1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
#!/usr/bin/env python3
import csv
import joblib
import matplotlib.pyplot
import numpy
import os
import pandas
import sklearn
import sklearn.ensemble
import sklearn.inspection
import sys
import time
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
sys.path.append(os.path.dirname(sys.argv[0]))
sys.path.append(sys.base_prefix + '/share/nDPId')
import nDPIsrvd
from nDPIsrvd import nDPIsrvdSocket, TermColor
N_DIRS = 0
N_BINS = 0
ENABLE_FEATURE_IAT = False
ENABLE_FEATURE_PKTLEN = False
ENABLE_FEATURE_DIRS = True
ENABLE_FEATURE_BINS = True
PROTO_CLASSES = None
def getFeatures(json):
return [json['flow_src_packets_processed'],
json['flow_dst_packets_processed'],
json['flow_src_tot_l4_payload_len'],
json['flow_dst_tot_l4_payload_len']]
def getFeaturesFromArray(json, expected_len=0):
if type(json) is str:
dirs = numpy.fromstring(json, sep=',', dtype=int)
dirs = numpy.asarray(dirs, dtype=int).tolist()
elif type(json) is list:
dirs = json
else:
raise TypeError('Invalid type: {}.'.format(type(json)))
if expected_len > 0 and len(dirs) != expected_len:
raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs)))
return dirs
def getRelevantFeaturesCSV(line):
ret = list()
ret.extend(getFeatures(line));
if ENABLE_FEATURE_IAT is True:
ret.extend(getFeaturesFromArray(line['iat_data'], N_DIRS - 1))
if ENABLE_FEATURE_PKTLEN is True:
ret.extend(getFeaturesFromArray(line['pktlen_data'], N_DIRS))
if ENABLE_FEATURE_DIRS is True:
ret.extend(getFeaturesFromArray(line['directions'], N_DIRS))
if ENABLE_FEATURE_BINS is True:
ret.extend(getFeaturesFromArray(line['bins_c_to_s'], N_BINS))
ret.extend(getFeaturesFromArray(line['bins_s_to_c'], N_BINS))
return [ret]
def getRelevantFeaturesJSON(line):
ret = list()
ret.extend(getFeatures(line))
if ENABLE_FEATURE_IAT is True:
ret.extend(getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1))
if ENABLE_FEATURE_PKTLEN is True:
ret.extend(getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS))
if ENABLE_FEATURE_DIRS is True:
ret.extend(getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS))
if ENABLE_FEATURE_BINS is True:
ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS))
ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) )
return [ret]
def getRelevantFeatureNames():
names = list()
names.extend(['flow_src_packets_processed', 'flow_dst_packets_processed',
'flow_src_tot_l4_payload_len', 'flow_dst_tot_l4_payload_len'])
if ENABLE_FEATURE_IAT is True:
for x in range(N_DIRS - 1):
names.append('iat_{}'.format(x))
if ENABLE_FEATURE_PKTLEN is True:
for x in range(N_DIRS):
names.append('pktlen_{}'.format(x))
if ENABLE_FEATURE_DIRS is True:
for x in range(N_DIRS):
names.append('dirs_{}'.format(x))
if ENABLE_FEATURE_BINS is True:
for x in range(N_BINS):
names.append('bins_c_to_s_{}'.format(x))
for x in range(N_BINS):
names.append('bins_s_to_c_{}'.format(x))
return names
def plotPermutatedImportance(model, X, y):
result = sklearn.inspection.permutation_importance(model, X, y, n_repeats=10, random_state=42, n_jobs=-1)
forest_importances = pandas.Series(result.importances_mean, index=getRelevantFeatureNames())
fig, ax = matplotlib.pyplot.subplots()
forest_importances.plot.bar(yerr=result.importances_std, ax=ax)
ax.set_title("Feature importances using permutation on full model")
ax.set_ylabel("Mean accuracy decrease")
fig.tight_layout()
matplotlib.pyplot.show()
def isProtoClass(proto_class, line):
if type(proto_class) != list or type(line) != str:
raise TypeError('Invalid type: {}/{}.'.format(type(proto_class), type(line)))
s = line.lower()
for x in range(len(proto_class)):
if s.startswith(proto_class[x].lower()) is True:
return x + 1
return 0
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
if 'flow_event_name' not in json_dict:
return True
if json_dict['flow_event_name'] != 'analyse':
return True
if 'ndpi' not in json_dict:
return True
if 'proto' not in json_dict['ndpi']:
return True
#print(json_dict)
model, proto_class, disable_colors = global_user_data
try:
X = getRelevantFeaturesJSON(json_dict)
y = model.predict(X)
p = model.predict_log_proba(X)
if y[0] <= 0:
y_text = 'n/a'
else:
y_text = proto_class[y[0] - 1]
color_start = ''
color_end = ''
pred_failed = False
if disable_colors is False:
if json_dict['ndpi']['proto'].lower().startswith(y_text) is True:
color_start = TermColor.BOLD
color_end = TermColor.END
elif y_text not in proto_class and \
json_dict['ndpi']['proto'].lower() not in proto_class:
pass
else:
pred_failed = True
color_start = TermColor.WARNING + TermColor.BOLD
color_end = TermColor.END
probs = str()
for i in range(len(p[0])):
if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False:
probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '',
p[0][i], TermColor.END)
elif i == y[0]:
probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end)
else:
probs += '{:>2.1f}, '.format(p[0][i])
probs = probs[:-2]
print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Probabilities: {}'.format(
color_start, json_dict['ndpi']['proto'].lower(), color_end,
color_start, y_text, color_end, probs))
if pred_failed is True:
pclass = isProtoClass(args.proto_class, json_dict['ndpi']['proto'].lower())
if pclass == 0:
msg = 'false positive'
else:
msg = 'false negative'
print('{:>46} {}{}{}'.format('[-]', TermColor.FAIL + TermColor.BOLD + TermColor.BLINK, msg, TermColor.END))
except Exception as err:
print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
return True
if __name__ == '__main__':
argparser = nDPIsrvd.defaultArgumentParser()
argparser.add_argument('--load-model', action='store',
help='Load a pre-trained model file.')
argparser.add_argument('--save-model', action='store',
help='Save the trained model to a file.')
argparser.add_argument('--csv', action='store',
help='Input CSV file generated with nDPIsrvd-analysed.')
argparser.add_argument('--proto-class', action='append', required=False,
help='nDPId protocol class of interest used for training and prediction. ' +
'Can be specified multiple times. Example: tls.youtube')
argparser.add_argument('--generate-feature-importance', action='store_true',
help='Generates the permutated feature importance with matplotlib.')
argparser.add_argument('--enable-iat', action='store_true', default=None,
help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.')
argparser.add_argument('--enable-pktlen', action='store_true', default=None,
help='Enable layer 4 packet lengths for learning and prediction.')
argparser.add_argument('--disable-dirs', action='store_true', default=None,
help='Disable packet directions for learning and prediction.')
argparser.add_argument('--disable-bins', action='store_true', default=None,
help='Disable packet length distribution for learning and prediction.')
argparser.add_argument('--disable-colors', action='store_true', default=False,
help='Disable any coloring.')
argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1,
help='Number of sklearn processes during training.')
argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000,
help='Number of trees in the forest.')
argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=0.0001,
help='The minimum number of samples required to be at a leaf node.')
argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?',
choices=['balanced', 'balanced_subsample'],
help='Weights associated with the protocol classes.')
argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?',
choices=['sqrt', 'log2'],
help='The number of features to consider when looking for the best split.')
argparser.add_argument('--sklearn-max-depth', action='store', type=int, default=128,
help='The maximum depth of a tree.')
argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0,
help='Controls the verbosity of sklearn\'s random forest classifier.')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
if args.csv is None and args.load_model is None:
sys.stderr.write('{}: Either `--csv` or `--load-model` required!\n'.format(sys.argv[0]))
sys.exit(1)
if args.csv is None and args.generate_feature_importance is True:
sys.stderr.write('{}: `--generate-feature-importance` requires `--csv`.\n'.format(sys.argv[0]))
sys.exit(1)
if args.proto_class is None or len(args.proto_class) == 0:
if args.csv is None and args.load_model is None:
sys.stderr.write('{}: `--proto-class` missing, no useful classification can be performed.\n'.format(sys.argv[0]))
else:
if args.load_model is not None:
sys.stderr.write('{}: `--proto-class` set, but you want to load an existing model.\n'.format(sys.argv[0]))
sys.exit(1)
if args.load_model is not None:
sys.stderr.write('{}: You are loading an existing model file. ' \
'Some --sklearn-* command line parameters won\'t have any effect!\n'.format(sys.argv[0]))
if args.enable_iat is not None:
sys.stderr.write('{}: `--enable-iat` set, but you want to load an existing model.\n'.format(sys.argv[0]))
sys.exit(1)
if args.enable_pktlen is not None:
sys.stderr.write('{}: `--enable-pktlen` set, but you want to load an existing model.\n'.format(sys.argv[0]))
sys.exit(1)
if args.disable_dirs is not None:
sys.stderr.write('{}: `--disable-dirs` set, but you want to load an existing model.\n'.format(sys.argv[0]))
sys.exit(1)
if args.disable_bins is not None:
sys.stderr.write('{}: `--disable-bins` set, but you want to load an existing model.\n'.format(sys.argv[0]))
sys.exit(1)
ENABLE_FEATURE_IAT = args.enable_iat if args.enable_iat is not None else ENABLE_FEATURE_IAT
ENABLE_FEATURE_PKTLEN = args.enable_pktlen if args.enable_pktlen is not None else ENABLE_FEATURE_PKTLEN
ENABLE_FEATURE_DIRS = args.disable_dirs if args.disable_dirs is not None else ENABLE_FEATURE_DIRS
ENABLE_FEATURE_BINS = args.disable_bins if args.disable_bins is not None else ENABLE_FEATURE_BINS
PROTO_CLASSES = args.proto_class
numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ')
numpy.seterr(divide = 'ignore')
if args.proto_class is not None:
for i in range(len(args.proto_class)):
args.proto_class[i] = args.proto_class[i].lower()
if args.load_model is not None:
sys.stderr.write('Loading model from {}\n'.format(args.load_model))
model, options = joblib.load(args.load_model)
ENABLE_FEATURE_IAT, ENABLE_FEATURE_PKTLEN, ENABLE_FEATURE_DIRS, ENABLE_FEATURE_BINS, args.proto_class = options
if args.csv is not None:
sys.stderr.write('Learning via CSV..\n')
with open(args.csv, newline='\n') as csvfile:
reader = csv.DictReader(csvfile, delimiter=',', quotechar='"')
X = list()
y = list()
for line in reader:
N_DIRS = len(getFeaturesFromArray(line['directions']))
N_BINS = len(getFeaturesFromArray(line['bins_c_to_s']))
break
for line in reader:
try:
X += getRelevantFeaturesCSV(line)
except RuntimeError as err:
print('Runtime Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
continue
except TypeError as err:
print('Type Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
continue
try:
y += [isProtoClass(args.proto_class, line['proto'])]
except TypeError as err:
X.pop()
print('Type Error: `{}\'\non line {}: {}'.format(err, reader.line_num - 1, line))
continue
sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X)))
if args.load_model is None:
model = sklearn.ensemble.RandomForestClassifier(bootstrap=False,
class_weight = args.sklearn_class_weight,
n_jobs = args.sklearn_jobs,
n_estimators = args.sklearn_estimators,
verbose = args.sklearn_verbosity,
min_samples_leaf = args.sklearn_min_samples_leaf,
max_features = args.sklearn_max_features,
max_depth = args.sklearn_max_depth
)
options = (ENABLE_FEATURE_IAT, ENABLE_FEATURE_PKTLEN, ENABLE_FEATURE_DIRS, ENABLE_FEATURE_BINS, args.proto_class)
sys.stderr.write('Training model..\n')
model.fit(X, y)
if args.generate_feature_importance is True:
sys.stderr.write('Generating feature importance .. this may take some time\n')
plotPermutatedImportance(model, X, y)
if args.save_model is not None:
sys.stderr.write('Saving model to {}\n'.format(args.save_model))
joblib.dump([model, options], args.save_model)
print('ENABLE_FEATURE_PKTLEN: {}'.format(ENABLE_FEATURE_PKTLEN))
print('ENABLE_FEATURE_BINS..: {}'.format(ENABLE_FEATURE_BINS))
print('ENABLE_FEATURE_DIRS..: {}'.format(ENABLE_FEATURE_DIRS))
print('ENABLE_FEATURE_IAT...: {}'.format(ENABLE_FEATURE_IAT))
print('Map[*] -> [0]')
for x in range(len(args.proto_class)):
print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1))
sys.stderr.write('Predicting realtime traffic..\n')
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
nsock = nDPIsrvdSocket()
nsock.connect(address)
nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors))
|