aboutsummaryrefslogtreecommitdiff
path: root/test/source/EASTLTest.h
blob: 1cb298b1aad08f6d8c6352e9029c5bea67191086 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
/////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
/////////////////////////////////////////////////////////////////////////////


#ifndef EASTLTEST_H
#define EASTLTEST_H


#include <EABase/eabase.h>
#include <EATest/EATest.h>

EA_DISABLE_ALL_VC_WARNINGS()
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <vector>   // For the STD_STL_TYPE defines below.
#if EASTL_EXCEPTIONS_ENABLED
	#include <stdexcept>
	#include <new>
#endif
EA_RESTORE_ALL_VC_WARNINGS();


int TestAlgorithm();
int TestAllocator();
int TestAny();
int TestArray();
int TestBitVector();
int TestBitset();
int TestCharTraits();
int TestChrono();
int TestCppCXTypeTraits();
int TestDeque();
int TestExtra();
int TestFinally();
int TestFixedFunction();
int TestFixedHash();
int TestFixedList();
int TestFixedMap();
int TestFixedSList();
int TestFixedSet();
int TestFixedString();
int TestFixedTupleVector();
int TestFixedVector();
int TestFunctional();
int TestHash();
int TestHeap();
int TestIntrusiveHash();
int TestIntrusiveList();
int TestIntrusiveSDList();
int TestIntrusiveSList();
int TestIterator();
int TestList();
int TestListMap();
int TestLruCache();
int TestMap();
int TestMemory();
int TestMeta();
int TestNumericLimits();
int TestOptional();
int TestRandom();
int TestRatio();
int TestRingBuffer();
int TestSList();
int TestSegmentedVector();
int TestSet();
int TestSmartPtr();
int TestSort();
int TestSpan();
int TestString();
int TestStringHashMap();
int TestStringMap();
int TestStringView();
int TestTuple();
int TestTupleVector();
int TestTypeTraits();
int TestUtility();
int TestVariant();
int TestVector();
int TestVectorMap();
int TestVectorSet();
int TestAtomicBasic();
int TestAtomicAsm();


// Now enable warnings as desired.
#ifdef _MSC_VER
	#pragma warning(disable: 4324)      // 'struct_name' : structure was padded due to __declspec(align())
  //#pragma warning(disable: 4512)      // 'class' : assignment operator could not be generated
  //#pragma warning(disable: 4100)      // 'identifier' : unreferenced formal parameter
  //#pragma warning(disable: 4706)      // assignment within conditional expression

	#pragma warning(default: 4056)      // Floating-point constant arithmetic generates a result that exceeds the maximum allowable value
	#pragma warning(default: 4061)      // The enumerate has no associated handler in a switch statement
	#pragma warning(default: 4062)      // The enumerate has no associated handler in a switch statement, and there is no default label
	#pragma warning(default: 4191)      // Calling this function through the result pointer may cause your program to crash
	#pragma warning(default: 4217)      // Member template functions cannot be used for copy-assignment or copy-construction
  //#pragma warning(default: 4242)      // 'variable' : conversion from 'type' to 'type', possible loss of data
	#pragma warning(default: 4254)      // 'operator' : conversion from 'type1' to 'type2', possible loss of data
	#pragma warning(default: 4255)      // 'function' : no function prototype given: converting '()' to '(void)'
	#pragma warning(default: 4263)      // 'function' : member function does not override any base class virtual member function
	#pragma warning(default: 4264)      // 'virtual_function' : no override available for virtual member function from base 'class'; function is hidden
	#pragma warning(default: 4287)      // 'operator' : unsigned/negative constant mismatch
	#pragma warning(default: 4289)      // Nonstandard extension used : 'var' : loop control variable declared in the for-loop is used outside the for-loop scope
	#pragma warning(default: 4296)      // 'operator' : expression is always false
	#pragma warning(default: 4302)      // 'conversion' : truncation from 'type 1' to 'type 2'
	#pragma warning(default: 4339)      // 'type' : use of undefined type detected in CLR meta-data - use of this type may lead to a runtime exception
	#pragma warning(default: 4347)      // Behavior change: 'function template' is called instead of 'function'
  //#pragma warning(default: 4514)      // unreferenced inline/local function has been removed
	#pragma warning(default: 4529)      // 'member_name' : forming a pointer-to-member requires explicit use of the address-of operator ('&') and a qualified name
	#pragma warning(default: 4545)      // Expression before comma evaluates to a function which is missing an argument list
	#pragma warning(default: 4546)      // Function call before comma missing argument list
	#pragma warning(default: 4547)      // 'operator' : operator before comma has no effect; expected operator with side-effect
  //#pragma warning(default: 4548)      // expression before comma has no effect; expected expression with side-effect
	#pragma warning(default: 4549)      // 'operator' : operator before comma has no effect; did you intend 'operator'?
	#pragma warning(default: 4536)      // 'type name' : type-name exceeds meta-data limit of 'limit' characters
	#pragma warning(default: 4555)      // Expression has no effect; expected expression with side-effect
	#pragma warning(default: 4557)      // '__assume' contains effect 'effect'
  //#pragma warning(default: 4619)      // #pragma warning : there is no warning number 'number'
	#pragma warning(default: 4623)      // 'derived class' : default constructor could not be generated because a base class default constructor is inaccessible
  //#pragma warning(default: 4625)      // 'derived class' : copy constructor could not be generated because a base class copy constructor is inaccessible
  //#pragma warning(default: 4626)      // 'derived class' : assignment operator could not be generated because a base class assignment operator is inaccessible
	#pragma warning(default: 4628)      // Digraphs not supported with -Ze. Character sequence 'digraph' not interpreted as alternate token for 'char'
	#pragma warning(default: 4640)      // 'instance' : construction of local static object is not thread-safe
	#pragma warning(default: 4668)      // 'symbol' is not defined as a preprocessor macro, replacing with '0' for 'directives'
	#pragma warning(default: 4682)      // 'parameter' : no directional parameter attribute specified, defaulting to [in]
	#pragma warning(default: 4686)      // 'user-defined type' : possible change in behavior, change in UDT return calling convention
  //#pragma warning(default: 4710)      // 'function' : function not inlined
  //#pragma warning(default: 4786)      // 'identifier' : identifier was truncated to 'number' characters in the debug information
	#pragma warning(default: 4793)      // Native code generated for function 'function': 'reason'
  //#pragma warning(default: 4820)      // 'bytes' bytes padding added after member 'member'
	#pragma warning(default: 4905)      // Wide string literal cast to 'LPSTR'
	#pragma warning(default: 4906)      // String literal cast to 'LPWSTR'
	#pragma warning(default: 4917)      // 'declarator' : a GUID cannot only be associated with a class, interface or namespace
	#pragma warning(default: 4928)      // Illegal copy-initialization; more than one user-defined conversion has been implicitly applied
	#pragma warning(default: 4931)      // We are assuming the type library was built for number-bit pointers
	#pragma warning(default: 4946)      // reinterpret_cast used between related classes: 'class1' and 'class2'

#endif


///////////////////////////////////////////////////////////////////////////////
// EASTL includes
//
// Intentionally keep these includes below the warning settings specified above.
//
#include <EASTL/iterator.h>
#include <EASTL/algorithm.h>




/// EASTL_TestLevel
///
/// Defines how extensive our testing is. A low level is for a desktop or 
/// nightly build in which the test can run quickly but still hit the 
/// majority of functionality. High level is for heavy testing and internal
/// validation which may take numerous hours to run.
///
enum EASTL_TestLevel
{
	kEASTL_TestLevelLow  = 1,   /// ~10 seconds for test completion.
	kEASTL_TestLevelHigh = 10   /// Numerous hours for test completion.
};

extern int gEASTL_TestLevel;



/// EASTLTest_CheckMemory
///
/// Does a global memory heap validation check. Returns 0 if OK and 
/// an error count if there is a problem. 
///
/// Example usage:
///    EASTLTest_CheckMemory();
///
int EASTLTest_CheckMemory_Imp(const char* pFile, int nLine);
#define EASTLTest_CheckMemory() EASTLTest_CheckMemory_Imp(__FILE__, __LINE__)



// EASTLTEST_STD_STL_VER
//
#if defined(_STLPORT_VERSION)
	#define EASTLTEST_STD_STL_VER_STLPORT
#elif defined(_RWSTD_VER_STR) || defined(_RWSTD_NAMESPACE_END)
	#define EASTLTEST_STD_STL_VER_APACHE
#elif defined(_CPPLIB_VER)
	#define EASTLTEST_STD_STL_VER_DINKUMWARE
#elif defined(__GNUC__) && defined(_CXXCONFIG)
	#define EASTLTEST_STD_STL_VER_GCC
#else
	#define EASTLTEST_STD_STL_VER_UNKNOWN
#endif



/// StdSTLType
///
enum StdSTLType
{
	kSTLUnknown,    // Unknown type
	kSTLPort,       // STLPort. Descendent of the old HP / SGI STL.
	kSTLApache,     // Apache stdcxx (previously RogueWave), which is a descendent of the old HP / SGI STL.
	kSTLClang,      // Clang native. a.k.a. libc++
	kSTLGCC,        // GCC native. a.k.a. libstdc++
	kSTLMS,         // Microsoft. Tweaked version of Dinkumware.
	kSTLDinkumware  // Generic Dinkumware
};

StdSTLType GetStdSTLType();




/// GetStdSTLName
///
/// Returns the name of the std C++ STL available to the current build.
/// The returned value will be one of:
///     "STLPort"
///     "GCC"
///     "VC++"
//      "Apache" // Previously RogueWave
///
const char* GetStdSTLName();


/// gEASTLTest_AllocationCount
///
extern int gEASTLTest_AllocationCount; 
extern int gEASTLTest_TotalAllocationCount; 



// For backwards compatibility:
#define EASTLTest_Printf EA::UnitTest::Report
#define VERIFY           EATEST_VERIFY


///////////////////////////////////////////////////////////////////////////////
/// EASTLTest_Rand
///
/// Implements a basic random number generator for EASTL unit tests. It's not
/// intended to be a robust random number generator (though it is decent), 
/// but rather is present so the unit tests can have a portable random number
/// generator they can rely on being present.
///
/// Example usage:
///    EASTLTest_Rand rng;
///    eastl_size_t   x = rng();                      // Generate value in range of [0, 0xffffffff] (i.e. generate any uint32_t)
///    eastl_ssize_t  y = rng.Rand(1000);             // Generate value in range of [0, 1000)
///    eastl_ssize_t  z = rng.RandRange(-50, +30);    // Generate value in range of [-50, +30)
///
/// Example usage in the random_shuffle algorithm:
///    EASTLTest_Rand rng;
///    random_shuffle(first, last, rnd);
///
class EASTLTest_Rand
{
public:
	EASTLTest_Rand(eastl_size_t nSeed) // The user must supply a seed; we don't provide default values.
		: mnSeed(nSeed) { }

	eastl_size_t Rand()
	{
		// This is not designed to be a high quality random number generator.
		if(mnSeed == 0)
			mnSeed = UINT64_C(0xfefefefefefefefe); // Can't have a seed of zero.

		const uint64_t nResult64A = ((mnSeed     * UINT64_C(6364136223846793005)) + UINT64_C(1442695040888963407));
		const uint64_t nResult64B = ((nResult64A * UINT64_C(6364136223846793005)) + UINT64_C(1442695040888963407));

		mnSeed = (nResult64A >> 32) ^ nResult64B;

		return (eastl_size_t)mnSeed; // For eastl_size_t == uint32_t, this is a chop.
	}

	eastl_size_t operator()() // Returns a pseudorandom value in range of [0, 0xffffffffffffffff)] (i.e. generate any eastl_size_t)
		{ return Rand(); }

	eastl_size_t operator()(eastl_size_t n)  // Returns a pseudorandom value in range of [0, n)
		{ return RandLimit(n); }

	eastl_size_t RandLimit(eastl_size_t nLimit) // Returns a pseudorandom value in range of [0, nLimit)
	{
		// Can't do the following correct solution because we don't have a portable int128_t to work with. 
		// We could implement a 128 bit multiply manually. See EAStdC/int128_t.cpp.
		// return (eastl_size_t)((Rand() * (uint128_t)nLimit) >> 64);

		return (Rand() % nLimit); // This results in an imperfect distribution, especially for the case of nLimit being high relative to eastl_size_t.
	}

	eastl_ssize_t RandRange(eastl_ssize_t nBegin, eastl_ssize_t nEnd)   // Returns a pseudorandom value in range of [nBegin, nEnd)
		{ return nBegin + (eastl_ssize_t)RandLimit((eastl_size_t)(nEnd - nBegin)); }

protected:
	uint64_t mnSeed;
};


///////////////////////////////////////////////////////////////////////////////
/// RandGenT
///
/// A wrapper for EASTLTest_Rand which generates values of the given integral
/// data type. This is mostly useful for clearnly avoiding compiler warnings, 
/// as we intentionally enable the highest warning levels in these tests.
///
template <typename Integer>
struct RandGenT
{
	RandGenT(eastl_size_t nSeed)
		: mRand(nSeed) { }

	Integer operator()()
		{ return (Integer)mRand.Rand(); }

	Integer operator()(eastl_size_t n)
		{ return (Integer)mRand.RandLimit(n); }

	EASTLTest_Rand mRand;
};



///////////////////////////////////////////////////////////////////////////////
/// kMagicValue
///
/// Used as a unique integer. We assign this to TestObject in its constructor
/// and verify in the TestObject destructor that the value is unchanged. 
/// This can be used to tell, for example, if an invalid object is being 
/// destroyed.
///
const uint32_t kMagicValue = 0x01f1cbe8;


///////////////////////////////////////////////////////////////////////////////
/// TestObject
///
/// Implements a generic object that is suitable for use in container tests.
/// Note that we choose a very restricted set of functions that are available
/// for this class. Do not add any additional functions, as that would 
/// compromise the intentions of the unit tests.
///
struct TestObject
{
	int             mX;                  // Value for the TestObject.
	bool            mbThrowOnCopy;       // Throw an exception of this object is copied, moved, or assigned to another.
	int64_t         mId;                 // Unique id for each object, equal to its creation number. This value is not coped from other TestObjects during any operations, including moves.
	uint32_t        mMagicValue;         // Used to verify that an instance is valid and that it is not corrupted. It should always be kMagicValue.
	static int64_t  sTOCount;            // Count of all current existing TestObjects.
	static int64_t  sTOCtorCount;        // Count of times any ctor was called.
	static int64_t  sTODtorCount;        // Count of times dtor was called.
	static int64_t  sTODefaultCtorCount; // Count of times the default ctor was called.
	static int64_t  sTOArgCtorCount;     // Count of times the x0,x1,x2 ctor was called.
	static int64_t  sTOCopyCtorCount;    // Count of times copy ctor was called.
	static int64_t  sTOMoveCtorCount;    // Count of times move ctor was called.
	static int64_t  sTOCopyAssignCount;  // Count of times copy assignment was called.
	static int64_t  sTOMoveAssignCount;  // Count of times move assignment was called.
	static int      sMagicErrorCount;    // Number of magic number mismatch errors.

	explicit TestObject(int x = 0, bool bThrowOnCopy = false)
		: mX(x), mbThrowOnCopy(bThrowOnCopy), mMagicValue(kMagicValue)
	{
		++sTOCount;
		++sTOCtorCount;
		++sTODefaultCtorCount;
		mId = sTOCtorCount;
	}

	// This constructor exists for the purpose of testing variadiac template arguments, such as with the emplace container functions.
	TestObject(int x0, int x1, int x2, bool bThrowOnCopy = false)
		: mX(x0 + x1 + x2), mbThrowOnCopy(bThrowOnCopy), mMagicValue(kMagicValue)
	{
		++sTOCount;
		++sTOCtorCount;
		++sTOArgCtorCount;
		mId = sTOCtorCount;
	}

	TestObject(const TestObject& testObject)
		: mX(testObject.mX), mbThrowOnCopy(testObject.mbThrowOnCopy), mMagicValue(testObject.mMagicValue)
	{
		++sTOCount;
		++sTOCtorCount;
		++sTOCopyCtorCount;
		mId = sTOCtorCount;
		if(mbThrowOnCopy)
		{
			#if EASTL_EXCEPTIONS_ENABLED
				throw "Disallowed TestObject copy";
			#endif
		}
	}

	// Due to the nature of TestObject, there isn't much special for us to 
	// do in our move constructor. A move constructor swaps its contents with 
	// the other object, whhich is often a default-constructed object.
	TestObject(TestObject&& testObject)
		: mX(testObject.mX), mbThrowOnCopy(testObject.mbThrowOnCopy), mMagicValue(testObject.mMagicValue)
	{
		++sTOCount;
		++sTOCtorCount;
		++sTOMoveCtorCount;
		mId = sTOCtorCount;  // testObject keeps its mId, and we assign ours anew.
		testObject.mX = 0;   // We are swapping our contents with the TestObject, so give it our "previous" value.
		if(mbThrowOnCopy)
		{
			#if EASTL_EXCEPTIONS_ENABLED
				throw "Disallowed TestObject copy";
			#endif
		}
	}

	TestObject& operator=(const TestObject& testObject)
	{
		++sTOCopyAssignCount;

		if(&testObject != this)
		{
			mX = testObject.mX;
			// Leave mId alone.
			mMagicValue = testObject.mMagicValue;
			mbThrowOnCopy = testObject.mbThrowOnCopy;
			if(mbThrowOnCopy)
			{
				#if EASTL_EXCEPTIONS_ENABLED
					throw "Disallowed TestObject copy";
				#endif
			}
		}
		return *this;
	}

	TestObject& operator=(TestObject&& testObject)
	{
		++sTOMoveAssignCount;

		if(&testObject != this)
		{
			eastl::swap(mX, testObject.mX);
			// Leave mId alone.
			eastl::swap(mMagicValue, testObject.mMagicValue);
			eastl::swap(mbThrowOnCopy, testObject.mbThrowOnCopy);

			if(mbThrowOnCopy)
			{
				#if EASTL_EXCEPTIONS_ENABLED
					throw "Disallowed TestObject copy";
				#endif
			}
		}
		return *this;
	}

	~TestObject()
	{
		if(mMagicValue != kMagicValue)
			++sMagicErrorCount;
		mMagicValue = 0;
		--sTOCount;
		++sTODtorCount;
	}

	static void Reset()
	{
		sTOCount            = 0;
		sTOCtorCount        = 0;
		sTODtorCount        = 0;
		sTODefaultCtorCount = 0;
		sTOArgCtorCount     = 0;
		sTOCopyCtorCount    = 0;
		sTOMoveCtorCount    = 0;
		sTOCopyAssignCount  = 0;
		sTOMoveAssignCount  = 0;
		sMagicErrorCount    = 0;
	}

	static bool IsClear() // Returns true if there are no existing TestObjects and the sanity checks related to that test OK.
	{
		return (sTOCount == 0) && (sTODtorCount == sTOCtorCount) && (sMagicErrorCount == 0);
	}
};

// Operators
// We specifically define only == and <, in order to verify that 
// our containers and algorithms are not mistakenly expecting other 
// operators for the contained and manipulated classes.
inline bool operator==(const TestObject& t1, const TestObject& t2)
	{ return t1.mX == t2.mX; }

inline bool operator<(const TestObject& t1, const TestObject& t2)
	{ return t1.mX < t2.mX; }


// TestObject hash
// Normally you don't want to put your hash functions in the eastl namespace, as that namespace is owned by EASTL.
// However, these are the EASTL unit tests and we can say that they are also owned by EASTL.
namespace eastl
{
	template <> 
	struct hash<TestObject>
	{
		size_t operator()(const TestObject& a) const 
			{ return static_cast<size_t>(a.mX); }
	};
}


// use_mX
// Used for printing TestObject contents via the PrintSequence function,
// which is defined below. See the PrintSequence function for documentation.
// This function is an analog of the eastl::use_self and use_first functions.
// We declare this all in one line because the user should never need to 
// debug usage of this function.
template <typename T> struct use_mX { int operator()(const T& t) const { return t.mX; } };



///////////////////////////////////////////////////////////////////////////////
// SizedPOD
//
// Exists for the purpose testing PODs that are larger than built-in types.
//
template <size_t kSize>
struct SizedPOD
{
	char memory[kSize];
};



///////////////////////////////////////////////////////////////////////////////
/// ConstType
///
/// Used to test const type containers (e.g. vector<const ConstType>).
///
class ConstType
{
public:
	ConstType(int value) : mDummy(value) {};
	int mDummy;
};




///////////////////////////////////////////////////////////////////////////////
/// TestObjectHash
///
/// Implements a manually specified hash function for TestObjects.
///
struct TestObjectHash
{
	size_t operator()(const TestObject& t) const 
	{
		return (size_t)t.mX;
	}
};





///////////////////////////////////////////////////////////////////////////////
/// Align16
///

#if defined(EA_PROCESSOR_ARM)
	#define kEASTLTestAlign16 8 //ARM processors can only align to 8 
#else
	#define kEASTLTestAlign16 16
#endif


EA_PREFIX_ALIGN(kEASTLTestAlign16)
struct Align16
{
	explicit Align16(int x = 0) : mX(x) {}
	int mX;
} EA_POSTFIX_ALIGN(kEASTLTestAlign16);

inline bool operator==(const Align16& a, const Align16& b)
	{ return (a.mX == b.mX); }

inline bool operator<(const Align16& a, const Align16& b)
	{ return (a.mX < b.mX); }



///////////////////////////////////////////////////////////////////////////////
/// Align32
///
#if defined(EA_PROCESSOR_ARM)
	#define kEASTLTestAlign32 8 //ARM processors can only align to 8 
#elif defined(__GNUC__) && (((__GNUC__ * 100) + __GNUC_MINOR__) < 400) // GCC 2.x, 3.x
	#define kEASTLTestAlign32 16 // Some versions of GCC fail to support any alignment beyond 16.
#else
	#define kEASTLTestAlign32 32
#endif

EA_PREFIX_ALIGN(kEASTLTestAlign32)
struct Align32
{
	explicit Align32(int x = 0) : mX(x) {}
	int mX;
} EA_POSTFIX_ALIGN(kEASTLTestAlign32);

inline bool operator==(const Align32& a, const Align32& b)
	{ return (a.mX == b.mX); }

inline bool operator<(const Align32& a, const Align32& b)
	{ return (a.mX < b.mX); }



///////////////////////////////////////////////////////////////////////////////
/// Align64
///
/// Used for testing of alignment.
///
#if defined(EA_PROCESSOR_ARM)
	#define kEASTLTestAlign64 8
#elif defined(__GNUC__) && (((__GNUC__ * 100) + __GNUC_MINOR__) < 400) // GCC 2.x, 3.x
	#define kEASTLTestAlign64 16 // Some versions of GCC fail to support any alignment beyond 16.
#else
	#define kEASTLTestAlign64 64
#endif

EA_PREFIX_ALIGN(kEASTLTestAlign64)
struct Align64
{
	explicit Align64(int x = 0) : mX(x) {}
	int mX;
} EA_POSTFIX_ALIGN(kEASTLTestAlign64);

inline bool operator==(const Align64& a, const Align64& b)
	{ return (a.mX == b.mX); }

inline bool operator<(const Align64& a, const Align64& b)
	{ return (a.mX < b.mX); }

namespace eastl
{
	template <>
	struct hash < Align64 >
	{
		size_t operator()(const Align64& a) const
		{
			return static_cast<size_t>(a.mX);
		}
	};
}





/// test_use_self
///
/// Intentionally avoiding a dependency on eastl::use_self.
///
template <typename T>
struct test_use_self
{
	const T& operator()(const T& x) const
		{ return x; }
};



/// GenerateIncrementalIntegers
///
/// Used to seed containers with incremental values based on integers.
///
/// Example usage:
///     vector<int> v(10, 0);
///     generate(v.begin(), v.end(), GenerateIncrementalIntegers<int>());
///     // v will now have 0, 1, 2, ... 8, 9.
/// 
///     generate_n(intArray.begin(), 10, GenerateIncrementalIntegers<int>());
///     // v will now have 0, 1, 2, ... 8, 9.
///
///     vector<TestObject> vTO(10, 0);
///     generate(vTO.begin(), vTO.end(), GenerateIncrementalIntegers<TestObject>());
///     // vTO will now have 0, 1, 2, ... 8, 9.
/// 
template <typename T>
struct GenerateIncrementalIntegers
{
	int mX;

	GenerateIncrementalIntegers(int x = 0)
		: mX(x) { }

	void reset(int x = 0)
		{ mX = x; }

	T operator()()
		{ return T(mX++); } 
};



/// SetIncrementalIntegers
///
/// Used to seed containers with incremental values based on integers.
///
/// Example usage:
///     vector<int> v(10, 0);
///     for_each(v.begin(), v.end(), SetIncrementalIntegers<int>());
///     // v will now have 0, 1, 2, ... 8, 9.
/// 
template <typename T>
struct SetIncrementalIntegers
{
	int mX;

	SetIncrementalIntegers(int x = 0)
		: mX(x) { }

	void reset(int x = 0)
		{ mX = x; }

	void operator()(T& t)
		{ t = T(mX++); } 
};



/// CompareContainers
///
/// Does a comparison between the contents of two containers. 
///
/// Specifically tests for the following properties:
///     empty() is the same for both
///     size() is the same for both
///     iteration through both element by element yields equal values.
///
template <typename T1, typename T2, typename ExtractValue1, typename ExtractValue2>
int CompareContainers(const T1& t1, const T2& t2, const char* ppName, 
					  ExtractValue1 ev1 = test_use_self<T1>(), ExtractValue2 ev2 = test_use_self<T2>())
{
	int nErrorCount = 0;

	// Compare emptiness.
	VERIFY(t1.empty() == t2.empty());

	// Compare sizes.
	const size_t nSize1 = t1.size();
	const size_t nSize2 = t2.size();

	VERIFY(nSize1 == nSize2);
	if(nSize1 != nSize2)
		EASTLTest_Printf("%s: Container size difference: %u, %u\n", ppName, (unsigned)nSize1, (unsigned)nSize2);

	// Compare values.
	if(nSize1 == nSize2)
	{
		// Test iteration
		typename T1::const_iterator it1 = t1.begin();
		typename T2::const_iterator it2 = t2.begin();

		for(unsigned j = 0; it1 != t1.end(); ++it1, ++it2, ++j)
		{
			const typename T1::value_type& v1 = *it1;
			const typename T2::value_type& v2 = *it2;

			VERIFY(ev1(v1) == ev2(v2));
			if(!(ev1(v1) == ev2(v2)))
			{
				EASTLTest_Printf("%s: Container iterator difference at index %d\n", ppName, j);
				break;  
			}
		}

		VERIFY(it1 == t1.end());
		VERIFY(it2 == t2.end());
	}

	return nErrorCount;
}





/// VerifySequence
///
/// Allows the user to specify that a container has a given set of values.
/// 
/// Example usage:
///    vector<int> v;
///    v.push_back(1); v.push_back(3); v.push_back(5);
///    VerifySequence(v.begin(), v.end(), int(), "v.push_back", 1, 3, 5, -1);
///
/// Note: The StackValue template argument is a hint to the compiler about what type 
///       the passed vararg sequence is.
///
template <typename InputIterator, typename StackValue>
bool VerifySequence(InputIterator first, InputIterator last, StackValue /*unused*/, const char* pName, ...)
{
	typedef typename eastl::iterator_traits<InputIterator>::value_type value_type;

	int        argIndex = 0;
	int        seqIndex = 0;
	bool       bReturnValue = true;
	StackValue next;

	va_list args;
	va_start(args, pName);

	for( ; first != last; ++first, ++argIndex, ++seqIndex)
	{
		next = va_arg(args, StackValue);

		if((next == StackValue(-1)) || !(value_type(next) == *first))
		{
			if(pName)
				EASTLTest_Printf("[%s] Mismatch at index %d\n", pName, argIndex);
			else
				EASTLTest_Printf("Mismatch at index %d\n", argIndex);
			bReturnValue = false;
		}
	}

	for(; first != last; ++first)
		++seqIndex;

	if(bReturnValue)
	{
		next = va_arg(args, StackValue);

		if(!(next == StackValue(-1)))
		{
			do {
				++argIndex;
				next = va_arg(args, StackValue);
			} while(!(next == StackValue(-1)));

			if(pName)
				EASTLTest_Printf("[%s] Too many elements: expected %d, found %d\n", pName, argIndex, seqIndex);
			else
				EASTLTest_Printf("Too many elements: expected %d, found %d\n", argIndex, seqIndex);
			bReturnValue = false;
		}
	}

	va_end(args);

	return bReturnValue;
}




/// PrintSequence
///
/// Allows the user to print a sequence of values.
/// 
/// Example usage:
///    vector<int> v;
///    PrintSequence(v.begin(), v.end(), use_self<int>(), 100, "vector", 1, 3, 5, -1);
///
/// Example usage:
///    template <typename T> struct use_mX { int operator()(const T& t) const { return t.mX; } };
///    vector<TestObject> v;
///    PrintSequence(v.begin(), v.end(), use_mX<TestObject>(), 100, "vector", 1, 3, 5, -1);
///    
template <typename InputIterator, typename ExtractInt>
void PrintSequence(InputIterator first, InputIterator last, ExtractInt extractInt, int nMaxCount, const char* pName, ...)
{
	if(pName)
		EASTLTest_Printf("[%s]", pName);

	for(int i = 0; (i < nMaxCount) && (first != last); ++i, ++first)
	{
		EASTLTest_Printf("%d ", (int)extractInt(*first));
	}

	EASTLTest_Printf("\n");
}




/// demoted_iterator
///
/// Converts an iterator into a demoted category. For example, you can convert
/// an iterator of type bidirectional_iterator_tag to forward_iterator_tag.
/// The following is a list of iterator types. A demonted iterator can be demoted
/// only to a lower iterator category (earlier in the following list):
///     input_iterator_tag
///     forward_iterator_tag
///     bidirectional_iterator_tag
///     random_access_iterator_tag
///     contiguous_iterator_tag
///
/// Converts something which can be iterated into a formal input iterator.
/// This class is useful for testing functions and algorithms that expect
/// InputIterators, which are the lowest and 'weakest' form of iterators.
/// 
/// Key traits of InputIterators:
///    Algorithms on input iterators should never attempt to pass
///    through the same iterator twice. They should be single pass 
///    algorithms. value_type T is not required to be an lvalue type.
///
/// Example usage:
///     typedef demoted_iterator<int*, eastl::bidirectional_iterator_tag>         PointerAsBidirectionalIterator;
///     typedef demoted_iterator<MyVector::iterator, eastl::forward_iterator_tag> VectorIteratorAsForwardIterator;
///
/// Example usage:
///     IntVector v;
///     comb_sort(to_forward_iterator(v.begin()), to_forward_iterator(v.end()));
///
template <typename Iterator, typename IteratorCategory>
class demoted_iterator
{
protected:
	Iterator mIterator;

public:
	typedef demoted_iterator<Iterator, IteratorCategory>                 this_type;
	typedef Iterator                                                     iterator_type;
	typedef IteratorCategory                                             iterator_category;
	typedef typename eastl::iterator_traits<Iterator>::value_type        value_type;
	typedef typename eastl::iterator_traits<Iterator>::difference_type   difference_type;
	typedef typename eastl::iterator_traits<Iterator>::reference         reference;
	typedef typename eastl::iterator_traits<Iterator>::pointer           pointer;

	demoted_iterator()
		: mIterator() { }

	explicit demoted_iterator(const Iterator& i)
		: mIterator(i) { }

	demoted_iterator(const this_type& x)
		: mIterator(x.mIterator) { }

	this_type& operator=(const Iterator& i)
		{ mIterator = i; return *this; }

	this_type& operator=(const this_type& x)
		{ mIterator = x.mIterator; return *this; }

	reference operator*() const
		{ return *mIterator; }

	pointer operator->() const
		{ return mIterator; }

	this_type& operator++()
		{ ++mIterator; return *this; }

	this_type operator++(int)
		{ return this_type(mIterator++); }

	this_type& operator--()
		{ --mIterator; return *this; }

	this_type operator--(int)
		{ return this_type(mIterator--); }

	reference operator[](const difference_type& n) const
		{ return mIterator[n]; }

	this_type& operator+=(const difference_type& n)
		{ mIterator += n; return *this; }

	this_type operator+(const difference_type& n) const
		{ return this_type(mIterator + n); }

	this_type& operator-=(const difference_type& n)
		{ mIterator -= n; return *this; }

	this_type operator-(const difference_type& n) const
		{ return this_type(mIterator - n); }

	const iterator_type& base() const
		{ return mIterator; }

}; // class demoted_iterator

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator==(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return a.base() == b.base(); }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator!=(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return !(a == b); }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator<(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return a.base() < b.base(); }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator<=(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return !(b < a); }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator>(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return b < a; }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline bool
operator>=(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return !(a < b); }

template<typename Iterator1, typename IteratorCategory1, typename Iterator2, typename IteratorCategory2>
inline demoted_iterator<Iterator1, IteratorCategory1>
operator-(const demoted_iterator<Iterator1, IteratorCategory1>& a, const demoted_iterator<Iterator2, IteratorCategory2>& b)
	{ return demoted_iterator<Iterator1, IteratorCategory1>(a.base() - b.base()); }

template<typename Iterator1, typename IteratorCategory1>
inline demoted_iterator<Iterator1, IteratorCategory1>
operator+(typename demoted_iterator<Iterator1, IteratorCategory1>::difference_type n, const demoted_iterator<Iterator1, IteratorCategory1>& a)
	{ return a + n; }


// to_xxx_iterator
//
// Returns a demoted iterator
//
template <typename Iterator>
inline demoted_iterator<Iterator, EASTL_ITC_NS::input_iterator_tag>
to_input_iterator(const Iterator& i)
	{ return demoted_iterator<Iterator, EASTL_ITC_NS::input_iterator_tag>(i); }

template <typename Iterator>
inline demoted_iterator<Iterator, EASTL_ITC_NS::forward_iterator_tag>
to_forward_iterator(const Iterator& i)
	{ return demoted_iterator<Iterator, EASTL_ITC_NS::forward_iterator_tag>(i); }

template <typename Iterator>
inline demoted_iterator<Iterator, EASTL_ITC_NS::bidirectional_iterator_tag>
to_bidirectional_iterator(const Iterator& i)
	{ return demoted_iterator<Iterator, EASTL_ITC_NS::bidirectional_iterator_tag>(i); }

template <typename Iterator>
inline demoted_iterator<Iterator, EASTL_ITC_NS::random_access_iterator_tag>
to_random_access_iterator(const Iterator& i)
	{ return demoted_iterator<Iterator, EASTL_ITC_NS::random_access_iterator_tag>(i); }






///////////////////////////////////////////////////////////////////////////////
// MallocAllocator
//
// Implements an EASTL allocator that uses malloc/free as opposed to 
// new/delete or PPMalloc Malloc/Free. This is useful for testing 
// allocator behaviour of code.
//
// Example usage:
//      vector<int, MallocAllocator> intVector;
//
class MallocAllocator
{
public:
	MallocAllocator(const char* = EASTL_NAME_VAL("MallocAllocator"))
		: mAllocCount(0), mFreeCount(0), mAllocVolume(0) {}

	MallocAllocator(const MallocAllocator& x)
		: mAllocCount(x.mAllocCount), mFreeCount(x.mFreeCount), mAllocVolume(x.mAllocVolume) {}

	MallocAllocator(const MallocAllocator& x, const char*) : MallocAllocator(x) {}

	MallocAllocator& operator=(const MallocAllocator& x)
	{
		mAllocCount = x.mAllocCount;
		mFreeCount = x.mFreeCount;
		mAllocVolume = x.mAllocVolume;
		return *this;
	}

	void* allocate(size_t n, int = 0);
	void* allocate(size_t n, size_t, size_t, int = 0); // We don't support alignment, so you can't use this class where alignment is required.
	void deallocate(void* p, size_t n);

	const char* get_name() const { return "MallocAllocator"; }
	void set_name(const char*) {}

	static void reset_all()
	{
		mAllocCountAll = 0;
		mFreeCountAll = 0;
		mAllocVolumeAll = 0;
		mpLastAllocation = NULL;
	}

public:
	int mAllocCount;
	int mFreeCount;
	size_t mAllocVolume;

	static int mAllocCountAll;
	static int mFreeCountAll;
	static size_t mAllocVolumeAll;
	static void* mpLastAllocation;
};

inline bool operator==(const MallocAllocator&, const MallocAllocator&) { return true; }
inline bool operator!=(const MallocAllocator&, const MallocAllocator&) { return false; }


///////////////////////////////////////////////////////////////////////////////
// CustomAllocator
//
// Implements an allocator that works just like eastl::allocator but is defined
// within this test as opposed to within EASTL.
//
// Example usage:
//      vector<int, CustomAllocator> intVector;
//
class CustomAllocator
{
public:
	CustomAllocator(const char* = NULL) {}
	CustomAllocator(const CustomAllocator&) {}
	CustomAllocator(const CustomAllocator&, const char*) {}
	CustomAllocator& operator=(const CustomAllocator&) { return *this; }

	void* allocate(size_t n, int flags = 0);
	void* allocate(size_t n, size_t, size_t, int flags = 0);
	void deallocate(void* p, size_t n);

	const char* get_name() const { return "CustomAllocator"; }
	void set_name(const char*) {}
};

inline bool operator==(const CustomAllocator&, const CustomAllocator&) { return true; }
inline bool operator!=(const CustomAllocator&, const CustomAllocator&) { return false; }


///////////////////////////////////////////////////////////////////////////////
/// UnequalAllocator
///
/// Acts the same as eastl::allocator, but always compares as unequal to an 
/// instance of itself.
///
class UnequalAllocator
{
public:
	EASTL_ALLOCATOR_EXPLICIT UnequalAllocator(const char* pName = EASTL_NAME_VAL(EASTL_ALLOCATOR_DEFAULT_NAME))
	    : mAllocator(pName) {}

	UnequalAllocator(const UnequalAllocator& x) : mAllocator(x.mAllocator) {}
	UnequalAllocator(const UnequalAllocator& x, const char* pName) : mAllocator(x.mAllocator) { set_name(pName); }
	UnequalAllocator& operator=(const UnequalAllocator& x)
	{
		mAllocator = x.mAllocator;
		return *this;
	}

	void* allocate(size_t n, int flags = 0) { return mAllocator.allocate(n, flags); }
	void* allocate(size_t n, size_t alignment, size_t offset, int flags = 0) { return mAllocator.allocate(n, alignment, offset, flags); }
	void deallocate(void* p, size_t n) { return mAllocator.deallocate(p, n); }

	const char* get_name() const { return mAllocator.get_name(); }
	void set_name(const char* pName) { mAllocator.set_name(pName); }

protected:
	eastl::allocator mAllocator;
};

inline bool operator==(const UnequalAllocator&, const UnequalAllocator&) { return false; }
inline bool operator!=(const UnequalAllocator&, const UnequalAllocator&) { return true; }


///////////////////////////////////////////////////////////////////////////////
/// CountingAllocator
///
/// Counts allocation events allowing unit tests to validate assumptions.
///
class CountingAllocator : public eastl::allocator
{
public:
	using base_type = eastl::allocator;

	EASTL_ALLOCATOR_EXPLICIT CountingAllocator(const char* pName = EASTL_NAME_VAL(EASTL_ALLOCATOR_DEFAULT_NAME))
	    : base_type(pName)
	{
		totalCtorCount++;
		defaultCtorCount++;
	}

	CountingAllocator(const CountingAllocator& x) : base_type(x)
	{
		totalCtorCount++;
		copyCtorCount++;
	}

	CountingAllocator(const CountingAllocator& x, const char* pName) : base_type(x)
	{
		totalCtorCount++;
		copyCtorCount++;
		set_name(pName);
	}

	CountingAllocator& operator=(const CountingAllocator& x)
	{
		base_type::operator=(x);
		assignOpCount++;
		return *this;
	}

	virtual void* allocate(size_t n, int flags = 0)
	{
		activeAllocCount++;
		totalAllocCount++;
		totalAllocatedMemory += n;
		activeAllocatedMemory += n;
		return base_type::allocate(n, flags);
	}

	virtual void* allocate(size_t n, size_t alignment, size_t offset, int flags = 0)
	{
		activeAllocCount++;
		totalAllocCount++;
		totalAllocatedMemory += n;
		activeAllocatedMemory += n;
		return base_type::allocate(n, alignment, offset, flags);
	}

	void deallocate(void* p, size_t n)
	{
		activeAllocCount--;
		totalDeallocCount--;
		activeAllocatedMemory -= n;
		return base_type::deallocate(p, n);
	}

	const char* get_name() const          { return base_type::get_name(); }
	void set_name(const char* pName)      { base_type::set_name(pName); }

	static auto getTotalAllocationCount()  { return totalAllocCount; }
	static auto getTotalAllocationSize()   { return totalAllocatedMemory; }
	static auto getActiveAllocationSize()  { return activeAllocatedMemory; }
	static auto getActiveAllocationCount() { return activeAllocCount; }
	static auto neverUsed()				   { return totalAllocCount == 0; }

	static void resetCount()
	{
		activeAllocCount      = 0;
		totalAllocCount       = 0;
		totalDeallocCount     = 0;
		totalCtorCount        = 0;
		defaultCtorCount      = 0;
		copyCtorCount         = 0;
		assignOpCount         = 0;
		totalAllocatedMemory  = 0;
		activeAllocatedMemory = 0;
	}

	static uint64_t activeAllocCount;
	static uint64_t totalAllocCount;
	static uint64_t totalDeallocCount;
	static uint64_t totalCtorCount;
	static uint64_t defaultCtorCount;
	static uint64_t copyCtorCount;
	static uint64_t assignOpCount;
	static uint64_t totalAllocatedMemory;  // the total amount of memory allocated
	static uint64_t activeAllocatedMemory; // currently allocated memory by allocator
};

inline bool operator==(const CountingAllocator& rhs, const CountingAllocator& lhs) { return operator==(CountingAllocator::base_type(rhs), CountingAllocator::base_type(lhs)); }
inline bool operator!=(const CountingAllocator& rhs, const CountingAllocator& lhs) { return !(rhs == lhs); }




///////////////////////////////////////////////////////////////////////////////
// InstanceAllocator
//
// Implements an allocator which has a instance id that makes it different
// from other InstanceAllocators of a different id. Allocations between 
// InstanceAllocators of different ids are incompatible. An allocation done 
// by an InstanceAllocator of id=0 cannot be freed by an InstanceAllocator
// of id=1.
//
// Example usage:
//         InstanceAllocator ia0((uint8_t)0);
//         InstanceAllocator ia1((uint8_t)1);
// 
//         eastl::list<int, InstanceAllocator> list0(1, ia0);
//         eastl::list<int, InstanceAllocator> list1(1, ia1);
// 
//         list0 = list1; // list0 cannot free it's current contents with list1's allocator, and InstanceAllocator's purpose is to detect if it mistakenly does so.
//
class InstanceAllocator
{
public:
	enum
	{
		kMultiplier = 16
	}; // Use 16 because it's the highest currently known platform alignment requirement.

	InstanceAllocator(const char* = NULL, uint8_t instanceId = 0) : mInstanceId(instanceId) {}
	InstanceAllocator(uint8_t instanceId) : mInstanceId(instanceId) {}
	InstanceAllocator(const InstanceAllocator& x) : mInstanceId(x.mInstanceId) {}
	InstanceAllocator(const InstanceAllocator& x, const char*) : mInstanceId(x.mInstanceId) {}

	InstanceAllocator& operator=(const InstanceAllocator& x)
	{
		mInstanceId = x.mInstanceId;
		return *this;
	}

	void* allocate(size_t n, int = 0)
	{ // +1 so that we always have space to write mInstanceId.
		uint8_t* p8 =
		    static_cast<uint8_t*>(malloc(n + (kMultiplier * (mInstanceId + 1)))); // We make allocations between
		                                                                          // different instances incompatible by
		                                                                          // tweaking their return values.
		eastl::fill(p8, p8 + kMultiplier, 0xff);
		EA_ANALYSIS_ASSUME(p8 != NULL);
		*p8 = mInstanceId;
		return p8 + (kMultiplier * (mInstanceId + 1));
	}

	void* allocate(size_t n, size_t, size_t, int = 0)
	{ // +1 so that we always have space to write mInstanceId.
		uint8_t* p8 =
		    static_cast<uint8_t*>(malloc(n + (kMultiplier * (mInstanceId + 1)))); // We make allocations between
		                                                                          // different instances incompatible by
		                                                                          // tweaking their return values.
		eastl::fill(p8, p8 + kMultiplier, 0xff);
		EA_ANALYSIS_ASSUME(p8 != NULL);
		*p8 = mInstanceId;
		return p8 + (kMultiplier * (mInstanceId + 1));
	}

	void deallocate(void* p, size_t /*n*/)
	{
		uint8_t* p8 = static_cast<uint8_t*>(p) - (kMultiplier * (mInstanceId + 1));
		EASTL_ASSERT(*p8 == mInstanceId); // mInstanceId must match the id used in allocate(), otherwise the behavior is
		                                  // undefined (probably a heap assert).
		if (*p8 == mInstanceId) // It's possible that *p8 coincidentally matches mInstanceId if p8 is offset into memory
		                        // we don't control.
			free(p8);
		else
			++mMismatchCount;
	}

	const char* get_name()
	{
		sprintf(mName, "InstanceAllocator %u", mInstanceId);
		return mName;
	}

	void set_name(const char*) {}

	static void reset_all() { mMismatchCount = 0; }

public:
	uint8_t mInstanceId;
	char mName[32];

	static int mMismatchCount;
};

inline bool operator==(const InstanceAllocator& a, const InstanceAllocator& b) { return (a.mInstanceId == b.mInstanceId); }
inline bool operator!=(const InstanceAllocator& a, const InstanceAllocator& b) { return (a.mInstanceId != b.mInstanceId); }


///////////////////////////////////////////////////////////////////////////////
// ThrowingAllocator
//
// Implements an EASTL allocator that uses malloc/free as opposed to 
// new/delete or PPMalloc Malloc/Free. This is useful for testing 
// allocator behaviour of code.
//
// Example usage:
//      vector<int, ThrowingAllocator< false<> > intVector;
//
template <bool initialShouldThrow = true>
class ThrowingAllocator
{
public:
	ThrowingAllocator(const char* = EASTL_NAME_VAL("ThrowingAllocator")) : mbShouldThrow(initialShouldThrow) {}
	ThrowingAllocator(const ThrowingAllocator& x) : mbShouldThrow(x.mbShouldThrow) {}
	ThrowingAllocator(const ThrowingAllocator& x, const char*) : mbShouldThrow(x.mbShouldThrow) {}

	ThrowingAllocator& operator=(const ThrowingAllocator& x)
	{
		mbShouldThrow = x.mbShouldThrow;
		return *this;
	}

	void* allocate(size_t n, int = 0)
	{
#if EASTL_EXCEPTIONS_ENABLED
		if (mbShouldThrow)
			throw std::bad_alloc();
#endif
		return malloc(n);
	}

	void* allocate(size_t n, size_t, size_t, int = 0)
	{
#if EASTL_EXCEPTIONS_ENABLED
		if (mbShouldThrow)
			throw std::bad_alloc();
#endif
		return malloc(n); // We don't support alignment, so you can't use this class where alignment is required.
	}

	void deallocate(void* p, size_t) { free(p); }

	const char* get_name() const { return "ThrowingAllocator"; }
	void set_name(const char*) {}

	void set_should_throw(bool shouldThrow) { mbShouldThrow = shouldThrow; }
	bool get_should_throw() const { return mbShouldThrow; }

protected:
	bool mbShouldThrow;
};

template <bool initialShouldThrow>
inline bool operator==(const ThrowingAllocator<initialShouldThrow>&, const ThrowingAllocator<initialShouldThrow>&)
{
	return true;
}

template <bool initialShouldThrow>
inline bool operator!=(const ThrowingAllocator<initialShouldThrow>&, const ThrowingAllocator<initialShouldThrow>&)
{
	return false;
}


///////////////////////////////////////////////////////////////////////////////
// Helper utility that does a case insensitive string comparsion with two sets of overloads
//
struct TestStrCmpI_2
{
	bool operator()(const char* pCStr, const eastl::string& str) const { return str.comparei(pCStr) == 0; }
	bool operator()(const eastl::string& str, const char* pCStr) const { return str.comparei(pCStr) == 0; }
};


///////////////////////////////////////////////////////////////////////////////
// StompDetectAllocator
// 
// An allocator that has sentinal values surrounding its allocator in an 
// effort to detected if its internal memory has been stomped.
//
static uint64_t STOMP_MAGIC_V1 = 0x0101DEC1A551F1ED;
static uint64_t STOMP_MAGIC_V2 = 0x12345C1A551F1ED5;

struct StompDetectAllocator
{
	StompDetectAllocator() { Validate(); }
	~StompDetectAllocator() { Validate(); }

	StompDetectAllocator(const char*) { Validate(); }

	void* allocate(size_t n, int = 0) { return mMallocAllocator.allocate(n); }
	void* allocate(size_t n, size_t, size_t, int = 0) { return mMallocAllocator.allocate(n); }
	void deallocate(void* p, size_t n) { mMallocAllocator.deallocate(p, n); }

	const char* get_name() const { return "FatAllocator"; }
	void set_name(const char*) {}

	void Validate() const
	{
		EASTL_ASSERT(mSentinal1 == STOMP_MAGIC_V1);
		EASTL_ASSERT(mSentinal2 == STOMP_MAGIC_V2);
	}

	uint64_t mSentinal1 = STOMP_MAGIC_V1;
	MallocAllocator mMallocAllocator;
	uint64_t mSentinal2 = STOMP_MAGIC_V2;
};

inline bool operator==(const StompDetectAllocator& a, const StompDetectAllocator& b)
{
	a.Validate();
	b.Validate();

	return (a.mMallocAllocator == b.mMallocAllocator);
}

inline bool operator!=(const StompDetectAllocator& a, const StompDetectAllocator& b)
{
	a.Validate();
	b.Validate();

	return (a.mMallocAllocator != b.mMallocAllocator);
}


// Commonly used free-standing functions to test callables
inline int ReturnVal(int param) { return param; }
inline int ReturnZero() { return 0; }
inline int ReturnOne() { return 1; }


// ValueInit
template<class T>
struct ValueInitOf
{
	ValueInitOf() : mV() {}
	~ValueInitOf() = default;

	ValueInitOf(const ValueInitOf&) = default;
	ValueInitOf(ValueInitOf&&) = default;

	ValueInitOf& operator=(const ValueInitOf&) = default;
	ValueInitOf& operator=(ValueInitOf&&) = default;

	T get() { return mV; }

	T mV;
};

// MoveOnlyType - useful for verifying containers that may hold, e.g., unique_ptrs to make sure move ops are implemented
struct MoveOnlyType
{
	MoveOnlyType() = delete;
	MoveOnlyType(int val) : mVal(val) {}
	MoveOnlyType(const MoveOnlyType&) = delete;
	MoveOnlyType(MoveOnlyType&& x) : mVal(x.mVal) { x.mVal = 0; }
	MoveOnlyType& operator=(const MoveOnlyType&) = delete;
	MoveOnlyType& operator=(MoveOnlyType&& x)
	{
		mVal = x.mVal;
		x.mVal = 0;
		return *this;
	}
	bool operator==(const MoveOnlyType& o) const { return mVal == o.mVal; }

	int mVal;
};

// MoveOnlyTypeDefaultCtor - useful for verifying containers that may hold, e.g., unique_ptrs to make sure move ops are implemented
struct MoveOnlyTypeDefaultCtor
{
	MoveOnlyTypeDefaultCtor() = default;
	MoveOnlyTypeDefaultCtor(int val) : mVal(val) {}
	MoveOnlyTypeDefaultCtor(const MoveOnlyTypeDefaultCtor&) = delete;
	MoveOnlyTypeDefaultCtor(MoveOnlyTypeDefaultCtor&& x) : mVal(x.mVal) { x.mVal = 0; }
	MoveOnlyTypeDefaultCtor& operator=(const MoveOnlyTypeDefaultCtor&) = delete;
	MoveOnlyTypeDefaultCtor& operator=(MoveOnlyTypeDefaultCtor&& x)
	{
		mVal = x.mVal;
		x.mVal = 0;
		return *this;
	}
	bool operator==(const MoveOnlyTypeDefaultCtor& o) const { return mVal == o.mVal; }

	int mVal;
};



//////////////////////////////////////////////////////////////////////////////
// Utility RAII class that sets a new default allocator for the scope
//
struct AutoDefaultAllocator
{
	eastl::allocator* mPrevAllocator = nullptr;

	AutoDefaultAllocator(eastl::allocator* nextAllocator) { mPrevAllocator = SetDefaultAllocator(nextAllocator); }
	~AutoDefaultAllocator()                               { SetDefaultAllocator(mPrevAllocator); }
};


#endif // Header include guard