aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/builder.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/builder.c')
-rw-r--r--src/runtime/builder.c2035
1 files changed, 2035 insertions, 0 deletions
diff --git a/src/runtime/builder.c b/src/runtime/builder.c
new file mode 100644
index 0000000..b62c2b6
--- /dev/null
+++ b/src/runtime/builder.c
@@ -0,0 +1,2035 @@
+/*
+ * Codegenerator for C, building FlatBuffers.
+ *
+ * There are several approaches, some light, some requiring a library,
+ * some with vectored I/O etc.
+ *
+ * Here we focus on a reasonable balance of light code and efficiency.
+ *
+ * Builder code is generated to a separate file that includes the
+ * generated read-only code.
+ *
+ * Mutable buffers are not supported in this version.
+ *
+ */
+
+#include <stdlib.h>
+#include <string.h>
+
+#include "flatcc/flatcc_builder.h"
+#include "flatcc/flatcc_emitter.h"
+
+/*
+ * `check` is designed to handle incorrect use errors that can be
+ * ignored in production of a tested product.
+ *
+ * `check_error` fails if condition is false and is designed to return an
+ * error code in production.
+ */
+
+#if FLATCC_BUILDER_ASSERT_ON_ERROR
+#define check(cond, reason) FLATCC_BUILDER_ASSERT(cond, reason)
+#else
+#define check(cond, reason) ((void)0)
+#endif
+
+#if FLATCC_BUILDER_SKIP_CHECKS
+#define check_error(cond, err, reason) ((void)0)
+#else
+#define check_error(cond, err, reason) if (!(cond)) { check(cond, reason); return err; }
+#endif
+
+/* `strnlen` not widely supported. */
+static inline size_t pstrnlen(const char *s, size_t max_len)
+{
+ const char *end = memchr(s, 0, max_len);
+ return end ? (size_t)(end - s) : max_len;
+}
+#undef strnlen
+#define strnlen pstrnlen
+
+/* Padding can be up to 255 zeroes, and 1 zero string termination byte.
+ * When two paddings are combined at nested buffers, we need twice that.
+ * Visible to emitter so it can test for zero padding in iov. */
+const uint8_t flatcc_builder_padding_base[512] = { 0 };
+#define _pad flatcc_builder_padding_base
+
+#define uoffset_t flatbuffers_uoffset_t
+#define soffset_t flatbuffers_soffset_t
+#define voffset_t flatbuffers_voffset_t
+#define utype_t flatbuffers_utype_t
+
+#define write_uoffset __flatbuffers_uoffset_write_to_pe
+#define write_voffset __flatbuffers_voffset_write_to_pe
+#define write_identifier __flatbuffers_uoffset_write_to_pe
+#define write_utype __flatbuffers_utype_write_to_pe
+
+#define field_size sizeof(uoffset_t)
+#define max_offset_count FLATBUFFERS_COUNT_MAX(field_size)
+#define union_size sizeof(flatcc_builder_union_ref_t)
+#define max_union_count FLATBUFFERS_COUNT_MAX(union_size)
+#define utype_size sizeof(utype_t)
+#define max_utype_count FLATBUFFERS_COUNT_MAX(utype_size)
+
+#define max_string_len FLATBUFFERS_COUNT_MAX(1)
+#define identifier_size FLATBUFFERS_IDENTIFIER_SIZE
+
+
+#define iovec_t flatcc_iovec_t
+#define frame_size sizeof(__flatcc_builder_frame_t)
+#define frame(x) (B->frame[0].x)
+
+
+/* `align` must be a power of 2. */
+static inline uoffset_t alignup_uoffset(uoffset_t x, size_t align)
+{
+ return (x + (uoffset_t)align - 1u) & ~((uoffset_t)align - 1u);
+}
+
+static inline size_t alignup_size(size_t x, size_t align)
+{
+ return (x + align - 1u) & ~(align - 1u);
+}
+
+
+typedef struct vtable_descriptor vtable_descriptor_t;
+struct vtable_descriptor {
+ /* Where the vtable is emitted. */
+ flatcc_builder_ref_t vt_ref;
+ /* Which buffer it was emitted to. */
+ uoffset_t nest_id;
+ /* Where the vtable is cached. */
+ uoffset_t vb_start;
+ /* Hash table collision chain. */
+ uoffset_t next;
+};
+
+typedef struct flatcc_iov_state flatcc_iov_state_t;
+struct flatcc_iov_state {
+ size_t len;
+ int count;
+ flatcc_iovec_t iov[FLATCC_IOV_COUNT_MAX];
+};
+
+#define iov_state_t flatcc_iov_state_t
+
+/* This assumes `iov_state_t iov;` has been declared in scope */
+#define push_iov_cond(base, size, cond) if ((size) > 0 && (cond)) { iov.len += size;\
+ iov.iov[iov.count].iov_base = (void *)(base); iov.iov[iov.count].iov_len = (size); ++iov.count; }
+#define push_iov(base, size) push_iov_cond(base, size, 1)
+#define init_iov() { iov.len = 0; iov.count = 0; }
+
+
+int flatcc_builder_default_alloc(void *alloc_context, iovec_t *b, size_t request, int zero_fill, int hint)
+{
+ void *p;
+ size_t n;
+
+ (void)alloc_context;
+
+ if (request == 0) {
+ if (b->iov_base) {
+ FLATCC_BUILDER_FREE(b->iov_base);
+ b->iov_base = 0;
+ b->iov_len = 0;
+ }
+ return 0;
+ }
+ switch (hint) {
+ case flatcc_builder_alloc_ds:
+ n = 256;
+ break;
+ case flatcc_builder_alloc_ht:
+ /* Should be exact size, or space size is just wasted. */
+ n = request;
+ break;
+ case flatcc_builder_alloc_fs:
+ n = sizeof(__flatcc_builder_frame_t) * 8;
+ break;
+ case flatcc_builder_alloc_us:
+ n = 64;
+ break;
+ default:
+ /*
+ * We have many small structures - vs stack for tables with few
+ * elements, and few offset fields in patch log. No need to
+ * overallocate in case of busy small messages.
+ */
+ n = 32;
+ break;
+ }
+ while (n < request) {
+ n *= 2;
+ }
+ if (request <= b->iov_len && b->iov_len / 2 >= n) {
+ /* Add hysteresis to shrink. */
+ return 0;
+ }
+ if (!(p = FLATCC_BUILDER_REALLOC(b->iov_base, n))) {
+ return -1;
+ }
+ /* Realloc might also shrink. */
+ if (zero_fill && b->iov_len < n) {
+ memset((uint8_t *)p + b->iov_len, 0, n - b->iov_len);
+ }
+ b->iov_base = p;
+ b->iov_len = n;
+ return 0;
+}
+
+#define T_ptr(base, pos) ((void *)((uint8_t *)(base) + (uoffset_t)(pos)))
+#define ds_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_ds].iov_base, (pos)))
+#define vs_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vs].iov_base, (pos)))
+#define pl_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_pl].iov_base, (pos)))
+#define us_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_us].iov_base, (pos)))
+#define vd_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vd].iov_base, (pos)))
+#define vb_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vb].iov_base, (pos)))
+#define vs_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_vs].iov_base))
+#define pl_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_pl].iov_base))
+#define us_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_us].iov_base))
+
+#define table_limit (FLATBUFFERS_VOFFSET_MAX - field_size + 1)
+#define data_limit (FLATBUFFERS_UOFFSET_MAX - field_size + 1)
+
+#define set_identifier(id) memcpy(&B->identifier, (id) ? (void *)(id) : (void *)_pad, identifier_size)
+
+/* Must also return true when no buffer has been started. */
+#define is_top_buffer(B) (B->nest_id == 0)
+
+/*
+ * Tables use a stack represention better suited for quickly adding
+ * fields to tables, but it must occasionally be refreshed following
+ * reallocation or reentry from child frame.
+ */
+static inline void refresh_ds(flatcc_builder_t *B, uoffset_t type_limit)
+{
+ iovec_t *buf = B->buffers + flatcc_builder_alloc_ds;
+
+ B->ds = ds_ptr(B->ds_first);
+ B->ds_limit = (uoffset_t)buf->iov_len - B->ds_first;
+ /*
+ * So we don't allocate outside tables representation size, nor our
+ * current buffer size.
+ */
+ if (B->ds_limit > type_limit) {
+ B->ds_limit = type_limit;
+ }
+ /* So exit frame can refresh fast. */
+ frame(type_limit) = type_limit;
+}
+
+static int reserve_ds(flatcc_builder_t *B, size_t need, uoffset_t limit)
+{
+ iovec_t *buf = B->buffers + flatcc_builder_alloc_ds;
+
+ if (B->alloc(B->alloc_context, buf, B->ds_first + need, 1, flatcc_builder_alloc_ds)) {
+ return -1;
+ }
+ refresh_ds(B, limit);
+ return 0;
+}
+
+/*
+ * Make sure there is always an extra zero termination on stack
+ * even if it isn't emitted such that string updates may count
+ * on zero termination being present always.
+ */
+static inline void *push_ds(flatcc_builder_t *B, uoffset_t size)
+{
+ size_t offset;
+
+ offset = B->ds_offset;
+ if ((B->ds_offset += size) >= B->ds_limit) {
+ if (reserve_ds(B, B->ds_offset + 1, data_limit)) {
+ return 0;
+ }
+ }
+ return B->ds + offset;
+}
+
+static inline void unpush_ds(flatcc_builder_t *B, uoffset_t size)
+{
+ B->ds_offset -= size;
+ memset(B->ds + B->ds_offset, 0, size);
+}
+
+static inline void *push_ds_copy(flatcc_builder_t *B, const void *data, uoffset_t size)
+{
+ void *p;
+
+ if (!(p = push_ds(B, size))) {
+ return 0;
+ }
+ memcpy(p, data, size);
+ return p;
+}
+
+static inline void *push_ds_field(flatcc_builder_t *B, uoffset_t size, uint16_t align, voffset_t id)
+{
+ uoffset_t offset;
+
+ /*
+ * We calculate table field alignment relative to first entry, not
+ * header field with vtable offset.
+ *
+ * Note: >= comparison handles special case where B->ds is not
+ * allocated yet and size is 0 so the return value would be mistaken
+ * for an error.
+ */
+ offset = alignup_uoffset(B->ds_offset, align);
+ if ((B->ds_offset = offset + size) >= B->ds_limit) {
+ if (reserve_ds(B, B->ds_offset + 1, table_limit)) {
+ return 0;
+ }
+ }
+ B->vs[id] = (voffset_t)(offset + field_size);
+ if (id >= B->id_end) {
+ B->id_end = id + 1u;
+ }
+ return B->ds + offset;
+}
+
+static inline void *push_ds_offset_field(flatcc_builder_t *B, voffset_t id)
+{
+ uoffset_t offset;
+
+ offset = alignup_uoffset(B->ds_offset, field_size);
+ if ((B->ds_offset = offset + field_size) > B->ds_limit) {
+ if (reserve_ds(B, B->ds_offset, table_limit)) {
+ return 0;
+ }
+ }
+ B->vs[id] = (voffset_t)(offset + field_size);
+ if (id >= B->id_end) {
+ B->id_end = id + 1u;
+ }
+ *B->pl++ = (flatbuffers_voffset_t)offset;
+ return B->ds + offset;
+}
+
+static inline void *reserve_buffer(flatcc_builder_t *B, int alloc_type, size_t used, size_t need, int zero_init)
+{
+ iovec_t *buf = B->buffers + alloc_type;
+
+ if (used + need > buf->iov_len) {
+ if (B->alloc(B->alloc_context, buf, used + need, zero_init, alloc_type)) {
+ check(0, "memory allocation failed");
+ return 0;
+ }
+ }
+ return (void *)((size_t)buf->iov_base + used);
+}
+
+static inline int reserve_fields(flatcc_builder_t *B, int count)
+{
+ size_t used, need;
+
+ /* Provide faster stack operations for common table operations. */
+ used = frame(container.table.vs_end) + frame(container.table.id_end) * sizeof(voffset_t);
+ need = (size_t)(count + 2) * sizeof(voffset_t);
+ if (!(B->vs = reserve_buffer(B, flatcc_builder_alloc_vs, used, need, 1))) {
+ return -1;
+ }
+ /* Move past header for convenience. */
+ B->vs += 2;
+ used = frame(container.table.pl_end);
+ /* Add one to handle special case of first table being empty. */
+ need = (size_t)count * sizeof(*(B->pl)) + 1;
+ if (!(B->pl = reserve_buffer(B, flatcc_builder_alloc_pl, used, need, 0))) {
+ return -1;
+ }
+ return 0;
+}
+
+static int alloc_ht(flatcc_builder_t *B)
+{
+ iovec_t *buf = B->buffers + flatcc_builder_alloc_ht;
+
+ size_t size, k;
+ /* Allocate null entry so we can check for return errors. */
+ FLATCC_ASSERT(B->vd_end == 0);
+ if (!reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0)) {
+ return -1;
+ }
+ B->vd_end = sizeof(vtable_descriptor_t);
+ size = field_size * FLATCC_BUILDER_MIN_HASH_COUNT;
+ if (B->alloc(B->alloc_context, buf, size, 1, flatcc_builder_alloc_ht)) {
+ return -1;
+ }
+ while (size * 2 <= buf->iov_len) {
+ size *= 2;
+ }
+ size /= field_size;
+ for (k = 0; (((size_t)1) << k) < size; ++k) {
+ }
+ B->ht_width = k;
+ return 0;
+}
+
+static inline uoffset_t *lookup_ht(flatcc_builder_t *B, uint32_t hash)
+{
+ uoffset_t *T;
+
+ if (B->ht_width == 0) {
+ if (alloc_ht(B)) {
+ return 0;
+ }
+ }
+ T = B->buffers[flatcc_builder_alloc_ht].iov_base;
+
+ return &T[FLATCC_BUILDER_BUCKET_VT_HASH(hash, B->ht_width)];
+}
+
+void flatcc_builder_flush_vtable_cache(flatcc_builder_t *B)
+{
+ iovec_t *buf = B->buffers + flatcc_builder_alloc_ht;
+
+ if (B->ht_width == 0) {
+ return;
+ }
+ memset(buf->iov_base, 0, buf->iov_len);
+ /* Reserve the null entry. */
+ B->vd_end = sizeof(vtable_descriptor_t);
+ B->vb_end = 0;
+}
+
+int flatcc_builder_custom_init(flatcc_builder_t *B,
+ flatcc_builder_emit_fun *emit, void *emit_context,
+ flatcc_builder_alloc_fun *alloc, void *alloc_context)
+{
+ /*
+ * Do not allocate anything here. Only the required buffers will be
+ * allocated. For simple struct buffers, no allocation is required
+ * at all.
+ */
+ memset(B, 0, sizeof(*B));
+
+ if (emit == 0) {
+ B->is_default_emitter = 1;
+ emit = flatcc_emitter;
+ emit_context = &B->default_emit_context;
+ }
+ if (alloc == 0) {
+ alloc = flatcc_builder_default_alloc;
+ }
+ B->alloc_context = alloc_context;
+ B->alloc = alloc;
+ B->emit_context = emit_context;
+ B->emit = emit;
+ return 0;
+}
+
+int flatcc_builder_init(flatcc_builder_t *B)
+{
+ return flatcc_builder_custom_init(B, 0, 0, 0, 0);
+}
+
+int flatcc_builder_custom_reset(flatcc_builder_t *B, int set_defaults, int reduce_buffers)
+{
+ iovec_t *buf;
+ int i;
+
+ for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) {
+ buf = B->buffers + i;
+ if (buf->iov_base) {
+ /* Don't try to reduce the hash table. */
+ if (i != flatcc_builder_alloc_ht &&
+ reduce_buffers && B->alloc(B->alloc_context, buf, 1, 1, i)) {
+ return -1;
+ }
+ memset(buf->iov_base, 0, buf->iov_len);
+ } else {
+ FLATCC_ASSERT(buf->iov_len == 0);
+ }
+ }
+ B->vb_end = 0;
+ if (B->vd_end > 0) {
+ /* Reset past null entry. */
+ B->vd_end = sizeof(vtable_descriptor_t);
+ }
+ B->min_align = 0;
+ B->emit_start = 0;
+ B->emit_end = 0;
+ B->level = 0;
+ B->limit_level = 0;
+ B->ds_offset = 0;
+ B->ds_limit = 0;
+ B->nest_count = 0;
+ B->nest_id = 0;
+ /* Needed for correct offset calculation. */
+ B->ds = B->buffers[flatcc_builder_alloc_ds].iov_base;
+ B->pl = B->buffers[flatcc_builder_alloc_pl].iov_base;
+ B->vs = B->buffers[flatcc_builder_alloc_vs].iov_base;
+ B->frame = 0;
+ if (set_defaults) {
+ B->vb_flush_limit = 0;
+ B->max_level = 0;
+ B->disable_vt_clustering = 0;
+ }
+ if (B->is_default_emitter) {
+ flatcc_emitter_reset(&B->default_emit_context);
+ }
+ if (B->refmap) {
+ flatcc_refmap_reset(B->refmap);
+ }
+ return 0;
+}
+
+int flatcc_builder_reset(flatcc_builder_t *B)
+{
+ return flatcc_builder_custom_reset(B, 0, 0);
+}
+
+void flatcc_builder_clear(flatcc_builder_t *B)
+{
+ iovec_t *buf;
+ int i;
+
+ for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) {
+ buf = B->buffers + i;
+ B->alloc(B->alloc_context, buf, 0, 0, i);
+ }
+ if (B->is_default_emitter) {
+ flatcc_emitter_clear(&B->default_emit_context);
+ }
+ if (B->refmap) {
+ flatcc_refmap_clear(B->refmap);
+ }
+ memset(B, 0, sizeof(*B));
+}
+
+static inline void set_min_align(flatcc_builder_t *B, uint16_t align)
+{
+ if (B->min_align < align) {
+ B->min_align = align;
+ }
+}
+
+/*
+ * It's a max, but the minimum viable alignment is the largest observed
+ * alignment requirement, but no larger.
+ */
+static inline void get_min_align(uint16_t *align, uint16_t b)
+{
+ if (*align < b) {
+ *align = b;
+ }
+}
+
+void *flatcc_builder_enter_user_frame_ptr(flatcc_builder_t *B, size_t size)
+{
+ size_t *frame;
+
+ size = alignup_size(size, sizeof(size_t)) + sizeof(size_t);
+
+ if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) {
+ return 0;
+ }
+ memset(frame, 0, size);
+ *frame++ = B->user_frame_offset;
+ B->user_frame_offset = B->user_frame_end + sizeof(size_t);
+ B->user_frame_end += size;
+ return frame;
+}
+
+size_t flatcc_builder_enter_user_frame(flatcc_builder_t *B, size_t size)
+{
+ size_t *frame;
+
+ size = alignup_size(size, sizeof(size_t)) + sizeof(size_t);
+
+ if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) {
+ return 0;
+ }
+ memset(frame, 0, size);
+ *frame++ = B->user_frame_offset;
+ B->user_frame_offset = B->user_frame_end + sizeof(size_t);
+ B->user_frame_end += size;
+ return B->user_frame_offset;
+}
+
+
+size_t flatcc_builder_exit_user_frame(flatcc_builder_t *B)
+{
+ size_t *hdr;
+
+ FLATCC_ASSERT(B->user_frame_offset > 0);
+
+ hdr = us_ptr(B->user_frame_offset);
+ B->user_frame_end = B->user_frame_offset - sizeof(size_t);
+ return B->user_frame_offset = hdr[-1];
+}
+
+size_t flatcc_builder_exit_user_frame_at(flatcc_builder_t *B, size_t handle)
+{
+ FLATCC_ASSERT(B->user_frame_offset >= handle);
+
+ B->user_frame_offset = handle;
+ return flatcc_builder_exit_user_frame(B);
+}
+
+size_t flatcc_builder_get_current_user_frame(flatcc_builder_t *B)
+{
+ return B->user_frame_offset;
+}
+
+void *flatcc_builder_get_user_frame_ptr(flatcc_builder_t *B, size_t handle)
+{
+ return us_ptr(handle);
+}
+
+static int enter_frame(flatcc_builder_t *B, uint16_t align)
+{
+ if (++B->level > B->limit_level) {
+ if (B->max_level > 0 && B->level > B->max_level) {
+ return -1;
+ }
+ if (!(B->frame = reserve_buffer(B, flatcc_builder_alloc_fs,
+ (size_t)(B->level - 1) * frame_size, frame_size, 0))) {
+ return -1;
+ }
+ B->limit_level = (int)(B->buffers[flatcc_builder_alloc_fs].iov_len / frame_size);
+ if (B->max_level > 0 && B->max_level < B->limit_level) {
+ B->limit_level = B->max_level;
+ }
+ } else {
+ ++B->frame;
+ }
+ frame(ds_offset) = B->ds_offset;
+ frame(align) = B->align;
+ B->align = align;
+ /* Note: do not assume padding before first has been allocated! */
+ frame(ds_first) = B->ds_first;
+ frame(type_limit) = data_limit;
+ B->ds_first = alignup_uoffset(B->ds_first + B->ds_offset, 8);
+ B->ds_offset = 0;
+ return 0;
+}
+
+static inline void exit_frame(flatcc_builder_t *B)
+{
+ memset(B->ds, 0, B->ds_offset);
+ B->ds_offset = frame(ds_offset);
+ B->ds_first = frame(ds_first);
+ refresh_ds(B, frame(type_limit));
+
+ /*
+ * Restore local alignment: e.g. a table should not change alignment
+ * because a child table was just created elsewhere in the buffer,
+ * but the overall alignment (min align), should be aware of it.
+ * Each buffer has its own min align that then migrates up without
+ * being affected by sibling or child buffers.
+ */
+ set_min_align(B, B->align);
+ B->align = frame(align);
+
+ --B->frame;
+ --B->level;
+}
+
+static inline uoffset_t front_pad(flatcc_builder_t *B, uoffset_t size, uint16_t align)
+{
+ return (uoffset_t)(B->emit_start - (flatcc_builder_ref_t)size) & (align - 1u);
+}
+
+static inline uoffset_t back_pad(flatcc_builder_t *B, uint16_t align)
+{
+ return (uoffset_t)(B->emit_end) & (align - 1u);
+}
+
+static inline flatcc_builder_ref_t emit_front(flatcc_builder_t *B, iov_state_t *iov)
+{
+ flatcc_builder_ref_t ref;
+
+ /*
+ * We might have overflow when including headers, but without
+ * headers we should have checks to prevent overflow in the
+ * uoffset_t range, hence we subtract 16 to be safe. With that
+ * guarantee we can also make a safe check on the soffset_t range.
+ *
+ * We only allow buffers half the theoritical size of
+ * FLATBUFFERS_UOFFSET_MAX so we can safely use signed references.
+ *
+ * NOTE: vtables vt_offset field is signed, and the check in create
+ * table only ensures the signed limit. The check would fail if the
+ * total buffer size could grow beyond UOFFSET_MAX, and we prevent
+ * that by limiting the lower end to SOFFSET_MIN, and the upper end
+ * at emit_back to SOFFSET_MAX.
+ */
+ ref = B->emit_start - (flatcc_builder_ref_t)iov->len;
+ if ((iov->len > 16 && iov->len - 16 > FLATBUFFERS_UOFFSET_MAX) || ref >= B->emit_start) {
+ check(0, "buffer too large to represent");
+ return 0;
+ }
+ if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) {
+ check(0, "emitter rejected buffer content");
+ return 0;
+ }
+ return B->emit_start = ref;
+}
+
+static inline flatcc_builder_ref_t emit_back(flatcc_builder_t *B, iov_state_t *iov)
+{
+ flatcc_builder_ref_t ref;
+
+ ref = B->emit_end;
+ B->emit_end = ref + (flatcc_builder_ref_t)iov->len;
+ /*
+ * Similar to emit_front check, but since we only emit vtables and
+ * padding at the back, we are not concerned with iov->len overflow,
+ * only total buffer overflow.
+ *
+ * With this check, vtable soffset references at table header can
+ * still overflow in extreme cases, so this must be checked
+ * separately.
+ */
+ if (B->emit_end < ref) {
+ check(0, "buffer too large to represent");
+ return 0;
+ }
+ if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) {
+ check(0, "emitter rejected buffer content");
+ return 0;
+ }
+ /*
+ * Back references always return ref + 1 because ref == 0 is valid and
+ * should not be mistaken for error. vtables understand this.
+ */
+ return ref + 1;
+}
+
+static int align_to_block(flatcc_builder_t *B, uint16_t *align, uint16_t block_align, int is_nested)
+{
+ size_t end_pad;
+ iov_state_t iov;
+
+ block_align = block_align ? block_align : B->block_align ? B->block_align : 1;
+ get_min_align(align, field_size);
+ get_min_align(align, block_align);
+ /* Pad end of buffer to multiple. */
+ if (!is_nested) {
+ end_pad = back_pad(B, block_align);
+ if (end_pad) {
+ init_iov();
+ push_iov(_pad, end_pad);
+ if (0 == emit_back(B, &iov)) {
+ check(0, "emitter rejected buffer content");
+ return -1;
+ }
+ }
+ }
+ return 0;
+}
+
+flatcc_builder_ref_t flatcc_builder_embed_buffer(flatcc_builder_t *B,
+ uint16_t block_align,
+ const void *data, size_t size, uint16_t align, flatcc_builder_buffer_flags_t flags)
+{
+ uoffset_t size_field, pad;
+ iov_state_t iov;
+ int with_size = (flags & flatcc_builder_with_size) != 0;
+
+ if (align_to_block(B, &align, block_align, !is_top_buffer(B))) {
+ return 0;
+ }
+ pad = front_pad(B, (uoffset_t)(size + (with_size ? field_size : 0)), align);
+ write_uoffset(&size_field, (uoffset_t)size + pad);
+ init_iov();
+ /* Add ubyte vector size header if nested buffer. */
+ push_iov_cond(&size_field, field_size, !is_top_buffer(B));
+ push_iov(data, size);
+ push_iov(_pad, pad);
+ return emit_front(B, &iov);
+}
+
+flatcc_builder_ref_t flatcc_builder_create_buffer(flatcc_builder_t *B,
+ const char identifier[identifier_size], uint16_t block_align,
+ flatcc_builder_ref_t object_ref, uint16_t align, flatcc_builder_buffer_flags_t flags)
+{
+ flatcc_builder_ref_t buffer_ref;
+ uoffset_t header_pad, id_size = 0;
+ uoffset_t object_offset, buffer_size, buffer_base;
+ iov_state_t iov;
+ flatcc_builder_identifier_t id_out = 0;
+ int is_nested = (flags & flatcc_builder_is_nested) != 0;
+ int with_size = (flags & flatcc_builder_with_size) != 0;
+
+ if (align_to_block(B, &align, block_align, is_nested)) {
+ return 0;
+ }
+ set_min_align(B, align);
+ if (identifier) {
+ FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == identifier_size);
+ FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == field_size);
+ memcpy(&id_out, identifier, identifier_size);
+ id_out = __flatbuffers_thash_read_from_le(&id_out);
+ write_identifier(&id_out, id_out);
+ }
+ id_size = id_out ? identifier_size : 0;
+ header_pad = front_pad(B, field_size + id_size + (uoffset_t)(with_size ? field_size : 0), align);
+ init_iov();
+ /* ubyte vectors size field wrapping nested buffer. */
+ push_iov_cond(&buffer_size, field_size, is_nested || with_size);
+ push_iov(&object_offset, field_size);
+ /* Identifiers are not always present in buffer. */
+ push_iov(&id_out, id_size);
+ push_iov(_pad, header_pad);
+ buffer_base = (uoffset_t)B->emit_start - (uoffset_t)iov.len + (uoffset_t)((is_nested || with_size) ? field_size : 0);
+ if (is_nested) {
+ write_uoffset(&buffer_size, (uoffset_t)B->buffer_mark - buffer_base);
+ } else {
+ /* Also include clustered vtables. */
+ write_uoffset(&buffer_size, (uoffset_t)B->emit_end - buffer_base);
+ }
+ write_uoffset(&object_offset, (uoffset_t)object_ref - buffer_base);
+ if (0 == (buffer_ref = emit_front(B, &iov))) {
+ check(0, "emitter rejected buffer content");
+ return 0;
+ }
+ return buffer_ref;
+}
+
+flatcc_builder_ref_t flatcc_builder_create_struct(flatcc_builder_t *B, const void *data, size_t size, uint16_t align)
+{
+ size_t pad;
+ iov_state_t iov;
+
+ check(align >= 1, "align cannot be 0");
+ set_min_align(B, align);
+ pad = front_pad(B, (uoffset_t)size, align);
+ init_iov();
+ push_iov(data, size);
+ /*
+ * Normally structs will already be a multiple of their alignment,
+ * so this padding will not likely be emitted.
+ */
+ push_iov(_pad, pad);
+ return emit_front(B, &iov);
+}
+
+int flatcc_builder_start_buffer(flatcc_builder_t *B,
+ const char identifier[identifier_size], uint16_t block_align, flatcc_builder_buffer_flags_t flags)
+{
+ /*
+ * This saves the parent `min_align` in the align field since we
+ * shouldn't use that for the current buffer. `exit_frame`
+ * automatically aggregates align up, so it is updated when the
+ * buffer frame exits.
+ */
+ if (enter_frame(B, B->min_align)) {
+ return -1;
+ }
+ /* B->align now has parent min_align, and child frames will save it. */
+ B->min_align = 1;
+ /* Save the parent block align, and set proper defaults for this buffer. */
+ frame(container.buffer.block_align) = B->block_align;
+ B->block_align = block_align;
+ frame(container.buffer.flags = B->buffer_flags);
+ B->buffer_flags = (uint16_t)flags;
+ frame(container.buffer.mark) = B->buffer_mark;
+ frame(container.buffer.nest_id) = B->nest_id;
+ /*
+ * End of buffer when nested. Not defined for top-level because we
+ * here (on only here) permit strings etc. to be created before buffer start and
+ * because top-level buffer vtables can be clustered.
+ */
+ B->buffer_mark = B->emit_start;
+ /* Must be 0 before and after entering top-level buffer, and unique otherwise. */
+ B->nest_id = B->nest_count++;
+ frame(container.buffer.identifier) = B->identifier;
+ set_identifier(identifier);
+ frame(type) = flatcc_builder_buffer;
+ return 0;
+}
+
+flatcc_builder_ref_t flatcc_builder_end_buffer(flatcc_builder_t *B, flatcc_builder_ref_t root)
+{
+ flatcc_builder_ref_t buffer_ref;
+ flatcc_builder_buffer_flags_t flags;
+
+ flags = (flatcc_builder_buffer_flags_t)B->buffer_flags & flatcc_builder_with_size;
+ flags |= is_top_buffer(B) ? 0 : flatcc_builder_is_nested;
+ check(frame(type) == flatcc_builder_buffer, "expected buffer frame");
+ set_min_align(B, B->block_align);
+ if (0 == (buffer_ref = flatcc_builder_create_buffer(B, (void *)&B->identifier,
+ B->block_align, root, B->min_align, flags))) {
+ return 0;
+ }
+ B->buffer_mark = frame(container.buffer.mark);
+ B->nest_id = frame(container.buffer.nest_id);
+ B->identifier = frame(container.buffer.identifier);
+ B->buffer_flags = frame(container.buffer.flags);
+ exit_frame(B);
+ return buffer_ref;
+}
+
+void *flatcc_builder_start_struct(flatcc_builder_t *B, size_t size, uint16_t align)
+{
+ /* Allocate space for the struct on the ds stack. */
+ if (enter_frame(B, align)) {
+ return 0;
+ }
+ frame(type) = flatcc_builder_struct;
+ refresh_ds(B, data_limit);
+ return push_ds(B, (uoffset_t)size);
+}
+
+void *flatcc_builder_struct_edit(flatcc_builder_t *B)
+{
+ return B->ds;
+}
+
+flatcc_builder_ref_t flatcc_builder_end_struct(flatcc_builder_t *B)
+{
+ flatcc_builder_ref_t object_ref;
+
+ check(frame(type) == flatcc_builder_struct, "expected struct frame");
+ if (0 == (object_ref = flatcc_builder_create_struct(B, B->ds, B->ds_offset, B->align))) {
+ return 0;
+ }
+ exit_frame(B);
+ return object_ref;
+}
+
+static inline int vector_count_add(flatcc_builder_t *B, uoffset_t count, uoffset_t max_count)
+{
+ uoffset_t n, n1;
+ n = frame(container.vector.count);
+ n1 = n + count;
+ /*
+ * This prevents elem_size * count from overflowing iff max_vector
+ * has been set sensible. Without this check we might allocate to
+ * little on the ds stack and return a buffer the user thinks is
+ * much larger which of course is bad even though the buffer eventually
+ * would fail anyway.
+ */
+ check_error(n <= n1 && n1 <= max_count, -1, "vector too large to represent");
+ frame(container.vector.count) = n1;
+ return 0;
+}
+
+void *flatcc_builder_extend_vector(flatcc_builder_t *B, size_t count)
+{
+ if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) {
+ return 0;
+ }
+ return push_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
+}
+
+void *flatcc_builder_vector_push(flatcc_builder_t *B, const void *data)
+{
+ check(frame(type) == flatcc_builder_vector, "expected vector frame");
+ check_error(frame(container.vector.count) <= frame(container.vector.max_count), 0, "vector max count exceeded");
+ frame(container.vector.count) += 1;
+ return push_ds_copy(B, data, frame(container.vector.elem_size));
+}
+
+void *flatcc_builder_append_vector(flatcc_builder_t *B, const void *data, size_t count)
+{
+ check(frame(type) == flatcc_builder_vector, "expected vector frame");
+ if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) {
+ return 0;
+ }
+ return push_ds_copy(B, data, frame(container.vector.elem_size) * (uoffset_t)count);
+}
+
+flatcc_builder_ref_t *flatcc_builder_extend_offset_vector(flatcc_builder_t *B, size_t count)
+{
+ if (vector_count_add(B, (uoffset_t)count, max_offset_count)) {
+ return 0;
+ }
+ return push_ds(B, (uoffset_t)(field_size * count));
+}
+
+flatcc_builder_ref_t *flatcc_builder_offset_vector_push(flatcc_builder_t *B, flatcc_builder_ref_t ref)
+{
+ flatcc_builder_ref_t *p;
+
+ check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
+ if (frame(container.vector.count) == max_offset_count) {
+ return 0;
+ }
+ frame(container.vector.count) += 1;
+ if (0 == (p = push_ds(B, field_size))) {
+ return 0;
+ }
+ *p = ref;
+ return p;
+}
+
+flatcc_builder_ref_t *flatcc_builder_append_offset_vector(flatcc_builder_t *B, const flatcc_builder_ref_t *refs, size_t count)
+{
+ check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
+ if (vector_count_add(B, (uoffset_t)count, max_offset_count)) {
+ return 0;
+ }
+ return push_ds_copy(B, refs, (uoffset_t)(field_size * count));
+}
+
+char *flatcc_builder_extend_string(flatcc_builder_t *B, size_t len)
+{
+ check(frame(type) == flatcc_builder_string, "expected string frame");
+ if (vector_count_add(B, (uoffset_t)len, max_string_len)) {
+ return 0;
+ }
+ return push_ds(B, (uoffset_t)len);
+}
+
+char *flatcc_builder_append_string(flatcc_builder_t *B, const char *s, size_t len)
+{
+ check(frame(type) == flatcc_builder_string, "expected string frame");
+ if (vector_count_add(B, (uoffset_t)len, max_string_len)) {
+ return 0;
+ }
+ return push_ds_copy(B, s, (uoffset_t)len);
+}
+
+char *flatcc_builder_append_string_str(flatcc_builder_t *B, const char *s)
+{
+ return flatcc_builder_append_string(B, s, strlen(s));
+}
+
+char *flatcc_builder_append_string_strn(flatcc_builder_t *B, const char *s, size_t max_len)
+{
+ return flatcc_builder_append_string(B, s, strnlen(s, max_len));
+}
+
+int flatcc_builder_truncate_vector(flatcc_builder_t *B, size_t count)
+{
+ check(frame(type) == flatcc_builder_vector, "expected vector frame");
+ check_error(frame(container.vector.count) >= count, -1, "cannot truncate vector past empty");
+ frame(container.vector.count) -= (uoffset_t)count;
+ unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
+ return 0;
+}
+
+int flatcc_builder_truncate_offset_vector(flatcc_builder_t *B, size_t count)
+{
+ check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
+ check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty");
+ frame(container.vector.count) -= (uoffset_t)count;
+ unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
+ return 0;
+}
+
+int flatcc_builder_truncate_string(flatcc_builder_t *B, size_t len)
+{
+ check(frame(type) == flatcc_builder_string, "expected string frame");
+ check_error(frame(container.vector.count) >= len, -1, "cannot truncate string past empty");
+ frame(container.vector.count) -= (uoffset_t)len;
+ unpush_ds(B, (uoffset_t)len);
+ return 0;
+}
+
+int flatcc_builder_start_vector(flatcc_builder_t *B, size_t elem_size, uint16_t align, size_t max_count)
+{
+ get_min_align(&align, field_size);
+ if (enter_frame(B, align)) {
+ return -1;
+ }
+ frame(container.vector.elem_size) = (uoffset_t)elem_size;
+ frame(container.vector.count) = 0;
+ frame(container.vector.max_count) = (uoffset_t)max_count;
+ frame(type) = flatcc_builder_vector;
+ refresh_ds(B, data_limit);
+ return 0;
+}
+
+int flatcc_builder_start_offset_vector(flatcc_builder_t *B)
+{
+ if (enter_frame(B, field_size)) {
+ return -1;
+ }
+ frame(container.vector.elem_size) = field_size;
+ frame(container.vector.count) = 0;
+ frame(type) = flatcc_builder_offset_vector;
+ refresh_ds(B, data_limit);
+ return 0;
+}
+
+flatcc_builder_ref_t flatcc_builder_create_offset_vector(flatcc_builder_t *B,
+ const flatcc_builder_ref_t *vec, size_t count)
+{
+ flatcc_builder_ref_t *_vec;
+
+ if (flatcc_builder_start_offset_vector(B)) {
+ return 0;
+ }
+ if (!(_vec = flatcc_builder_extend_offset_vector(B, count))) {
+ return 0;
+ }
+ memcpy(_vec, vec, count * field_size);
+ return flatcc_builder_end_offset_vector(B);
+}
+
+int flatcc_builder_start_string(flatcc_builder_t *B)
+{
+ if (enter_frame(B, 1)) {
+ return -1;
+ }
+ frame(container.vector.elem_size) = 1;
+ frame(container.vector.count) = 0;
+ frame(type) = flatcc_builder_string;
+ refresh_ds(B, data_limit);
+ return 0;
+}
+
+int flatcc_builder_reserve_table(flatcc_builder_t *B, int count)
+{
+ check(count >= 0, "cannot reserve negative count");
+ return reserve_fields(B, count);
+}
+
+int flatcc_builder_start_table(flatcc_builder_t *B, int count)
+{
+ if (enter_frame(B, field_size)) {
+ return -1;
+ }
+ frame(container.table.vs_end) = vs_offset(B->vs);
+ frame(container.table.pl_end) = pl_offset(B->pl);
+ frame(container.table.vt_hash) = B->vt_hash;
+ frame(container.table.id_end) = B->id_end;
+ B->vt_hash = 0;
+ FLATCC_BUILDER_INIT_VT_HASH(B->vt_hash);
+ B->id_end = 0;
+ frame(type) = flatcc_builder_table;
+ if (reserve_fields(B, count)) {
+ return -1;
+ }
+ refresh_ds(B, table_limit);
+ return 0;
+}
+
+flatcc_builder_vt_ref_t flatcc_builder_create_vtable(flatcc_builder_t *B,
+ const voffset_t *vt, voffset_t vt_size)
+{
+ flatcc_builder_vt_ref_t vt_ref;
+ iov_state_t iov;
+ voffset_t *vt_;
+ size_t i;
+
+ /*
+ * Only top-level buffer can cluster vtables because only it can
+ * extend beyond the end.
+ *
+ * We write the vtable after the referencing table to maintain
+ * the construction invariant that any offset reference has
+ * valid emitted data at a higher address, and also that any
+ * issued negative emit address represents an offset reference
+ * to some flatbuffer object or vector (or possibly a root
+ * struct).
+ *
+ * The vt_ref is stored as the reference + 1 to avoid having 0 as a
+ * valid reference (which usally means error). It also idententifies
+ * vtable references as the only uneven references, and the only
+ * references that can be used multiple times in the same buffer.
+ *
+ * We do the vtable conversion here so cached vtables can be built
+ * hashed and compared more efficiently, and so end users with
+ * direct vtable construction don't have to worry about endianness.
+ * This also ensures the hash function works the same wrt.
+ * collision frequency.
+ */
+
+ if (!flatbuffers_is_native_pe()) {
+ /* Make space in vtable cache for temporary endian conversion. */
+ if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) {
+ return 0;
+ }
+ for (i = 0; i < vt_size / sizeof(voffset_t); ++i) {
+ write_voffset(&vt_[i], vt[i]);
+ }
+ vt = vt_;
+ /* We don't need to free the reservation since we don't advance any base pointer. */
+ }
+
+ init_iov();
+ push_iov(vt, vt_size);
+ if (is_top_buffer(B) && !B->disable_vt_clustering) {
+ /* Note that `emit_back` already returns ref + 1 as we require for vtables. */
+ if (0 == (vt_ref = emit_back(B, &iov))) {
+ return 0;
+ }
+ } else {
+ if (0 == (vt_ref = emit_front(B, &iov))) {
+ return 0;
+ }
+ /*
+ * We don't have a valid 0 ref here, but to be consistent with
+ * clustered vtables we offset by one. This cannot be zero
+ * either.
+ */
+ vt_ref += 1;
+ }
+ return vt_ref;
+}
+
+flatcc_builder_vt_ref_t flatcc_builder_create_cached_vtable(flatcc_builder_t *B,
+ const voffset_t *vt, voffset_t vt_size, uint32_t vt_hash)
+{
+ vtable_descriptor_t *vd, *vd2;
+ uoffset_t *pvd, *pvd_head;
+ uoffset_t next;
+ voffset_t *vt_;
+
+ /* This just gets the hash table slot, we still have to inspect it. */
+ if (!(pvd_head = lookup_ht(B, vt_hash))) {
+ return 0;
+ }
+ pvd = pvd_head;
+ next = *pvd;
+ /* Tracks if there already is a cached copy. */
+ vd2 = 0;
+ while (next) {
+ vd = vd_ptr(next);
+ vt_ = vb_ptr(vd->vb_start);
+ if (vt_[0] != vt_size || 0 != memcmp(vt, vt_, vt_size)) {
+ pvd = &vd->next;
+ next = vd->next;
+ continue;
+ }
+ /* Can't share emitted vtables between buffers, */
+ if (vd->nest_id != B->nest_id) {
+ /* but we don't have to resubmit to cache. */
+ vd2 = vd;
+ /* See if there is a better match. */
+ pvd = &vd->next;
+ next = vd->next;
+ continue;
+ }
+ /* Move to front hash strategy. */
+ if (pvd != pvd_head) {
+ *pvd = vd->next;
+ vd->next = *pvd_head;
+ *pvd_head = next;
+ }
+ /* vtable exists and has been emitted within current buffer. */
+ return vd->vt_ref;
+ }
+ /* Allocate new descriptor. */
+ if (!(vd = reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0))) {
+ return 0;
+ }
+ next = B->vd_end;
+ B->vd_end += (uoffset_t)sizeof(vtable_descriptor_t);
+
+ /* Identify the buffer this vtable descriptor belongs to. */
+ vd->nest_id = B->nest_id;
+
+ /* Move to front hash strategy. */
+ vd->next = *pvd_head;
+ *pvd_head = next;
+ if (0 == (vd->vt_ref = flatcc_builder_create_vtable(B, vt, vt_size))) {
+ return 0;
+ }
+ if (vd2) {
+ /* Reuse cached copy. */
+ vd->vb_start = vd2->vb_start;
+ } else {
+ if (B->vb_flush_limit && B->vb_flush_limit < B->vb_end + vt_size) {
+ flatcc_builder_flush_vtable_cache(B);
+ } else {
+ /* Make space in vtable cache. */
+ if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) {
+ return -1;
+ }
+ vd->vb_start = B->vb_end;
+ B->vb_end += vt_size;
+ memcpy(vt_, vt, vt_size);
+ }
+ }
+ return vd->vt_ref;
+}
+
+flatcc_builder_ref_t flatcc_builder_create_table(flatcc_builder_t *B, const void *data, size_t size, uint16_t align,
+ flatbuffers_voffset_t *offsets, int offset_count, flatcc_builder_vt_ref_t vt_ref)
+{
+ int i;
+ uoffset_t pad, vt_offset, vt_offset_field, vt_base, base, offset, *offset_field;
+ iov_state_t iov;
+
+ check(offset_count >= 0, "expected non-negative offset_count");
+ /*
+ * vtable references are offset by 1 to avoid confusion with
+ * 0 as an error reference. It also uniquely identifies them
+ * as vtables being the only uneven reference type.
+ */
+ check(vt_ref & 1, "invalid vtable referenc");
+ get_min_align(&align, field_size);
+ set_min_align(B, align);
+ /* Alignment is calculated for the first element, not the header. */
+ pad = front_pad(B, (uoffset_t)size, align);
+ base = (uoffset_t)B->emit_start - (uoffset_t)(pad + size + field_size);
+ /* Adjust by 1 to get unencoded vtable reference. */
+ vt_base = (uoffset_t)(vt_ref - 1);
+ vt_offset = base - vt_base;
+ /* Avoid overflow. */
+ if (base - vt_offset != vt_base) {
+ return -1;
+ }
+ /* Protocol endian encoding. */
+ write_uoffset(&vt_offset_field, vt_offset);
+ for (i = 0; i < offset_count; ++i) {
+ offset_field = (uoffset_t *)((size_t)data + offsets[i]);
+ offset = *offset_field - base - offsets[i] - (uoffset_t)field_size;
+ write_uoffset(offset_field, offset);
+ }
+ init_iov();
+ push_iov(&vt_offset_field, field_size);
+ push_iov(data, size);
+ push_iov(_pad, pad);
+ return emit_front(B, &iov);
+}
+
+int flatcc_builder_check_required_field(flatcc_builder_t *B, flatbuffers_voffset_t id)
+{
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+
+ return id < B->id_end && B->vs[id] != 0;
+}
+
+int flatcc_builder_check_union_field(flatcc_builder_t *B, flatbuffers_voffset_t id)
+{
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+
+ if (id == 0 || id >= B->id_end) {
+ return 0;
+ }
+ if (B->vs[id - 1] == 0) {
+ return B->vs[id] == 0;
+ }
+ if (*(uint8_t *)(B->ds + B->vs[id - 1])) {
+ return B->vs[id] != 0;
+ }
+ return B->vs[id] == 0;
+}
+
+int flatcc_builder_check_required(flatcc_builder_t *B, const flatbuffers_voffset_t *required, int count)
+{
+ int i;
+
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+
+ if (B->id_end < count) {
+ return 0;
+ }
+ for (i = 0; i < count; ++i) {
+ if (B->vs[required[i]] == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+flatcc_builder_ref_t flatcc_builder_end_table(flatcc_builder_t *B)
+{
+ voffset_t *vt, vt_size;
+ flatcc_builder_ref_t table_ref, vt_ref;
+ int pl_count;
+ voffset_t *pl;
+
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+
+ /* We have `ds_limit`, so we should not have to check for overflow here. */
+
+ vt = B->vs - 2;
+ vt_size = (voffset_t)(sizeof(voffset_t) * (B->id_end + 2u));
+ /* Update vtable header fields, first vtable size, then object table size. */
+ vt[0] = vt_size;
+ /*
+ * The `ds` buffer is always at least `field_size` aligned but excludes the
+ * initial vtable offset field. Therefore `field_size` is added here
+ * to the total table size in the vtable.
+ */
+ vt[1] = (voffset_t)(B->ds_offset + field_size);
+ FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)vt[0], (uint32_t)vt[1]);
+ /* Find already emitted vtable, or emit a new one. */
+ if (!(vt_ref = flatcc_builder_create_cached_vtable(B, vt, vt_size, B->vt_hash))) {
+ return 0;
+ }
+ /* Clear vs stack so it is ready for the next vtable (ds stack is cleared by exit frame). */
+ memset(vt, 0, vt_size);
+
+ pl = pl_ptr(frame(container.table.pl_end));
+ pl_count = (int)(B->pl - pl);
+ if (0 == (table_ref = flatcc_builder_create_table(B, B->ds, B->ds_offset, B->align, pl, pl_count, vt_ref))) {
+ return 0;
+ }
+ B->vt_hash = frame(container.table.vt_hash);
+ B->id_end = frame(container.table.id_end);
+ B->vs = vs_ptr(frame(container.table.vs_end));
+ B->pl = pl_ptr(frame(container.table.pl_end));
+ exit_frame(B);
+ return table_ref;
+}
+
+flatcc_builder_ref_t flatcc_builder_create_vector(flatcc_builder_t *B,
+ const void *data, size_t count, size_t elem_size, uint16_t align, size_t max_count)
+{
+ /*
+ * Note: it is important that vec_size is uoffset not size_t
+ * in case sizeof(uoffset_t) > sizeof(size_t) because max_count is
+ * defined in terms of uoffset_t representation size, and also
+ * because we risk accepting too large a vector even if max_count is
+ * not violated.
+ */
+ uoffset_t vec_size, vec_pad, length_prefix;
+ iov_state_t iov;
+
+ check_error(count <= max_count, 0, "vector max_count violated");
+ get_min_align(&align, field_size);
+ set_min_align(B, align);
+ vec_size = (uoffset_t)count * (uoffset_t)elem_size;
+ /*
+ * That can happen on 32 bit systems when uoffset_t is defined as 64-bit.
+ * `emit_front/back` captures overflow, but not if our size type wraps first.
+ */
+#if FLATBUFFERS_UOFFSET_MAX > SIZE_MAX
+ check_error(vec_size < SIZE_MAX, 0, "vector larger than address space");
+#endif
+ write_uoffset(&length_prefix, (uoffset_t)count);
+ /* Alignment is calculated for the first element, not the header. */
+ vec_pad = front_pad(B, vec_size, align);
+ init_iov();
+ push_iov(&length_prefix, field_size);
+ push_iov(data, vec_size);
+ push_iov(_pad, vec_pad);
+ return emit_front(B, &iov);
+}
+
+/*
+ * Note: FlatBuffers official documentation states that the size field of a
+ * vector is a 32-bit element count. It is not quite clear if the
+ * intention is to have the size field be of type uoffset_t since tables
+ * also have a uoffset_t sized header, or if the vector size should
+ * remain unchanged if uoffset is changed to 16- or 64-bits
+ * respectively. Since it makes most sense to have a vector compatible
+ * with the addressable space, we choose to use uoffset_t as size field,
+ * which remains compatible with the default 32-bit version of uoffset_t.
+ */
+flatcc_builder_ref_t flatcc_builder_end_vector(flatcc_builder_t *B)
+{
+ flatcc_builder_ref_t vector_ref;
+
+ check(frame(type) == flatcc_builder_vector, "expected vector frame");
+
+ if (0 == (vector_ref = flatcc_builder_create_vector(B, B->ds,
+ frame(container.vector.count), frame(container.vector.elem_size),
+ B->align, frame(container.vector.max_count)))) {
+ return 0;
+ }
+ exit_frame(B);
+ return vector_ref;
+}
+
+size_t flatcc_builder_vector_count(flatcc_builder_t *B)
+{
+ return frame(container.vector.count);
+}
+
+void *flatcc_builder_vector_edit(flatcc_builder_t *B)
+{
+ return B->ds;
+}
+
+/* This function destroys the source content but avoids stack allocation. */
+static flatcc_builder_ref_t _create_offset_vector_direct(flatcc_builder_t *B,
+ flatcc_builder_ref_t *vec, size_t count, const utype_t *types)
+{
+ uoffset_t vec_size, vec_pad;
+ uoffset_t length_prefix, offset;
+ uoffset_t i;
+ soffset_t base;
+ iov_state_t iov;
+
+ if ((uoffset_t)count > max_offset_count) {
+ return 0;
+ }
+ set_min_align(B, field_size);
+ vec_size = (uoffset_t)(count * field_size);
+ write_uoffset(&length_prefix, (uoffset_t)count);
+ /* Alignment is calculated for the first element, not the header. */
+ vec_pad = front_pad(B, vec_size, field_size);
+ init_iov();
+ push_iov(&length_prefix, field_size);
+ push_iov(vec, vec_size);
+ push_iov(_pad, vec_pad);
+ base = B->emit_start - (soffset_t)iov.len;
+ for (i = 0; i < (uoffset_t)count; ++i) {
+ /*
+ * 0 is either end of buffer, start of vtables, or start of
+ * buffer depending on the direction in which the buffer is
+ * built. None of these can create a valid 0 reference but it
+ * is easy to create by mistake when manually building offset
+ * vectors.
+ *
+ * Unions do permit nulls, but only when the type is NONE.
+ */
+ if (vec[i] != 0) {
+ offset = (uoffset_t)
+ (vec[i] - base - (soffset_t)(i * field_size) - (soffset_t)field_size);
+ write_uoffset(&vec[i], offset);
+ if (types) {
+ check(types[i] != 0, "union vector cannot have non-null element with type NONE");
+ }
+ } else {
+ if (types) {
+ check(types[i] == 0, "union vector cannot have null element without type NONE");
+ } else {
+ check(0, "offset vector cannot have null element");
+ }
+ }
+ }
+ return emit_front(B, &iov);
+}
+
+flatcc_builder_ref_t flatcc_builder_create_offset_vector_direct(flatcc_builder_t *B,
+ flatcc_builder_ref_t *vec, size_t count)
+{
+ return _create_offset_vector_direct(B, vec, count, 0);
+}
+
+flatcc_builder_ref_t flatcc_builder_end_offset_vector(flatcc_builder_t *B)
+{
+ flatcc_builder_ref_t vector_ref;
+
+ check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
+ if (0 == (vector_ref = flatcc_builder_create_offset_vector_direct(B,
+ (flatcc_builder_ref_t *)B->ds, frame(container.vector.count)))) {
+ return 0;
+ }
+ exit_frame(B);
+ return vector_ref;
+}
+
+flatcc_builder_ref_t flatcc_builder_end_offset_vector_for_unions(flatcc_builder_t *B, const utype_t *types)
+{
+ flatcc_builder_ref_t vector_ref;
+
+ check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
+ if (0 == (vector_ref = _create_offset_vector_direct(B,
+ (flatcc_builder_ref_t *)B->ds, frame(container.vector.count), types))) {
+ return 0;
+ }
+ exit_frame(B);
+ return vector_ref;
+}
+
+void *flatcc_builder_offset_vector_edit(flatcc_builder_t *B)
+{
+ return B->ds;
+}
+
+size_t flatcc_builder_offset_vector_count(flatcc_builder_t *B)
+{
+ return frame(container.vector.count);
+}
+
+int flatcc_builder_table_add_union(flatcc_builder_t *B, int id,
+ flatcc_builder_union_ref_t uref)
+{
+ flatcc_builder_ref_t *pref;
+ flatcc_builder_utype_t *putype;
+
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+ check_error(uref.type != 0 || uref.value == 0, -1, "expected null value for type NONE");
+ if (uref.value != 0) {
+ pref = flatcc_builder_table_add_offset(B, id);
+ check_error(pref != 0, -1, "unable to add union value");
+ *pref = uref.value;
+ }
+ putype = flatcc_builder_table_add(B, id - 1, utype_size, utype_size);
+ check_error(putype != 0, -1, "unable to add union type");
+ write_utype(putype, uref.type);
+ return 0;
+}
+
+int flatcc_builder_table_add_union_vector(flatcc_builder_t *B, int id,
+ flatcc_builder_union_vec_ref_t uvref)
+{
+ flatcc_builder_ref_t *pref;
+
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+ check_error((uvref.type == 0) == (uvref.value == 0), -1, "expected both type and value vector, or neither");
+ if (uvref.type != 0) {
+ pref = flatcc_builder_table_add_offset(B, id - 1);
+ check_error(pref != 0, -1, "unable to add union member");
+ *pref = uvref.type;
+
+ pref = flatcc_builder_table_add_offset(B, id);
+ check_error(pref != 0, -1, "unable to add union member");
+ *pref = uvref.value;
+ }
+ return 0;
+}
+
+flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector(flatcc_builder_t *B,
+ const flatcc_builder_union_ref_t *urefs, size_t count)
+{
+ flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
+ flatcc_builder_utype_t *types;
+ flatcc_builder_ref_t *refs;
+ size_t i;
+
+ if (flatcc_builder_start_offset_vector(B)) {
+ return uvref;
+ }
+ if (0 == flatcc_builder_extend_offset_vector(B, count)) {
+ return uvref;
+ }
+ if (0 == (types = push_ds(B, (uoffset_t)(utype_size * count)))) {
+ return uvref;
+ }
+
+ /* Safe even if push_ds caused stack reallocation. */
+ refs = flatcc_builder_offset_vector_edit(B);
+
+ for (i = 0; i < count; ++i) {
+ types[i] = urefs[i].type;
+ refs[i] = urefs[i].value;
+ }
+ uvref = flatcc_builder_create_union_vector_direct(B,
+ types, refs, count);
+ /* No need to clean up after out temporary types vector. */
+ exit_frame(B);
+ return uvref;
+}
+
+flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector_direct(flatcc_builder_t *B,
+ const flatcc_builder_utype_t *types, flatcc_builder_ref_t *data, size_t count)
+{
+ flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
+
+ if (0 == (uvref.value = _create_offset_vector_direct(B, data, count, types))) {
+ return uvref;
+ }
+ if (0 == (uvref.type = flatcc_builder_create_type_vector(B, types, count))) {
+ return uvref;
+ }
+ return uvref;
+}
+
+flatcc_builder_ref_t flatcc_builder_create_type_vector(flatcc_builder_t *B,
+ const flatcc_builder_utype_t *types, size_t count)
+{
+ return flatcc_builder_create_vector(B, types, count,
+ utype_size, utype_size, max_utype_count);
+}
+
+int flatcc_builder_start_union_vector(flatcc_builder_t *B)
+{
+ if (enter_frame(B, field_size)) {
+ return -1;
+ }
+ frame(container.vector.elem_size) = union_size;
+ frame(container.vector.count) = 0;
+ frame(type) = flatcc_builder_union_vector;
+ refresh_ds(B, data_limit);
+ return 0;
+}
+
+flatcc_builder_union_vec_ref_t flatcc_builder_end_union_vector(flatcc_builder_t *B)
+{
+ flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
+ flatcc_builder_utype_t *types;
+ flatcc_builder_union_ref_t *urefs;
+ flatcc_builder_ref_t *refs;
+ size_t i, count;
+
+ check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
+
+ /*
+ * We could split the union vector in-place, but then we would have
+ * to deal with strict pointer aliasing rules which is not worthwhile
+ * so we create a new offset and type vector on the stack.
+ *
+ * We assume the stack is sufficiently aligned as is.
+ */
+ count = flatcc_builder_union_vector_count(B);
+ if (0 == (refs = push_ds(B, (uoffset_t)(count * (utype_size + field_size))))) {
+ return uvref;
+ }
+ types = (flatcc_builder_utype_t *)(refs + count);
+
+ /* Safe even if push_ds caused stack reallocation. */
+ urefs = flatcc_builder_union_vector_edit(B);
+
+ for (i = 0; i < count; ++i) {
+ types[i] = urefs[i].type;
+ refs[i] = urefs[i].value;
+ }
+ uvref = flatcc_builder_create_union_vector_direct(B, types, refs, count);
+ /* No need to clean up after out temporary types vector. */
+ exit_frame(B);
+ return uvref;
+}
+
+void *flatcc_builder_union_vector_edit(flatcc_builder_t *B)
+{
+ return B->ds;
+}
+
+size_t flatcc_builder_union_vector_count(flatcc_builder_t *B)
+{
+ return frame(container.vector.count);
+}
+
+flatcc_builder_union_ref_t *flatcc_builder_extend_union_vector(flatcc_builder_t *B, size_t count)
+{
+ if (vector_count_add(B, (uoffset_t)count, max_union_count)) {
+ return 0;
+ }
+ return push_ds(B, (uoffset_t)(union_size * count));
+}
+
+int flatcc_builder_truncate_union_vector(flatcc_builder_t *B, size_t count)
+{
+ check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
+ check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty");
+ frame(container.vector.count) -= (uoffset_t)count;
+ unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
+ return 0;
+}
+
+flatcc_builder_union_ref_t *flatcc_builder_union_vector_push(flatcc_builder_t *B,
+ flatcc_builder_union_ref_t uref)
+{
+ flatcc_builder_union_ref_t *p;
+
+ check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
+ if (frame(container.vector.count) == max_union_count) {
+ return 0;
+ }
+ frame(container.vector.count) += 1;
+ if (0 == (p = push_ds(B, union_size))) {
+ return 0;
+ }
+ *p = uref;
+ return p;
+}
+
+flatcc_builder_union_ref_t *flatcc_builder_append_union_vector(flatcc_builder_t *B,
+ const flatcc_builder_union_ref_t *urefs, size_t count)
+{
+ check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
+ if (vector_count_add(B, (uoffset_t)count, max_union_count)) {
+ return 0;
+ }
+ return push_ds_copy(B, urefs, (uoffset_t)(union_size * count));
+}
+
+flatcc_builder_ref_t flatcc_builder_create_string(flatcc_builder_t *B, const char *s, size_t len)
+{
+ uoffset_t s_pad;
+ uoffset_t length_prefix;
+ iov_state_t iov;
+
+ if (len > max_string_len) {
+ return 0;
+ }
+ write_uoffset(&length_prefix, (uoffset_t)len);
+ /* Add 1 for zero termination. */
+ s_pad = front_pad(B, (uoffset_t)len + 1, field_size) + 1;
+ init_iov();
+ push_iov(&length_prefix, field_size);
+ push_iov(s, len);
+ push_iov(_pad, s_pad);
+ return emit_front(B, &iov);
+}
+
+flatcc_builder_ref_t flatcc_builder_create_string_str(flatcc_builder_t *B, const char *s)
+{
+ return flatcc_builder_create_string(B, s, strlen(s));
+}
+
+flatcc_builder_ref_t flatcc_builder_create_string_strn(flatcc_builder_t *B, const char *s, size_t max_len)
+{
+ return flatcc_builder_create_string(B, s, strnlen(s, max_len));
+}
+
+flatcc_builder_ref_t flatcc_builder_end_string(flatcc_builder_t *B)
+{
+ flatcc_builder_ref_t string_ref;
+
+ check(frame(type) == flatcc_builder_string, "expected string frame");
+ FLATCC_ASSERT(frame(container.vector.count) == B->ds_offset);
+ if (0 == (string_ref = flatcc_builder_create_string(B,
+ (const char *)B->ds, B->ds_offset))) {
+ return 0;
+ }
+ exit_frame(B);
+ return string_ref;
+}
+
+char *flatcc_builder_string_edit(flatcc_builder_t *B)
+{
+ return (char *)B->ds;
+}
+
+size_t flatcc_builder_string_len(flatcc_builder_t *B)
+{
+ return frame(container.vector.count);
+}
+
+void *flatcc_builder_table_add(flatcc_builder_t *B, int id, size_t size, uint16_t align)
+{
+ /*
+ * We align the offset relative to the first table field, excluding
+ * the header holding the vtable reference. On the stack, `ds_first`
+ * is aligned to 8 bytes thanks to the `enter_frame` logic, and this
+ * provides a safe way to update the fields on the stack, but here
+ * we are concerned with the target buffer alignment.
+ *
+ * We could also have aligned relative to the end of the table which
+ * would allow us to emit each field immediately, but it would be a
+ * confusing user experience wrt. field ordering, and it would add
+ * more variability to vtable layouts, thus reducing reuse, and
+ * frequent emissions to external emitter interface would be
+ * sub-optimal. Also, with that appoach, the vtable offsets would
+ * have to be adjusted at table end.
+ *
+ * As we have it, each emit occur at table end, vector end, string
+ * end, or buffer end, which might be helpful to various backend
+ * processors.
+ */
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+ check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range");
+ if (align > B->align) {
+ B->align = align;
+ }
+#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD
+ if (B->vs[id] != 0) {
+ return B->ds + B->vs[id] - field_size;
+ }
+#else
+ if (B->vs[id] != 0) {
+ check(0, "table field already set");
+ return 0;
+ }
+#endif
+ FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)size);
+ return push_ds_field(B, (uoffset_t)size, align, (voffset_t)id);
+}
+
+void *flatcc_builder_table_edit(flatcc_builder_t *B, size_t size)
+{
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+
+ return B->ds + B->ds_offset - size;
+}
+
+void *flatcc_builder_table_add_copy(flatcc_builder_t *B, int id, const void *data, size_t size, uint16_t align)
+{
+ void *p;
+
+ if ((p = flatcc_builder_table_add(B, id, size, align))) {
+ memcpy(p, data, size);
+ }
+ return p;
+}
+
+flatcc_builder_ref_t *flatcc_builder_table_add_offset(flatcc_builder_t *B, int id)
+{
+ check(frame(type) == flatcc_builder_table, "expected table frame");
+ check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range");
+#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD
+ if (B->vs[id] != 0) {
+ return B->ds + B->vs[id] - field_size;
+ }
+#else
+ if (B->vs[id] != 0) {
+ check(0, "table field already set");
+ return 0;
+ }
+#endif
+ FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)field_size);
+ return push_ds_offset_field(B, (voffset_t)id);
+}
+
+uint16_t flatcc_builder_push_buffer_alignment(flatcc_builder_t *B)
+{
+ uint16_t old_min_align = B->min_align;
+
+ B->min_align = field_size;
+ return old_min_align;
+}
+
+void flatcc_builder_pop_buffer_alignment(flatcc_builder_t *B, uint16_t pushed_align)
+{
+ set_min_align(B, pushed_align);
+}
+
+uint16_t flatcc_builder_get_buffer_alignment(flatcc_builder_t *B)
+{
+ return B->min_align;
+}
+
+void flatcc_builder_set_vtable_clustering(flatcc_builder_t *B, int enable)
+{
+ /* Inverted because we zero all memory in B on init. */
+ B->disable_vt_clustering = !enable;
+}
+
+void flatcc_builder_set_block_align(flatcc_builder_t *B, uint16_t align)
+{
+ B->block_align = align;
+}
+
+int flatcc_builder_get_level(flatcc_builder_t *B)
+{
+ return B->level;
+}
+
+void flatcc_builder_set_max_level(flatcc_builder_t *B, int max_level)
+{
+ B->max_level = max_level;
+ if (B->limit_level < B->max_level) {
+ B->limit_level = B->max_level;
+ }
+}
+
+size_t flatcc_builder_get_buffer_size(flatcc_builder_t *B)
+{
+ return (size_t)(B->emit_end - B->emit_start);
+}
+
+flatcc_builder_ref_t flatcc_builder_get_buffer_start(flatcc_builder_t *B)
+{
+ return B->emit_start;
+}
+
+flatcc_builder_ref_t flatcc_builder_get_buffer_end(flatcc_builder_t *B)
+{
+ return B->emit_end;
+}
+
+void flatcc_builder_set_vtable_cache_limit(flatcc_builder_t *B, size_t size)
+{
+ B->vb_flush_limit = size;
+}
+
+void flatcc_builder_set_identifier(flatcc_builder_t *B, const char identifier[identifier_size])
+{
+ set_identifier(identifier);
+}
+
+enum flatcc_builder_type flatcc_builder_get_type(flatcc_builder_t *B)
+{
+ return B->frame ? frame(type) : flatcc_builder_empty;
+}
+
+enum flatcc_builder_type flatcc_builder_get_type_at(flatcc_builder_t *B, int level)
+{
+ if (level < 1 || level > B->level) {
+ return flatcc_builder_empty;
+ }
+ return B->frame[level - B->level].type;
+}
+
+void *flatcc_builder_get_direct_buffer(flatcc_builder_t *B, size_t *size_out)
+{
+ if (B->is_default_emitter) {
+ return flatcc_emitter_get_direct_buffer(&B->default_emit_context, size_out);
+ } else {
+ if (size_out) {
+ *size_out = 0;
+ }
+ }
+ return 0;
+}
+
+void *flatcc_builder_copy_buffer(flatcc_builder_t *B, void *buffer, size_t size)
+{
+ /* User is allowed to call tentatively to see if there is support. */
+ if (!B->is_default_emitter) {
+ return 0;
+ }
+ buffer = flatcc_emitter_copy_buffer(&B->default_emit_context, buffer, size);
+ check(buffer, "default emitter declined to copy buffer");
+ return buffer;
+}
+
+void *flatcc_builder_finalize_buffer(flatcc_builder_t *B, size_t *size_out)
+{
+ void * buffer;
+ size_t size;
+
+ size = flatcc_builder_get_buffer_size(B);
+
+ if (size_out) {
+ *size_out = size;
+ }
+
+ buffer = FLATCC_BUILDER_ALLOC(size);
+
+ if (!buffer) {
+ check(0, "failed to allocated memory for finalized buffer");
+ goto done;
+ }
+ if (!flatcc_builder_copy_buffer(B, buffer, size)) {
+ check(0, "default emitter declined to copy buffer");
+ FLATCC_BUILDER_FREE(buffer);
+ buffer = 0;
+ }
+done:
+ if (!buffer && size_out) {
+ *size_out = 0;
+ }
+ return buffer;
+}
+
+void *flatcc_builder_finalize_aligned_buffer(flatcc_builder_t *B, size_t *size_out)
+{
+ void * buffer;
+ size_t align;
+ size_t size;
+
+ size = flatcc_builder_get_buffer_size(B);
+
+ if (size_out) {
+ *size_out = size;
+ }
+ align = flatcc_builder_get_buffer_alignment(B);
+
+ size = (size + align - 1) & ~(align - 1);
+ buffer = FLATCC_BUILDER_ALIGNED_ALLOC(align, size);
+
+ if (!buffer) {
+ goto done;
+ }
+ if (!flatcc_builder_copy_buffer(B, buffer, size)) {
+ FLATCC_BUILDER_ALIGNED_FREE(buffer);
+ buffer = 0;
+ goto done;
+ }
+done:
+ if (!buffer && size_out) {
+ *size_out = 0;
+ }
+ return buffer;
+}
+
+void *flatcc_builder_aligned_alloc(size_t alignment, size_t size)
+{
+ return FLATCC_BUILDER_ALIGNED_ALLOC(alignment, size);
+}
+
+void flatcc_builder_aligned_free(void *p)
+{
+ FLATCC_BUILDER_ALIGNED_FREE(p);
+}
+
+void *flatcc_builder_alloc(size_t size)
+{
+ return FLATCC_BUILDER_ALLOC(size);
+}
+
+void flatcc_builder_free(void *p)
+{
+ FLATCC_BUILDER_FREE(p);
+}
+
+void *flatcc_builder_get_emit_context(flatcc_builder_t *B)
+{
+ return B->emit_context;
+}