diff options
author | Toni Uhlig <matzeton@googlemail.com> | 2023-08-15 11:21:46 +0200 |
---|---|---|
committer | Toni Uhlig <matzeton@googlemail.com> | 2023-08-15 11:21:46 +0200 |
commit | 4b3031245dcf78741c83664fee886825d73f1cb1 (patch) | |
tree | 3cdb51b82d5e00cb2f3a8f0aa9d2569a4347b693 | |
parent | 2b881d56e7f9c56689888f8904291e5184526529 (diff) |
keras-autoencoder.py: fixed invalid preprocessing of received base64 packet data
* split logic into seperate jobs; nDPIsrvd and Keras
* nDPIsrvd: break event processing and re-run `epoll_wait()` after client disconnected
Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
-rwxr-xr-x | examples/py-machine-learning/keras-autoencoder.py | 221 | ||||
-rw-r--r-- | nDPIsrvd.c | 2 |
2 files changed, 159 insertions, 64 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py index 2a115395d..bcb63f30a 100755 --- a/examples/py-machine-learning/keras-autoencoder.py +++ b/examples/py-machine-learning/keras-autoencoder.py @@ -1,12 +1,12 @@ #!/usr/bin/env python3 import base64 +import binascii import joblib -import csv -import matplotlib.pyplot as plt +import multiprocessing as mp import numpy as np import os -import pandas as pd +import queue import sys sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') @@ -17,29 +17,37 @@ import nDPIsrvd from nDPIsrvd import nDPIsrvdSocket, TermColor INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX +LATENT_SIZE = 8 TRAINING_SIZE = 500 +EPOCH_COUNT = 5 BATCH_SIZE = 10 def generate_autoencoder(): - input_i = Input(shape=()) - input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i) - encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i) - encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1) - encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2) - encoded_h4 = Dense(64, activation='relu', name='encoded_h3')(encoded_h3) - encoded_h5 = Dense(32, activation='relu', name='encoded_h4')(encoded_h4) - latent = Dense(2, activation='relu', name='encoded_h5')(encoded_h5) - decoder_h1 = Dense(32, activation='relu', name='latent')(latent) - decoder_h2 = Dense(64, activation='relu', name='decoder_h1')(decoder_h1) - decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2) - decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3) - decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4) - return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5)) + input_i = Input(shape=(), name='input_i') + input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i) + encoded_h1 = Dense(1024, activation='relu', name='encoded_h1')(input_e) + encoded_h2 = Dense(512, activation='relu', name='encoded_h2')(encoded_h1) + encoded_h3 = Dense(128, activation='relu', name='encoded_h3')(encoded_h2) + encoded_h4 = Dense(64, activation='relu', name='encoded_h4')(encoded_h3) + encoded_h5 = Dense(32, activation='relu', name='encoded_h5')(encoded_h4) + latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h5) + + input_l = Input(shape=(LATENT_SIZE), name='input_l') + decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l) + decoder_h2 = Dense(64, activation='relu', name='decoder_h2')(decoder_h1) + decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2) + decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3) + decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4) + output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h5) + + encoder = Model(input_e, latent, name='encoder') + decoder = Model(input_l, output_i, name='decoder') + return encoder, decoder, Model(input_e, decoder(encoder(input_e)), name='VAE') def compile_autoencoder(): - inp, autoencoder = generate_autoencoder() + encoder, decoder, autoencoder = generate_autoencoder() autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()]) - return inp, autoencoder + return encoder, decoder, autoencoder def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): if 'packet_event_name' not in json_dict: @@ -49,50 +57,122 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): json_dict['packet_event_name'] != 'packet-flow': return True - _, padded_pkts = global_user_data - buf = base64.b64decode(json_dict['pkt'], validate=True) + shutdown_event, training_event, padded_pkts = global_user_data + if shutdown_event.is_set(): + return False + + try: + buf = base64.b64decode(json_dict['pkt'], validate=True) + except binascii.Error as err: + sys.stderr.write('\nBase64 Exception: {}\n'.format(str(err))) + sys.stderr.write('Affected JSON: {}\n'.format(str(json_dict))) + sys.stderr.flush() + return False # Generate decimal byte buffer with valus from 0-255 int_buf = [] for v in buf: int_buf.append(int(v)) - mat = np.array([int_buf]) + mat = np.array([int_buf], dtype='float64') # Normalize the values - mat = mat.astype('float32') / 255. + mat = mat.astype('float64') / 255.0 # Mean removal - matmean = np.mean(mat, axis=0) + matmean = np.mean(mat, dtype='float64') mat -= matmean # Pad resulting matrice - buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post') - padded_pkts.append(buf[0]) - - sys.stdout.write('.') - sys.stdout.flush() - if (len(padded_pkts) % TRAINING_SIZE == 0): - print('\nGot {} packets, training..'.format(len(padded_pkts))) - tmp = np.array(padded_pkts) - history = autoencoder.fit( - tmp, tmp, epochs=10, batch_size=BATCH_SIZE, - validation_split=0.2, - shuffle=True - ) - padded_pkts.clear() - - #plot_model(autoencoder, show_shapes=True, show_layer_names=True) - #plt.plot(history.history['loss']) - #plt.plot(history.history['val_loss']) - #plt.title('model loss') - #plt.xlabel('loss') - #plt.ylabel('val_loss') - #plt.legend(['loss', 'val_loss'], loc='upper left') - #plt.show() + buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post', dtype='float64') + padded_pkts.put(buf[0]) + + #print(list(buf[0])) + + if not training_event.is_set(): + sys.stdout.write('.') + sys.stdout.flush() return True +def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, shared_packet_list): + nsock = nDPIsrvdSocket() + + try: + nsock.connect(address) + padded_pkts = list() + nsock.loop(onJsonLineRecvd, None, (shared_shutdown_event, shared_training_event, shared_packet_list)) + except nDPIsrvd.SocketConnectionBroken as err: + sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err)) + except KeyboardInterrupt: + sys.stderr.write('\n') + except Exception as err: + sys.stderr.write('\nnDPIsrvd-Worker Exception: {}\n'.format(str(err))) + sys.stderr.flush() + + shared_shutdown_event.set() + +def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue): + shared_training_event.set() + if load_model is not None: + sys.stderr.write('Loading model from {}\n'.format(load_model)) + sys.stderr.flush() + try: + encoder, decoder, autoencoder = joblib.load(load_model) + except: + sys.stderr.write('Could not load model from {}\n'.format(load_model)) + sys.stderr.write('Compiling new Autoencoder..\n') + sys.stderr.flush() + encoder, decoder, autoencoder = compile_autoencoder() + else: + encoder, decoder, autoencoder = compile_autoencoder() + decoder.summary() + encoder.summary() + autoencoder.summary() + shared_training_event.clear() + + try: + packets = list() + while not shared_shutdown_event.is_set(): + try: + packet = shared_packet_queue.get(timeout=1) + except queue.Empty: + packet = None + + if packet is None: + continue + + packets.append(packet) + if len(packets) % TRAINING_SIZE == 0: + shared_training_event.set() + print('\nGot {} packets, training..'.format(len(packets))) + tmp = np.array(packets) + x_test_encoded = encoder.predict(tmp, batch_size=BATCH_SIZE) + history = autoencoder.fit( + tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE, + validation_split=0.2, + shuffle=True + ) + packets.clear() + shared_training_event.clear() + except KeyboardInterrupt: + sys.stderr.write('\n') + except Exception as err: + if len(str(err)) == 0: + err = 'Unknown' + sys.stderr.write('\nKeras-Worker Exception: {}\n'.format(str(err))) + sys.stderr.flush() + + if save_model is not None: + sys.stderr.write('Saving model to {}\n'.format(save_model)) + sys.stderr.flush() + joblib.dump([encoder, decoder, autoencoder], save_model) + + try: + shared_shutdown_event.set() + except: + pass + if __name__ == '__main__': sys.stderr.write('\b\n***************\n') sys.stderr.write('*** WARNING ***\n') @@ -125,23 +205,38 @@ if __name__ == '__main__': from tensorflow.keras.models import Model, Sequential from tensorflow.keras.utils import plot_model - if args.load_model is not None: - sys.stderr.write('Loading model from {}\n'.format(args.load_model)) - autoencoder, options = joblib.load(args.load_model) - else: - _, autoencoder = compile_autoencoder() - autoencoder.summary() + mgr = mp.Manager() + + shared_training_event = mgr.Event() + shared_training_event.clear() + + shared_shutdown_event = mgr.Event() + shared_shutdown_event.clear() + + shared_packet_queue = mgr.JoinableQueue() + + nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=( + address, + shared_shutdown_event, + shared_training_event, + shared_packet_queue + )) + nDPIsrvd_job.start() + + keras_job = mp.Process(target=keras_worker, args=( + args.load_model, + args.save_model, + shared_shutdown_event, + shared_training_event, + shared_packet_queue + )) + keras_job.start() - nsock = nDPIsrvdSocket() - nsock.connect(address) try: - padded_pkts = list() - nsock.loop(onJsonLineRecvd, None, (autoencoder, padded_pkts)) - except nDPIsrvd.SocketConnectionBroken as err: - sys.stderr.write('\n{}\n'.format(err)) + shared_shutdown_event.wait() except KeyboardInterrupt: - print() + print('\nShutting down worker processess..') - if args.save_model is not None: - sys.stderr.write('Saving model to {}\n'.format(args.save_model)) - joblib.dump([autoencoder, None], args.save_model) + nDPIsrvd_job.terminate() + nDPIsrvd_job.join() + keras_job.join() diff --git a/nDPIsrvd.c b/nDPIsrvd.c index db0b60fd2..8ffeeaa12 100644 --- a/nDPIsrvd.c +++ b/nDPIsrvd.c @@ -1422,7 +1422,7 @@ static int mainloop(int epollfd) { logger(1, "Epoll event error: %s", (errno != 0 ? strerror(errno) : "unknown")); } - continue; + break; } if (events[i].data.fd == collector_un_sockfd || events[i].data.fd == distributor_un_sockfd || |