for wlan caldata on ELECOM devicesINAGAKI Hiroshi2022-10-19
| | | | | | | | Use NVMEM "calibration" implementation for ath9k/ath10k(-ct) on ELECOM WRC-300GHBK2-I and WRC-1750GHBK2-I/C instead of mtd-cal-data property or user-space script. Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>