diff options
Diffstat (limited to 'include/flatcc/portable/grisu3_parse.h')
-rw-r--r-- | include/flatcc/portable/grisu3_parse.h | 582 |
1 files changed, 582 insertions, 0 deletions
diff --git a/include/flatcc/portable/grisu3_parse.h b/include/flatcc/portable/grisu3_parse.h new file mode 100644 index 0000000..3d67c9a --- /dev/null +++ b/include/flatcc/portable/grisu3_parse.h @@ -0,0 +1,582 @@ +/* + * Copyright (c) 2016 Mikkel F. Jørgensen, dvide.com + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. http://www.apache.org/licenses/LICENSE-2.0 + */ + +/* + * Port of parts of Google Double Conversion strtod functionality + * but with fallback to strtod instead of a bignum implementation. + * + * Based on grisu3 math from MathGeoLib. + * + * See also grisu3_math.h comments. + */ + +#ifndef GRISU3_PARSE_H +#define GRISU3_PARSE_H + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef UINT8_MAX +#include <stdint.h> +#endif + +#include <stdlib.h> +#include <limits.h> + +#include "grisu3_math.h" + + +/* + * The maximum number characters a valid number may contain. The parse + * fails if the input length is longer but the character after max len + * was part of the number. + * + * The length should not be set too high because it protects against + * overflow in the exponent part derived from the input length. + */ +#define GRISU3_NUM_MAX_LEN 1000 + +/* + * The lightweight "portable" C library recognizes grisu3 support if + * included first. + */ +#define grisu3_parse_double_is_defined 1 + +/* + * Disable to compare performance and to test diy_fp algorithm in + * broader range. + */ +#define GRISU3_PARSE_FAST_CASE + +/* May result in a one off error, otherwise when uncertain, fall back to strtod. */ +//#define GRISU3_PARSE_ALLOW_ERROR + + +/* + * The dec output exponent jumps in 8, so the result is offset at most + * by 7 when the input is within range. + */ +static int grisu3_diy_fp_cached_dec_pow(int d_exp, grisu3_diy_fp_t *p) +{ + const int cached_offset = -GRISU3_MIN_CACHED_EXP; + const int d_exp_dist = GRISU3_CACHED_EXP_STEP; + int i, a_exp; + + GRISU3_ASSERT(GRISU3_MIN_CACHED_EXP <= d_exp); + GRISU3_ASSERT(d_exp < GRISU3_MAX_CACHED_EXP + d_exp_dist); + + i = (d_exp + cached_offset) / d_exp_dist; + a_exp = grisu3_diy_fp_pow_cache[i].d_exp; + p->f = grisu3_diy_fp_pow_cache[i].fract; + p->e = grisu3_diy_fp_pow_cache[i].b_exp; + + GRISU3_ASSERT(a_exp <= d_exp); + GRISU3_ASSERT(d_exp < a_exp + d_exp_dist); + + return a_exp; +} + +/* + * Ported from google double conversion strtod using + * MathGeoLibs diy_fp functions for grisu3 in C. + * + * ulp_half_error is set if needed to trunacted non-zero trialing + * characters. + * + * The actual value we need to encode is: + * + * (sign ? -1 : 1) * fraction * 2 ^ (exponent - fraction_exp) + * where exponent is the base 10 exponent assuming the decimal point is + * after the first digit. fraction_exp is the base 10 magnitude of the + * fraction or number of significant digits - 1. + * + * If the exponent is between 0 and 22 and the fraction is encoded in + * the lower 53 bits (the largest bit is implicit in a double, but not + * in this fraction), then the value can be trivially converted to + * double without loss of precision. If the fraction was in fact + * multiplied by trailing zeroes that we didn't convert to exponent, + * we there are larger values the 53 bits that can also be encoded + * trivially - but then it is better to handle this during parsing + * if it is worthwhile. We do not optimize for this here, because it + * can be done in a simple check before calling, and because it might + * not be worthwile to do at all since it cery likely will fail for + * numbers printed to be convertible back to double without loss. + * + * Returns 0 if conversion was not exact. In that case the vale is + * either one smaller than the correct one, or the correct one. + * + * Exponents must be range protected before calling otherwise cached + * powers will blow up. + * + * Google Double Conversion seems to prefer the following notion: + * + * x >= 10^309 => +Inf + * x <= 10^-324 => 0, + * + * max double: HUGE_VAL = 1.7976931348623157 * 10^308 + * min double: 4.9406564584124654 * 10^-324 + * + * Values just below or above min/max representable number + * may round towards large/small non-Inf/non-neg values. + * + * but `strtod` seems to return +/-HUGE_VAL on overflow? + */ +static int grisu3_diy_fp_encode_double(uint64_t fraction, int exponent, int fraction_exp, int ulp_half_error, double *result) +{ + /* + * Error is measures in fractions of integers, so we scale up to get + * some resolution to represent error expressions. + */ + const int log2_error_one = 3; + const int error_one = 1 << log2_error_one; + const int denorm_exp = GRISU3_D64_DENORM_EXP; + const uint64_t hidden_bit = GRISU3_D64_IMPLICIT_ONE; + const int diy_size = GRISU3_DIY_FP_FRACT_SIZE; + const int max_digits = 19; + + int error = ulp_half_error ? error_one / 2 : 0; + int d_exp = (exponent - fraction_exp); + int a_exp; + int o_exp; + grisu3_diy_fp_t v = { fraction, 0 }; + grisu3_diy_fp_t cp; + grisu3_diy_fp_t rounded; + int mag; + int prec; + int prec_bits; + int half_way; + + /* When fractions in a double aren't stored with implicit msb fraction bit. */ + + /* Shift fraction to msb. */ + v = grisu3_diy_fp_normalize(v); + /* The half point error moves up while the exponent moves down. */ + error <<= -v.e; + + a_exp = grisu3_diy_fp_cached_dec_pow(d_exp, &cp); + + /* Interpolate between cached powers at distance 8. */ + if (a_exp != d_exp) { + int adj_exp = d_exp - a_exp - 1; + static grisu3_diy_fp_t cp_10_lut[] = { + { 0xa000000000000000ULL, -60 }, + { 0xc800000000000000ULL, -57 }, + { 0xfa00000000000000ULL, -54 }, + { 0x9c40000000000000ULL, -50 }, + { 0xc350000000000000ULL, -47 }, + { 0xf424000000000000ULL, -44 }, + { 0x9896800000000000ULL, -40 }, + }; + GRISU3_ASSERT(adj_exp >= 0 && adj_exp < 7); + v = grisu3_diy_fp_multiply(v, cp_10_lut[adj_exp]); + + /* 20 decimal digits won't always fit in 64 bit. + * (`fraction_exp` is one less than significant decimal + * digits in fraction, e.g. 1 * 10e0). + * If we cannot fit, introduce 1/2 ulp error + * (says double conversion reference impl.) */ + if (1 + fraction_exp + adj_exp > max_digits) { + error += error_one / 2; + } + } + + v = grisu3_diy_fp_multiply(v, cp); + /* + * Google double conversion claims that: + * + * The error introduced by a multiplication of a*b equals + * error_a + error_b + error_a*error_b/2^64 + 0.5 + * Substituting a with 'input' and b with 'cached_power' we have + * error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), + * error_ab = 0 or 1 / error_oner > error_a*error_b/ 2^64 + * + * which in our encoding becomes: + * error_a = error_one/2 + * error_ab = 1 / error_one (rounds up to 1 if error != 0, or 0 * otherwise) + * fixed_error = error_one/2 + * + * error += error_a + fixed_error + (error ? 1 : 0) + * + * (this isn't entirely clear, but that is as close as we get). + */ + error += error_one + (error ? 1 : 0); + + o_exp = v.e; + v = grisu3_diy_fp_normalize(v); + /* Again, if we shift the significant bits, the error moves along. */ + error <<= o_exp - v.e; + + /* + * The value `v` is bounded by 2^mag which is 64 + v.e. because we + * just normalized it by shifting towards msb. + */ + mag = diy_size + v.e; + + /* The effective magnitude of the IEEE double representation. */ + mag = mag >= diy_size + denorm_exp ? diy_size : mag <= denorm_exp ? 0 : mag - denorm_exp; + prec = diy_size - mag; + if (prec + log2_error_one >= diy_size) { + int e_scale = prec + log2_error_one - diy_size - 1; + v.f >>= e_scale; + v.e += e_scale; + error = (error >> e_scale) + 1 + error_one; + prec -= e_scale; + } + rounded.f = v.f >> prec; + rounded.e = v.e + prec; + prec_bits = (int)(v.f & ((uint64_t)1 << (prec - 1))) * error_one; + half_way = (int)((uint64_t)1 << (prec - 1)) * error_one; + if (prec >= half_way + error) { + rounded.f++; + /* Prevent overflow. */ + if (rounded.f & (hidden_bit << 1)) { + rounded.f >>= 1; + rounded.e += 1; + } + } + *result = grisu3_cast_double_from_diy_fp(rounded); + return half_way - error >= prec_bits || prec_bits >= half_way + error; +} + +/* + * `end` is unchanged if number is handled natively, or it is the result + * of strtod parsing in case of fallback. + */ +static const char *grisu3_encode_double(const char *buf, const char *end, int sign, uint64_t fraction, int exponent, int fraction_exp, int ulp_half_error, double *result) +{ + const int max_d_exp = GRISU3_D64_MAX_DEC_EXP; + const int min_d_exp = GRISU3_D64_MIN_DEC_EXP; + + char *v_end; + + /* Both for user experience, and to protect internal power table lookups. */ + if (fraction == 0 || exponent < min_d_exp) { + *result = 0.0; + goto done; + } + if (exponent - 1 > max_d_exp) { + *result = grisu3_double_infinity; + goto done; + } + + /* + * `exponent` is the normalized value, fraction_exp is the size of + * the representation in the `fraction value`, or one less than + * number of significant digits. + * + * If the final value can be kept in 53 bits and we can avoid + * division, then we can convert to double quite fast. + * + * ulf_half_error only happens when fraction is maxed out, so + * fraction_exp > 22 by definition. + * + * fraction_exp >= 0 always. + * + * http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ + */ + + +#ifdef GRISU3_PARSE_FAST_CASE + if (fraction < (1ULL << 53) && exponent >= 0 && exponent <= 22) { + double v = (double)fraction; + /* Multiplying by 1e-k instead of dividing by 1ek results in rounding error. */ + switch (exponent - fraction_exp) { + case -22: v /= 1e22; break; + case -21: v /= 1e21; break; + case -20: v /= 1e20; break; + case -19: v /= 1e19; break; + case -18: v /= 1e18; break; + case -17: v /= 1e17; break; + case -16: v /= 1e16; break; + case -15: v /= 1e15; break; + case -14: v /= 1e14; break; + case -13: v /= 1e13; break; + case -12: v /= 1e12; break; + case -11: v /= 1e11; break; + case -10: v /= 1e10; break; + case -9: v /= 1e9; break; + case -8: v /= 1e8; break; + case -7: v /= 1e7; break; + case -6: v /= 1e6; break; + case -5: v /= 1e5; break; + case -4: v /= 1e4; break; + case -3: v /= 1e3; break; + case -2: v /= 1e2; break; + case -1: v /= 1e1; break; + case 0: break; + case 1: v *= 1e1; break; + case 2: v *= 1e2; break; + case 3: v *= 1e3; break; + case 4: v *= 1e4; break; + case 5: v *= 1e5; break; + case 6: v *= 1e6; break; + case 7: v *= 1e7; break; + case 8: v *= 1e8; break; + case 9: v *= 1e9; break; + case 10: v *= 1e10; break; + case 11: v *= 1e11; break; + case 12: v *= 1e12; break; + case 13: v *= 1e13; break; + case 14: v *= 1e14; break; + case 15: v *= 1e15; break; + case 16: v *= 1e16; break; + case 17: v *= 1e17; break; + case 18: v *= 1e18; break; + case 19: v *= 1e19; break; + case 20: v *= 1e20; break; + case 21: v *= 1e21; break; + case 22: v *= 1e22; break; + } + *result = v; + goto done; + } +#endif + + if (grisu3_diy_fp_encode_double(fraction, exponent, fraction_exp, ulp_half_error, result)) { + goto done; + } +#ifdef GRISU3_PARSE_ALLOW_ERROR + goto done; +#endif + *result = strtod(buf, &v_end); + if (v_end < end) { + return v_end; + } + return end; +done: + if (sign) { + *result = -*result; + } + return end; +} + +/* + * Returns buf if number wasn't matched, or null if number starts ok + * but contains invalid content. + */ +static const char *grisu3_parse_hex_fp(const char *buf, const char *end, int sign, double *result) +{ + (void)buf; + (void)end; + (void)sign; + *result = 0.0; + /* Not currently supported. */ + return buf; +} + +/* + * Returns end pointer on success, or null, or buf if start is not a number. + * Sets result to 0.0 on error. + * Reads up to len + 1 bytes from buffer where len + 1 must not be a + * valid part of a number, but all of buf, buf + len need not be a + * number. Leading whitespace is NOT valid. + * Very small numbers are truncated to +/-0.0 and numerically very large + * numbers are returns as +/-infinity. + * + * A value must not end or begin with '.' (like JSON), but can have + * leading zeroes (unlike JSON). A single leading zero followed by + * an encoding symbol may or may not be interpreted as a non-decimal + * encoding prefix, e.g. 0x, but a leading zero followed by a digit is + * NOT interpreted as octal. + * A single leading negative sign may appear before digits, but positive + * sign is not allowed and space after the sign is not allowed. + * At most the first 1000 characters of the input is considered. + */ +static const char *grisu3_parse_double(const char *buf, size_t len, double *result) +{ + const char *mark, *k, *end; + int sign = 0, esign = 0; + uint64_t fraction = 0; + int exponent = 0; + int ee = 0; + int fraction_exp = 0; + int ulp_half_error = 0; + + *result = 0.0; + + end = buf + len + 1; + + /* Failsafe for exponent overflow. */ + if (len > GRISU3_NUM_MAX_LEN) { + end = buf + GRISU3_NUM_MAX_LEN + 1; + } + + if (buf == end) { + return buf; + } + mark = buf; + if (*buf == '-') { + ++buf; + sign = 1; + if (buf == end) { + return 0; + } + } + if (*buf == '0') { + ++buf; + /* | 0x20 is lower case ASCII. */ + if (buf != end && (*buf | 0x20) == 'x') { + k = grisu3_parse_hex_fp(buf, end, sign, result); + if (k == buf) { + return mark; + } + return k; + } + /* Not worthwhile, except for getting the scale of integer part. */ + while (buf != end && *buf == '0') { + ++buf; + } + } else { + if (*buf < '1' || *buf > '9') { + /* + * If we didn't see a sign, just don't recognize it as + * number, otherwise make it an error. + */ + return sign ? 0 : mark; + } + fraction = (uint64_t)(*buf++ - '0'); + } + k = buf; + /* + * We do not catch trailing zeroes when there is no decimal point. + * This misses an opportunity for moving the exponent down into the + * fast case. But it is unlikely to be worthwhile as it complicates + * parsing. + */ + while (buf != end && *buf >= '0' && *buf <= '9') { + if (fraction >= UINT64_MAX / 10) { + fraction += *buf >= '5'; + ulp_half_error = 1; + break; + } + fraction = fraction * 10 + (uint64_t)(*buf++ - '0'); + } + fraction_exp = (int)(buf - k); + /* Skip surplus digits. Trailing zero does not introduce error. */ + while (buf != end && *buf == '0') { + ++exponent; + ++buf; + } + if (buf != end && *buf >= '1' && *buf <= '9') { + ulp_half_error = 1; + ++exponent; + ++buf; + while (buf != end && *buf >= '0' && *buf <= '9') { + ++exponent; + ++buf; + } + } + if (buf != end && *buf == '.') { + ++buf; + k = buf; + if (*buf < '0' || *buf > '9') { + /* We don't accept numbers without leading or trailing digit. */ + return 0; + } + while (buf != end && *buf >= '0' && *buf <= '9') { + if (fraction >= UINT64_MAX / 10) { + if (!ulp_half_error) { + fraction += *buf >= '5'; + ulp_half_error = 1; + } + break; + } + fraction = fraction * 10 + (uint64_t)(*buf++ - '0'); + --exponent; + } + fraction_exp += (int)(buf - k); + while (buf != end && *buf == '0') { + ++exponent; + ++buf; + } + if (buf != end && *buf >= '1' && *buf <= '9') { + ulp_half_error = 1; + ++buf; + while (buf != end && *buf >= '0' && *buf <= '9') { + ++buf; + } + } + } + /* + * Normalized exponent e.g: 1.23434e3 with fraction = 123434, + * fraction_exp = 5, exponent = 3. + * So value = fraction * 10^(exponent - fraction_exp) + */ + exponent += fraction_exp; + if (buf != end && (*buf | 0x20) == 'e') { + if (end - buf < 2) { + return 0; + } + ++buf; + if (*buf == '+') { + ++buf; + if (buf == end) { + return 0; + } + } else if (*buf == '-') { + esign = 1; + ++buf; + if (buf == end) { + return 0; + } + } + if (*buf < '0' || *buf > '9') { + return 0; + } + ee = *buf++ - '0'; + while (buf != end && *buf >= '0' && *buf <= '9') { + /* + * This test impacts performance and we do not need an + * exact value just one large enough to dominate the fraction_exp. + * Subsequent handling maps large absolute ee to 0 or infinity. + */ + if (ee <= 0x7fff) { + ee = ee * 10 + *buf - '0'; + } + ++buf; + } + } + exponent = exponent + (esign ? -ee : ee); + + /* + * Exponent is now a base 10 normalized exponent so the absolute value + * is less the 10^(exponent + 1) for positive exponents. For + * denormalized doubles (using 11 bit exponent 0 with a fraction + * shiftet down, extra small numbers can be achieved. + * + * https://en.wikipedia.org/wiki/Double-precision_floating-point_format + * + * 10^-324 holds the smallest normalized exponent (but not value) and + * 10^308 holds the largest exponent. Internally our lookup table is + * only safe to use within a range slightly larger than this. + * Externally, a slightly larger/smaller value represents NaNs which + * are technically also possible to store as a number. + * + */ + + /* This also protects strod fallback parsing. */ + if (buf == end) { + return 0; + } + return grisu3_encode_double(mark, buf, sign, fraction, exponent, fraction_exp, ulp_half_error, result); +} + +#ifdef __cplusplus +} +#endif + +#endif /* GRISU3_PARSE_H */ |