1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
|
///////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// This file implements a vector (array-like container), much like the C++
// std::vector class.
// The primary distinctions between this vector and std::vector are:
// - vector has a couple extension functions that increase performance.
// - vector can contain objects with alignment requirements. std::vector
// cannot do so without a bit of tedious non-portable effort.
// - vector supports debug memory naming natively.
// - vector is easier to read, debug, and visualize.
// - vector is savvy to an environment that doesn't have exception handling,
// as is sometimes the case with console or embedded environments.
// - vector has less deeply nested function calls and allows the user to
// enable forced inlining in debug builds in order to reduce bloat.
// - vector<bool> is a vector of boolean values and not a bit vector.
// - vector guarantees that memory is contiguous and that vector::iterator
// is nothing more than a pointer to T.
// - vector has an explicit data() method for obtaining a pointer to storage
// which is safe to call even if the block is empty. This avoids the
// common &v[0], &v.front(), and &*v.begin() constructs that trigger false
// asserts in STL debugging modes.
// - vector data is guaranteed to be contiguous.
// - vector has a set_capacity() function which frees excess capacity.
// The only way to do this with std::vector is via the cryptic non-obvious
// trick of using: vector<SomeClass>(x).swap(x);
///////////////////////////////////////////////////////////////////////////////
#ifndef EASTL_VECTOR_H
#define EASTL_VECTOR_H
#include <EASTL/internal/config.h>
#include <EASTL/allocator.h>
#include <EASTL/type_traits.h>
#include <EASTL/iterator.h>
#include <EASTL/algorithm.h>
#include <EASTL/initializer_list.h>
#include <EASTL/memory.h>
#include <EASTL/bonus/compressed_pair.h>
EA_DISABLE_ALL_VC_WARNINGS()
#include <new>
#include <stddef.h>
#if EASTL_EXCEPTIONS_ENABLED
#include <stdexcept> // std::out_of_range, std::length_error.
#endif
EA_RESTORE_ALL_VC_WARNINGS()
// 4530 - C++ exception handler used, but unwind semantics are not enabled. Specify /EHsc
// 4480 - nonstandard extension used: specifying underlying type for enum
// 4571 - catch(...) semantics changed since Visual C++ 7.1; structured exceptions (SEH) are no longer caught.
EA_DISABLE_VC_WARNING(4530 4480 4571);
// 4345 - Behavior change: an object of POD type constructed with an initializer of the form () will be default-initialized
// 4244 - Argument: conversion from 'int' to 'const eastl::vector<T>::value_type', possible loss of data
// 4127 - Conditional expression is constant
EA_DISABLE_VC_WARNING(4345 4244 4127);
#if defined(EA_PRAGMA_ONCE_SUPPORTED)
#pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
#endif
#if EASTL_NOMINMAX
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
#endif
namespace eastl
{
/// EASTL_VECTOR_DEFAULT_NAME
///
/// Defines a default container name in the absence of a user-provided name.
///
#ifndef EASTL_VECTOR_DEFAULT_NAME
#define EASTL_VECTOR_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " vector" // Unless the user overrides something, this is "EASTL vector".
#endif
/// EASTL_VECTOR_DEFAULT_ALLOCATOR
///
#ifndef EASTL_VECTOR_DEFAULT_ALLOCATOR
#define EASTL_VECTOR_DEFAULT_ALLOCATOR allocator_type(EASTL_VECTOR_DEFAULT_NAME)
#endif
/// VectorBase
///
/// The reason we have a VectorBase class is that it makes exception handling
/// simpler to implement because memory allocation is implemented entirely
/// in this class. If a user creates a vector which needs to allocate
/// memory in the constructor, VectorBase handles it. If an exception is thrown
/// by the allocator then the exception throw jumps back to the user code and
/// no try/catch code need be written in the vector or VectorBase constructor.
/// If an exception is thrown in the vector (not VectorBase) constructor, the
/// destructor for VectorBase will be called automatically (and free the allocated
/// memory) before the execution jumps back to the user code.
/// However, if the vector class were to handle both allocation and initialization
/// then it would have no choice but to implement an explicit try/catch statement
/// for all pathways that allocate memory. This increases code size and decreases
/// performance and makes the code a little harder read and maintain.
///
/// The C++ standard (15.2 paragraph 2) states:
/// "An object that is partially constructed or partially destroyed will
/// have destructors executed for all its fully constructed subobjects,
/// that is, for subobjects for which the constructor has been completed
/// execution and the destructor has not yet begun execution."
///
/// The C++ standard (15.3 paragraph 11) states:
/// "The fully constructed base classes and members of an object shall
/// be destroyed before entering the handler of a function-try-block
/// of a constructor or destructor for that block."
///
template <typename T, typename Allocator>
struct VectorBase
{
typedef Allocator allocator_type;
typedef eastl_size_t size_type;
typedef ptrdiff_t difference_type;
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && (_MSC_VER <= 1600) && !EASTL_STD_CPP_ONLY // _MSC_VER of 1400 means VS2005, 1600 means VS2010. VS2012 generates errors with usage of enum:size_type.
enum : size_type { // Use Microsoft enum language extension, allowing for smaller debug symbols than using a static const. Users have been affected by this.
npos = (size_type)-1,
kMaxSize = (size_type)-2
};
#else
static const size_type npos = (size_type)-1; /// 'npos' means non-valid position or simply non-position.
static const size_type kMaxSize = (size_type)-2; /// -1 is reserved for 'npos'. It also happens to be slightly beneficial that kMaxSize is a value less than -1, as it helps us deal with potential integer wraparound issues.
#endif
protected:
T* mpBegin;
T* mpEnd;
eastl::compressed_pair<T*, allocator_type> mCapacityAllocator;
T*& internalCapacityPtr() EA_NOEXCEPT { return mCapacityAllocator.first(); }
T* const& internalCapacityPtr() const EA_NOEXCEPT { return mCapacityAllocator.first(); }
allocator_type& internalAllocator() EA_NOEXCEPT { return mCapacityAllocator.second(); }
const allocator_type& internalAllocator() const EA_NOEXCEPT { return mCapacityAllocator.second(); }
public:
VectorBase();
VectorBase(const allocator_type& allocator);
VectorBase(size_type n, const allocator_type& allocator);
~VectorBase();
const allocator_type& get_allocator() const EA_NOEXCEPT;
allocator_type& get_allocator() EA_NOEXCEPT;
void set_allocator(const allocator_type& allocator);
protected:
T* DoAllocate(size_type n);
void DoFree(T* p, size_type n);
size_type GetNewCapacity(size_type currentCapacity);
}; // VectorBase
/// vector
///
/// Implements a dynamic array.
///
template <typename T, typename Allocator = EASTLAllocatorType>
class vector : public VectorBase<T, Allocator>
{
typedef VectorBase<T, Allocator> base_type;
typedef vector<T, Allocator> this_type;
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference; // Maintainer note: We want to leave iterator defined as T* -- at least in release builds -- as this gives some algorithms an advantage that optimizers cannot get around.
typedef T* iterator; // Note: iterator is simply T* right now, but this will likely change in the future, at least for debug builds.
typedef const T* const_iterator; // Do not write code that relies on iterator being T*. The reason it will
typedef eastl::reverse_iterator<iterator> reverse_iterator; // change in the future is that a debugging iterator system will be created.
typedef eastl::reverse_iterator<const_iterator> const_reverse_iterator;
typedef typename base_type::size_type size_type;
typedef typename base_type::difference_type difference_type;
typedef typename base_type::allocator_type allocator_type;
using base_type::mpBegin;
using base_type::mpEnd;
using base_type::mCapacityAllocator;
using base_type::npos;
using base_type::GetNewCapacity;
using base_type::DoAllocate;
using base_type::DoFree;
using base_type::internalCapacityPtr;
using base_type::internalAllocator;
public:
vector() EA_NOEXCEPT_IF(EA_NOEXCEPT_EXPR(EASTL_VECTOR_DEFAULT_ALLOCATOR));
explicit vector(const allocator_type& allocator) EA_NOEXCEPT;
explicit vector(size_type n, const allocator_type& allocator = EASTL_VECTOR_DEFAULT_ALLOCATOR);
vector(size_type n, const value_type& value, const allocator_type& allocator = EASTL_VECTOR_DEFAULT_ALLOCATOR);
vector(const this_type& x);
vector(const this_type& x, const allocator_type& allocator);
vector(this_type&& x) EA_NOEXCEPT;
vector(this_type&& x, const allocator_type& allocator);
vector(std::initializer_list<value_type> ilist, const allocator_type& allocator = EASTL_VECTOR_DEFAULT_ALLOCATOR);
template <typename InputIterator>
vector(InputIterator first, InputIterator last, const allocator_type& allocator = EASTL_VECTOR_DEFAULT_ALLOCATOR);
~vector();
this_type& operator=(const this_type& x);
this_type& operator=(std::initializer_list<value_type> ilist);
this_type& operator=(this_type&& x); // TODO(c++17): noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value || allocator_traits<Allocator>::is_always_equal::value)
void swap(this_type& x); // TODO(c++17): noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value || allocator_traits<Allocator>::is_always_equal::value)
void assign(size_type n, const value_type& value);
template <typename InputIterator>
void assign(InputIterator first, InputIterator last);
void assign(std::initializer_list<value_type> ilist);
iterator begin() EA_NOEXCEPT;
const_iterator begin() const EA_NOEXCEPT;
const_iterator cbegin() const EA_NOEXCEPT;
iterator end() EA_NOEXCEPT;
const_iterator end() const EA_NOEXCEPT;
const_iterator cend() const EA_NOEXCEPT;
reverse_iterator rbegin() EA_NOEXCEPT;
const_reverse_iterator rbegin() const EA_NOEXCEPT;
const_reverse_iterator crbegin() const EA_NOEXCEPT;
reverse_iterator rend() EA_NOEXCEPT;
const_reverse_iterator rend() const EA_NOEXCEPT;
const_reverse_iterator crend() const EA_NOEXCEPT;
bool empty() const EA_NOEXCEPT;
size_type size() const EA_NOEXCEPT;
size_type capacity() const EA_NOEXCEPT;
void resize(size_type n, const value_type& value);
void resize(size_type n);
void reserve(size_type n);
void set_capacity(size_type n = base_type::npos); // Revises the capacity to the user-specified value. Resizes the container to match the capacity if the requested capacity n is less than the current size. If n == npos then the capacity is reallocated (if necessary) such that capacity == size.
void shrink_to_fit(); // C++11 function which is the same as set_capacity().
pointer data() EA_NOEXCEPT;
const_pointer data() const EA_NOEXCEPT;
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void push_back(const value_type& value);
reference push_back();
void* push_back_uninitialized();
void push_back(value_type&& value);
void pop_back();
template<class... Args>
iterator emplace(const_iterator position, Args&&... args);
template<class... Args>
reference emplace_back(Args&&... args);
iterator insert(const_iterator position, const value_type& value);
iterator insert(const_iterator position, size_type n, const value_type& value);
iterator insert(const_iterator position, value_type&& value);
iterator insert(const_iterator position, std::initializer_list<value_type> ilist);
template <typename InputIterator>
iterator insert(const_iterator position, InputIterator first, InputIterator last);
iterator erase_first(const T& value);
iterator erase_first_unsorted(const T& value); // Same as erase, except it doesn't preserve order, but is faster because it simply copies the last item in the vector over the erased position.
reverse_iterator erase_last(const T& value);
reverse_iterator erase_last_unsorted(const T& value); // Same as erase, except it doesn't preserve order, but is faster because it simply copies the last item in the vector over the erased position.
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
iterator erase_unsorted(const_iterator position); // Same as erase, except it doesn't preserve order, but is faster because it simply copies the last item in the vector over the erased position.
reverse_iterator erase(const_reverse_iterator position);
reverse_iterator erase(const_reverse_iterator first, const_reverse_iterator last);
reverse_iterator erase_unsorted(const_reverse_iterator position);
void clear() EA_NOEXCEPT;
void reset_lose_memory() EA_NOEXCEPT; // This is a unilateral reset to an initially empty state. No destructors are called, no deallocation occurs.
bool validate() const EA_NOEXCEPT;
int validate_iterator(const_iterator i) const EA_NOEXCEPT;
protected:
// These functions do the real work of maintaining the vector. You will notice
// that many of them have the same name but are specialized on iterator_tag
// (iterator categories). This is because in these cases there is an optimized
// implementation that can be had for some cases relative to others. Functions
// which aren't referenced are neither compiled nor linked into the application.
template <bool bMove> struct should_move_or_copy_tag{};
using should_copy_tag = should_move_or_copy_tag<false>;
using should_move_tag = should_move_or_copy_tag<true>;
template <typename ForwardIterator> // Allocates a pointer of array count n and copy-constructs it with [first,last).
pointer DoRealloc(size_type n, ForwardIterator first, ForwardIterator last, should_copy_tag);
template <typename ForwardIterator> // Allocates a pointer of array count n and copy-constructs it with [first,last).
pointer DoRealloc(size_type n, ForwardIterator first, ForwardIterator last, should_move_tag);
template <typename Integer>
void DoInit(Integer n, Integer value, true_type);
template <typename InputIterator>
void DoInit(InputIterator first, InputIterator last, false_type);
template <typename InputIterator>
void DoInitFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag);
template <typename ForwardIterator>
void DoInitFromIterator(ForwardIterator first, ForwardIterator last, EASTL_ITC_NS::forward_iterator_tag);
template <typename Integer, bool bMove>
void DoAssign(Integer n, Integer value, true_type);
template <typename InputIterator, bool bMove>
void DoAssign(InputIterator first, InputIterator last, false_type);
void DoAssignValues(size_type n, const value_type& value);
template <typename InputIterator, bool bMove>
void DoAssignFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag);
template <typename RandomAccessIterator, bool bMove>
void DoAssignFromIterator(RandomAccessIterator first, RandomAccessIterator last, EASTL_ITC_NS::random_access_iterator_tag);
template <typename Integer>
void DoInsert(const_iterator position, Integer n, Integer value, true_type);
template <typename InputIterator>
void DoInsert(const_iterator position, InputIterator first, InputIterator last, false_type);
template <typename InputIterator>
void DoInsertFromIterator(const_iterator position, InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag);
template <typename BidirectionalIterator>
void DoInsertFromIterator(const_iterator position, BidirectionalIterator first, BidirectionalIterator last, EASTL_ITC_NS::bidirectional_iterator_tag);
void DoInsertValues(const_iterator position, size_type n, const value_type& value);
void DoInsertValuesEnd(size_type n); // Default constructs n values
void DoInsertValuesEnd(size_type n, const value_type& value);
template<typename... Args>
void DoInsertValue(const_iterator position, Args&&... args);
template<typename... Args>
void DoInsertValueEnd(Args&&... args);
void DoClearCapacity();
void DoGrow(size_type n);
void DoSwap(this_type& x);
}; // class vector
///////////////////////////////////////////////////////////////////////
// VectorBase
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
inline VectorBase<T, Allocator>::VectorBase()
: mpBegin(NULL),
mpEnd(NULL),
mCapacityAllocator(NULL, allocator_type(EASTL_VECTOR_DEFAULT_NAME))
{
}
template <typename T, typename Allocator>
inline VectorBase<T, Allocator>::VectorBase(const allocator_type& allocator)
: mpBegin(NULL),
mpEnd(NULL),
mCapacityAllocator(NULL, allocator)
{
}
template <typename T, typename Allocator>
inline VectorBase<T, Allocator>::VectorBase(size_type n, const allocator_type& allocator)
: mCapacityAllocator(allocator)
{
mpBegin = DoAllocate(n);
mpEnd = mpBegin;
internalCapacityPtr() = mpBegin + n;
}
template <typename T, typename Allocator>
inline VectorBase<T, Allocator>::~VectorBase()
{
if(mpBegin)
EASTLFree(internalAllocator(), mpBegin, (internalCapacityPtr() - mpBegin) * sizeof(T));
}
template <typename T, typename Allocator>
inline const typename VectorBase<T, Allocator>::allocator_type&
VectorBase<T, Allocator>::get_allocator() const EA_NOEXCEPT
{
return internalAllocator();
}
template <typename T, typename Allocator>
inline typename VectorBase<T, Allocator>::allocator_type&
VectorBase<T, Allocator>::get_allocator() EA_NOEXCEPT
{
return internalAllocator();
}
template <typename T, typename Allocator>
inline void VectorBase<T, Allocator>::set_allocator(const allocator_type& allocator)
{
internalAllocator() = allocator;
}
template <typename T, typename Allocator>
inline T* VectorBase<T, Allocator>::DoAllocate(size_type n)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(n >= 0x80000000))
EASTL_FAIL_MSG("vector::DoAllocate -- improbably large request.");
#endif
// If n is zero, then we allocate no memory and just return nullptr.
// This is fine, as our default ctor initializes with NULL pointers.
if(EASTL_LIKELY(n))
{
auto* p = (T*)allocate_memory(internalAllocator(), n * sizeof(T), EASTL_ALIGN_OF(T), 0);
EASTL_ASSERT_MSG(p != nullptr, "the behaviour of eastl::allocators that return nullptr is not defined.");
return p;
}
else
{
return nullptr;
}
}
template <typename T, typename Allocator>
inline void VectorBase<T, Allocator>::DoFree(T* p, size_type n)
{
if(p)
EASTLFree(internalAllocator(), p, n * sizeof(T));
}
template <typename T, typename Allocator>
inline typename VectorBase<T, Allocator>::size_type
VectorBase<T, Allocator>::GetNewCapacity(size_type currentCapacity)
{
// This needs to return a value of at least currentCapacity and at least 1.
return (currentCapacity > 0) ? (2 * currentCapacity) : 1;
}
///////////////////////////////////////////////////////////////////////
// vector
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector() EA_NOEXCEPT_IF(EA_NOEXCEPT_EXPR(EASTL_VECTOR_DEFAULT_ALLOCATOR))
: base_type()
{
// Empty
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(const allocator_type& allocator) EA_NOEXCEPT
: base_type(allocator)
{
// Empty
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(size_type n, const allocator_type& allocator)
: base_type(n, allocator)
{
eastl::uninitialized_default_fill_n(mpBegin, n);
mpEnd = mpBegin + n;
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(size_type n, const value_type& value, const allocator_type& allocator)
: base_type(n, allocator)
{
eastl::uninitialized_fill_n_ptr(mpBegin, n, value);
mpEnd = mpBegin + n;
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(const this_type& x)
: base_type(x.size(), x.internalAllocator())
{
mpEnd = eastl::uninitialized_copy_ptr(x.mpBegin, x.mpEnd, mpBegin);
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(const this_type& x, const allocator_type& allocator)
: base_type(x.size(), allocator)
{
mpEnd = eastl::uninitialized_copy_ptr(x.mpBegin, x.mpEnd, mpBegin);
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(this_type&& x) EA_NOEXCEPT
: base_type(eastl::move(x.internalAllocator())) // vector requires move-construction of allocator in this case.
{
DoSwap(x);
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(this_type&& x, const allocator_type& allocator)
: base_type(allocator)
{
if (internalAllocator() == x.internalAllocator()) // If allocators are equivalent...
DoSwap(x);
else
{
this_type temp(eastl::move(*this)); // move construct so we don't require the use of copy-ctors that prevent the use of move-only types.
temp.swap(x);
}
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::vector(std::initializer_list<value_type> ilist, const allocator_type& allocator)
: base_type(allocator)
{
DoInit(ilist.begin(), ilist.end(), false_type());
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline vector<T, Allocator>::vector(InputIterator first, InputIterator last, const allocator_type& allocator)
: base_type(allocator)
{
DoInit(first, last, is_integral<InputIterator>());
}
template <typename T, typename Allocator>
inline vector<T, Allocator>::~vector()
{
// Call destructor for the values. Parent class will free the memory.
eastl::destruct(mpBegin, mpEnd);
}
template <typename T, typename Allocator>
typename vector<T, Allocator>::this_type&
vector<T, Allocator>::operator=(const this_type& x)
{
if(this != &x) // If not assigning to self...
{
// If (EASTL_ALLOCATOR_COPY_ENABLED == 1) and the current contents are allocated by an
// allocator that's unequal to x's allocator, we need to reallocate our elements with
// our current allocator and reallocate it with x's allocator. If the allocators are
// equal then we can use a more optimal algorithm that doesn't reallocate our elements
// but instead can copy them in place.
#if EASTL_ALLOCATOR_COPY_ENABLED
bool bSlowerPathwayRequired = (internalAllocator() != x.internalAllocator());
#else
bool bSlowerPathwayRequired = false;
#endif
if(bSlowerPathwayRequired)
{
DoClearCapacity(); // Must clear the capacity instead of clear because set_capacity frees our memory, unlike clear.
#if EASTL_ALLOCATOR_COPY_ENABLED
internalAllocator() = x.internalAllocator();
#endif
}
DoAssign<const_iterator, false>(x.begin(), x.end(), eastl::false_type());
}
return *this;
}
template <typename T, typename Allocator>
typename vector<T, Allocator>::this_type&
vector<T, Allocator>::operator=(std::initializer_list<value_type> ilist)
{
typedef typename std::initializer_list<value_type>::iterator InputIterator;
typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
DoAssignFromIterator<InputIterator, false>(ilist.begin(), ilist.end(), IC()); // initializer_list has const elements and so we can't move from them.
return *this;
}
template <typename T, typename Allocator>
typename vector<T, Allocator>::this_type&
vector<T, Allocator>::operator=(this_type&& x)
{
if(this != &x)
{
DoClearCapacity(); // To consider: Are we really required to clear here? x is going away soon and will clear itself in its dtor.
swap(x); // member swap handles the case that x has a different allocator than our allocator by doing a copy.
}
return *this;
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::assign(size_type n, const value_type& value)
{
DoAssignValues(n, value);
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void vector<T, Allocator>::assign(InputIterator first, InputIterator last)
{
// It turns out that the C++ std::vector<int, int> specifies a two argument
// version of assign that takes (int size, int value). These are not iterators,
// so we need to do a template compiler trick to do the right thing.
DoAssign<InputIterator, false>(first, last, is_integral<InputIterator>());
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::assign(std::initializer_list<value_type> ilist)
{
typedef typename std::initializer_list<value_type>::iterator InputIterator;
typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
DoAssignFromIterator<InputIterator, false>(ilist.begin(), ilist.end(), IC()); // initializer_list has const elements and so we can't move from them.
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::begin() EA_NOEXCEPT
{
return mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_iterator
vector<T, Allocator>::begin() const EA_NOEXCEPT
{
return mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_iterator
vector<T, Allocator>::cbegin() const EA_NOEXCEPT
{
return mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::end() EA_NOEXCEPT
{
return mpEnd;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_iterator
vector<T, Allocator>::end() const EA_NOEXCEPT
{
return mpEnd;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_iterator
vector<T, Allocator>::cend() const EA_NOEXCEPT
{
return mpEnd;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::rbegin() EA_NOEXCEPT
{
return reverse_iterator(mpEnd);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reverse_iterator
vector<T, Allocator>::rbegin() const EA_NOEXCEPT
{
return const_reverse_iterator(mpEnd);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reverse_iterator
vector<T, Allocator>::crbegin() const EA_NOEXCEPT
{
return const_reverse_iterator(mpEnd);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::rend() EA_NOEXCEPT
{
return reverse_iterator(mpBegin);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reverse_iterator
vector<T, Allocator>::rend() const EA_NOEXCEPT
{
return const_reverse_iterator(mpBegin);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reverse_iterator
vector<T, Allocator>::crend() const EA_NOEXCEPT
{
return const_reverse_iterator(mpBegin);
}
template <typename T, typename Allocator>
bool vector<T, Allocator>::empty() const EA_NOEXCEPT
{
return (mpBegin == mpEnd);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::size_type
vector<T, Allocator>::size() const EA_NOEXCEPT
{
return (size_type)(mpEnd - mpBegin);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::size_type
vector<T, Allocator>::capacity() const EA_NOEXCEPT
{
return (size_type)(internalCapacityPtr() - mpBegin);
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::resize(size_type n, const value_type& value)
{
if(n > (size_type)(mpEnd - mpBegin)) // We expect that more often than not, resizes will be upsizes.
DoInsertValuesEnd(n - ((size_type)(mpEnd - mpBegin)), value);
else
{
eastl::destruct(mpBegin + n, mpEnd);
mpEnd = mpBegin + n;
}
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::resize(size_type n)
{
// Alternative implementation:
// resize(n, value_type());
if(n > (size_type)(mpEnd - mpBegin)) // We expect that more often than not, resizes will be upsizes.
DoInsertValuesEnd(n - ((size_type)(mpEnd - mpBegin)));
else
{
eastl::destruct(mpBegin + n, mpEnd);
mpEnd = mpBegin + n;
}
}
template <typename T, typename Allocator>
void vector<T, Allocator>::reserve(size_type n)
{
// If the user wants to reduce the reserved memory, there is the set_capacity function.
if(n > size_type(internalCapacityPtr() - mpBegin)) // If n > capacity ...
DoGrow(n);
}
template <typename T, typename Allocator>
void vector<T, Allocator>::set_capacity(size_type n)
{
if((n == npos) || (n <= (size_type)(mpEnd - mpBegin))) // If new capacity <= size...
{
if(n == 0) // Very often n will be 0, and clear will be faster than resize and use less stack space.
clear();
else if(n < (size_type)(mpEnd - mpBegin))
resize(n);
shrink_to_fit();
}
else // Else new capacity > size.
{
pointer const pNewData = DoRealloc(n, mpBegin, mpEnd, should_move_tag());
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
const ptrdiff_t nPrevSize = mpEnd - mpBegin;
mpBegin = pNewData;
mpEnd = pNewData + nPrevSize;
internalCapacityPtr() = mpBegin + n;
}
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::shrink_to_fit()
{
// This is the simplest way to accomplish this, and it is as efficient as any other.
this_type temp = this_type(move_iterator<iterator>(begin()), move_iterator<iterator>(end()), internalAllocator());
// Call DoSwap() rather than swap() as we know our allocators match and we don't want to invoke the code path
// handling non matching allocators as it imposes additional restrictions on the type of T to be copyable
DoSwap(temp);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::pointer
vector<T, Allocator>::data() EA_NOEXCEPT
{
return mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_pointer
vector<T, Allocator>::data() const EA_NOEXCEPT
{
return mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::operator[](size_type n)
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
EASTL_FAIL_MSG("vector::operator[] -- out of range");
#elif EASTL_ASSERT_ENABLED
// We allow the user to use a reference to v[0] of an empty container. But this was merely grandfathered in and ideally we shouldn't allow such access to [0].
if (EASTL_UNLIKELY((n != 0) && (n >= (static_cast<size_type>(mpEnd - mpBegin)))))
EASTL_FAIL_MSG("vector::operator[] -- out of range");
#endif
return *(mpBegin + n);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reference
vector<T, Allocator>::operator[](size_type n) const
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
EASTL_FAIL_MSG("vector::operator[] -- out of range");
#elif EASTL_ASSERT_ENABLED
// We allow the user to use a reference to v[0] of an empty container. But this was merely grandfathered in and ideally we shouldn't allow such access to [0].
if (EASTL_UNLIKELY((n != 0) && (n >= (static_cast<size_type>(mpEnd - mpBegin)))))
EASTL_FAIL_MSG("vector::operator[] -- out of range");
#endif
return *(mpBegin + n);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::at(size_type n)
{
// The difference between at() and operator[] is it signals
// the requested position is out of range by throwing an
// out_of_range exception.
#if EASTL_EXCEPTIONS_ENABLED
if(EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
throw std::out_of_range("vector::at -- out of range");
#elif EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
EASTL_FAIL_MSG("vector::at -- out of range");
#endif
return *(mpBegin + n);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reference
vector<T, Allocator>::at(size_type n) const
{
#if EASTL_EXCEPTIONS_ENABLED
if(EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
throw std::out_of_range("vector::at -- out of range");
#elif EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(n >= (static_cast<size_type>(mpEnd - mpBegin))))
EASTL_FAIL_MSG("vector::at -- out of range");
#endif
return *(mpBegin + n);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::front()
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY((mpBegin == nullptr) || (mpEnd <= mpBegin))) // We don't allow the user to reference an empty container.
EASTL_FAIL_MSG("vector::front -- empty vector");
#else
// We allow the user to reference an empty container.
#endif
return *mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reference
vector<T, Allocator>::front() const
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY((mpBegin == nullptr) || (mpEnd <= mpBegin))) // We don't allow the user to reference an empty container.
EASTL_FAIL_MSG("vector::front -- empty vector");
#else
// We allow the user to reference an empty container.
#endif
return *mpBegin;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::back()
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY((mpBegin == nullptr) || (mpEnd <= mpBegin))) // We don't allow the user to reference an empty container.
EASTL_FAIL_MSG("vector::back -- empty vector");
#else
// We allow the user to reference an empty container.
#endif
return *(mpEnd - 1);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::const_reference
vector<T, Allocator>::back() const
{
#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
if (EASTL_UNLIKELY((mpBegin == nullptr) || (mpEnd <= mpBegin))) // We don't allow the user to reference an empty container.
EASTL_FAIL_MSG("vector::back -- empty vector");
#else
// We allow the user to reference an empty container.
#endif
return *(mpEnd - 1);
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::push_back(const value_type& value)
{
if(mpEnd < internalCapacityPtr())
::new((void*)mpEnd++) value_type(value);
else
DoInsertValueEnd(value);
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::push_back(value_type&& value)
{
if (mpEnd < internalCapacityPtr())
::new((void*)mpEnd++) value_type(eastl::move(value));
else
DoInsertValueEnd(eastl::move(value));
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::push_back()
{
if(mpEnd < internalCapacityPtr())
::new((void*)mpEnd++) value_type();
else // Note that in this case we create a temporary, which is less desirable.
DoInsertValueEnd(value_type());
return *(mpEnd - 1); // Same as return back();
}
template <typename T, typename Allocator>
inline void* vector<T, Allocator>::push_back_uninitialized()
{
if(mpEnd == internalCapacityPtr())
{
const size_type newSize = (size_type)(mpEnd - mpBegin) + 1;
reserve(newSize);
}
return mpEnd++;
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::pop_back()
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(mpEnd <= mpBegin))
EASTL_FAIL_MSG("vector::pop_back -- empty vector");
#endif
--mpEnd;
mpEnd->~value_type();
}
template <typename T, typename Allocator>
template<class... Args>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::emplace(const_iterator position, Args&&... args)
{
const ptrdiff_t n = position - mpBegin; // Save this because we might reallocate.
if((mpEnd == internalCapacityPtr()) || (position != mpEnd))
DoInsertValue(position, eastl::forward<Args>(args)...);
else
{
::new((void*)mpEnd) value_type(eastl::forward<Args>(args)...);
++mpEnd; // Increment this after the construction above in case the construction throws an exception.
}
return mpBegin + n;
}
template <typename T, typename Allocator>
template<class... Args>
inline typename vector<T, Allocator>::reference
vector<T, Allocator>::emplace_back(Args&&... args)
{
if(mpEnd < internalCapacityPtr())
{
::new((void*)mpEnd) value_type(eastl::forward<Args>(args)...); // If value_type has a move constructor, it will use it and this operation may be faster than otherwise.
++mpEnd; // Increment this after the construction above in case the construction throws an exception.
}
else
DoInsertValueEnd(eastl::forward<Args>(args)...);
return back();
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::insert(const_iterator position, const value_type& value)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position > mpEnd)))
EASTL_FAIL_MSG("vector::insert -- invalid position");
#endif
// We implment a quick pathway for the case that the insertion position is at the end and we have free capacity for it.
const ptrdiff_t n = position - mpBegin; // Save this because we might reallocate.
if((mpEnd == internalCapacityPtr()) || (position != mpEnd))
DoInsertValue(position, value);
else
{
::new((void*)mpEnd) value_type(value);
++mpEnd; // Increment this after the construction above in case the construction throws an exception.
}
return mpBegin + n;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::insert(const_iterator position, value_type&& value)
{
return emplace(position, eastl::move(value));
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::insert(const_iterator position, size_type n, const value_type& value)
{
const ptrdiff_t p = position - mpBegin; // Save this because we might reallocate.
DoInsertValues(position, n, value);
return mpBegin + p;
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::insert(const_iterator position, InputIterator first, InputIterator last)
{
const ptrdiff_t n = position - mpBegin; // Save this because we might reallocate.
DoInsert(position, first, last, is_integral<InputIterator>());
return mpBegin + n;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::insert(const_iterator position, std::initializer_list<value_type> ilist)
{
const ptrdiff_t n = position - mpBegin; // Save this because we might reallocate.
DoInsert(position, ilist.begin(), ilist.end(), false_type());
return mpBegin + n;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::erase(const_iterator position)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position >= mpEnd)))
EASTL_FAIL_MSG("vector::erase -- invalid position");
#endif
// C++11 stipulates that position is const_iterator, but the return value is iterator.
iterator destPosition = const_cast<value_type*>(position);
if((position + 1) < mpEnd)
eastl::move(destPosition + 1, mpEnd, destPosition);
--mpEnd;
mpEnd->~value_type();
return destPosition;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::erase(const_iterator first, const_iterator last)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((first < mpBegin) || (first > mpEnd) || (last < mpBegin) || (last > mpEnd) || (last < first)))
EASTL_FAIL_MSG("vector::erase -- invalid position");
#endif
if (first != last)
{
iterator const position = const_cast<value_type*>(eastl::move(const_cast<value_type*>(last), const_cast<value_type*>(mpEnd), const_cast<value_type*>(first)));
eastl::destruct(position, mpEnd);
mpEnd -= (last - first);
}
return const_cast<value_type*>(first);
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::erase_unsorted(const_iterator position)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position >= mpEnd)))
EASTL_FAIL_MSG("vector::erase -- invalid position");
#endif
// C++11 stipulates that position is const_iterator, but the return value is iterator.
iterator destPosition = const_cast<value_type*>(position);
*destPosition = eastl::move(*(mpEnd - 1));
// pop_back();
--mpEnd;
mpEnd->~value_type();
return destPosition;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator vector<T, Allocator>::erase_first(const T& value)
{
static_assert(eastl::has_equality_v<T>, "T must be comparable");
iterator it = eastl::find(begin(), end(), value);
if (it != end())
return erase(it);
else
return it;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::iterator
vector<T, Allocator>::erase_first_unsorted(const T& value)
{
static_assert(eastl::has_equality_v<T>, "T must be comparable");
iterator it = eastl::find(begin(), end(), value);
if (it != end())
return erase_unsorted(it);
else
return it;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::erase_last(const T& value)
{
static_assert(eastl::has_equality_v<T>, "T must be comparable");
reverse_iterator it = eastl::find(rbegin(), rend(), value);
if (it != rend())
return erase(it);
else
return it;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::erase_last_unsorted(const T& value)
{
static_assert(eastl::has_equality_v<T>, "T must be comparable");
reverse_iterator it = eastl::find(rbegin(), rend(), value);
if (it != rend())
return erase_unsorted(it);
else
return it;
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::erase(const_reverse_iterator position)
{
return reverse_iterator(erase((++position).base()));
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::erase(const_reverse_iterator first, const_reverse_iterator last)
{
// Version which erases in order from first to last.
// difference_type i(first.base() - last.base());
// while(i--)
// first = erase(first);
// return first;
// Version which erases in order from last to first, but is slightly more efficient:
return reverse_iterator(erase(last.base(), first.base()));
}
template <typename T, typename Allocator>
inline typename vector<T, Allocator>::reverse_iterator
vector<T, Allocator>::erase_unsorted(const_reverse_iterator position)
{
return reverse_iterator(erase_unsorted((++position).base()));
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::clear() EA_NOEXCEPT
{
eastl::destruct(mpBegin, mpEnd);
mpEnd = mpBegin;
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::reset_lose_memory() EA_NOEXCEPT
{
// The reset function is a special extension function which unilaterally
// resets the container to an empty state without freeing the memory of
// the contained objects. This is useful for very quickly tearing down a
// container built into scratch memory.
mpBegin = mpEnd = internalCapacityPtr() = NULL;
}
// swap exchanges the contents of two containers. With respect to the containers allocators,
// the C11++ Standard (23.2.1/7) states that the behavior of a call to a container's swap function
// is undefined unless the objects being swapped have allocators that compare equal or
// allocator_traits<allocator_type>::propagate_on_container_swap::value is true (propagate_on_container_swap
// is false by default). EASTL doesn't have allocator_traits and so this doesn't directly apply,
// but EASTL has the effective behavior of propagate_on_container_swap = false for all allocators.
template <typename T, typename Allocator>
inline void vector<T, Allocator>::swap(this_type& x)
{
#if defined(EASTL_VECTOR_LEGACY_SWAP_BEHAVIOUR_REQUIRES_COPY_CTOR) && EASTL_VECTOR_LEGACY_SWAP_BEHAVIOUR_REQUIRES_COPY_CTOR
if(internalAllocator() == x.internalAllocator()) // If allocators are equivalent...
DoSwap(x);
else // else swap the contents.
{
const this_type temp(*this); // Can't call eastl::swap because that would
*this = x; // itself call this member swap function.
x = temp;
}
#else
// NOTE(rparolin): The previous implementation required T to be copy-constructible in the fall-back case where
// allocators with unique instances copied elements. This was an unnecessary restriction and prevented the common
// usage of vector with non-copyable types (eg. eastl::vector<non_copyable> or eastl::vector<unique_ptr>).
//
// The previous implementation violated the following requirements of vector::swap so the fall-back code has
// been removed. EASTL implicitly defines 'propagate_on_container_swap = false' therefore the fall-back case is
// undefined behaviour. We simply swap the contents and the allocator as that is the common expectation of
// users and does not put the container into an invalid state since it can not free its memory via its current
// allocator instance.
//
// http://en.cppreference.com/w/cpp/container/vector/swap
// "Exchanges the contents of the container with those of other. Does not invoke any move, copy, or swap
// operations on individual elements."
//
// http://en.cppreference.com/w/cpp/concept/AllocatorAwareContainer
// "Swapping two containers with unequal allocators if propagate_on_container_swap is false is undefined
// behavior."
DoSwap(x);
#endif
}
template <typename T, typename Allocator>
template <typename ForwardIterator>
inline typename vector<T, Allocator>::pointer
vector<T, Allocator>::DoRealloc(size_type n, ForwardIterator first, ForwardIterator last, should_copy_tag)
{
T* const p = DoAllocate(n); // p is of type T* but is not constructed.
eastl::uninitialized_copy_ptr(first, last, p); // copy-constructs p from [first,last).
return p;
}
template <typename T, typename Allocator>
template <typename ForwardIterator>
inline typename vector<T, Allocator>::pointer
vector<T, Allocator>::DoRealloc(size_type n, ForwardIterator first, ForwardIterator last, should_move_tag)
{
T* const p = DoAllocate(n); // p is of type T* but is not constructed.
eastl::uninitialized_move_ptr_if_noexcept(first, last, p); // move-constructs p from [first,last).
return p;
}
template <typename T, typename Allocator>
template <typename Integer>
inline void vector<T, Allocator>::DoInit(Integer n, Integer value, true_type)
{
mpBegin = DoAllocate((size_type)n);
internalCapacityPtr() = mpBegin + n;
mpEnd = internalCapacityPtr();
typedef typename eastl::remove_const<T>::type non_const_value_type; // If T is a const type (e.g. const int) then we need to initialize it as if it were non-const.
eastl::uninitialized_fill_n_ptr<value_type, Integer>((non_const_value_type*)mpBegin, n, value);
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void vector<T, Allocator>::DoInit(InputIterator first, InputIterator last, false_type)
{
typedef typename eastl::iterator_traits<InputIterator>:: iterator_category IC;
DoInitFromIterator(first, last, IC());
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void vector<T, Allocator>::DoInitFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag)
{
// To do: Use emplace_back instead of push_back(). Our emplace_back will work below without any ifdefs.
for(; first != last; ++first) // InputIterators by definition actually only allow you to iterate through them once.
push_back(*first); // Thus the standard *requires* that we do this (inefficient) implementation.
} // Luckily, InputIterators are in practice almost never used, so this code will likely never get executed.
template <typename T, typename Allocator>
template <typename ForwardIterator>
inline void vector<T, Allocator>::DoInitFromIterator(ForwardIterator first, ForwardIterator last, EASTL_ITC_NS::forward_iterator_tag)
{
const size_type n = (size_type)eastl::distance(first, last);
mpBegin = DoAllocate(n);
internalCapacityPtr() = mpBegin + n;
mpEnd = internalCapacityPtr();
typedef typename eastl::remove_const<T>::type non_const_value_type; // If T is a const type (e.g. const int) then we need to initialize it as if it were non-const.
eastl::uninitialized_copy_ptr(first, last, (non_const_value_type*)mpBegin);
}
template <typename T, typename Allocator>
template <typename Integer, bool bMove>
inline void vector<T, Allocator>::DoAssign(Integer n, Integer value, true_type)
{
DoAssignValues(static_cast<size_type>(n), static_cast<value_type>(value));
}
template <typename T, typename Allocator>
template <typename InputIterator, bool bMove>
inline void vector<T, Allocator>::DoAssign(InputIterator first, InputIterator last, false_type)
{
typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
DoAssignFromIterator<InputIterator, bMove>(first, last, IC());
}
template <typename T, typename Allocator>
void vector<T, Allocator>::DoAssignValues(size_type n, const value_type& value)
{
if(n > size_type(internalCapacityPtr() - mpBegin)) // If n > capacity ...
{
this_type temp(n, value, internalAllocator()); // We have little choice but to reallocate with new memory.
swap(temp);
}
else if(n > size_type(mpEnd - mpBegin)) // If n > size ...
{
eastl::fill(mpBegin, mpEnd, value);
eastl::uninitialized_fill_n_ptr(mpEnd, n - size_type(mpEnd - mpBegin), value);
mpEnd += n - size_type(mpEnd - mpBegin);
}
else // else 0 <= n <= size
{
eastl::fill_n(mpBegin, n, value);
erase(mpBegin + n, mpEnd);
}
}
template <typename T, typename Allocator>
template <typename InputIterator, bool bMove>
void vector<T, Allocator>::DoAssignFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag)
{
iterator position(mpBegin);
while((position != mpEnd) && (first != last))
{
*position = *first;
++first;
++position;
}
if(first == last)
erase(position, mpEnd);
else
insert(mpEnd, first, last);
}
template <typename T, typename Allocator>
template <typename RandomAccessIterator, bool bMove>
void vector<T, Allocator>::DoAssignFromIterator(RandomAccessIterator first, RandomAccessIterator last, EASTL_ITC_NS::random_access_iterator_tag)
{
const size_type n = (size_type)eastl::distance(first, last);
if(n > size_type(internalCapacityPtr() - mpBegin)) // If n > capacity ...
{
pointer const pNewData = DoRealloc(n, first, last, should_move_or_copy_tag<bMove>());
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = mpBegin + n;
internalCapacityPtr() = mpEnd;
}
else if(n <= size_type(mpEnd - mpBegin)) // If n <= size ...
{
pointer const pNewEnd = eastl::copy(first, last, mpBegin); // Since we are copying to mpBegin, we don't have to worry about needing copy_backward or a memmove-like copy (as opposed to memcpy-like copy).
eastl::destruct(pNewEnd, mpEnd);
mpEnd = pNewEnd;
}
else // else size < n <= capacity
{
RandomAccessIterator position = first + (mpEnd - mpBegin);
eastl::copy(first, position, mpBegin); // Since we are copying to mpBegin, we don't have to worry about needing copy_backward or a memmove-like copy (as opposed to memcpy-like copy).
mpEnd = eastl::uninitialized_copy_ptr(position, last, mpEnd);
}
}
template <typename T, typename Allocator>
template <typename Integer>
inline void vector<T, Allocator>::DoInsert(const_iterator position, Integer n, Integer value, true_type)
{
DoInsertValues(position, static_cast<size_type>(n), static_cast<value_type>(value));
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void vector<T, Allocator>::DoInsert(const_iterator position, InputIterator first, InputIterator last, false_type)
{
typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
DoInsertFromIterator(position, first, last, IC());
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void vector<T, Allocator>::DoInsertFromIterator(const_iterator position, InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag)
{
for(; first != last; ++first, ++position)
position = insert(position, *first);
}
template <typename T, typename Allocator>
template <typename BidirectionalIterator>
void vector<T, Allocator>::DoInsertFromIterator(const_iterator position, BidirectionalIterator first, BidirectionalIterator last, EASTL_ITC_NS::bidirectional_iterator_tag)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position > mpEnd)))
EASTL_FAIL_MSG("vector::insert -- invalid position");
#endif
// C++11 stipulates that position is const_iterator, but the return value is iterator.
iterator destPosition = const_cast<value_type*>(position);
if(first != last)
{
const size_type n = (size_type)eastl::distance(first, last); // n is the number of elements we are inserting.
if(n <= size_type(internalCapacityPtr() - mpEnd)) // If n fits within the existing capacity...
{
const size_type nExtra = static_cast<size_type>(mpEnd - destPosition);
if(n < nExtra) // If the inserted values are entirely within initialized memory (i.e. are before mpEnd)...
{
eastl::uninitialized_move_ptr(mpEnd - n, mpEnd, mpEnd);
eastl::move_backward(destPosition, mpEnd - n, mpEnd); // We need move_backward because of potential overlap issues.
eastl::copy(first, last, destPosition);
}
else
{
BidirectionalIterator iTemp = first;
eastl::advance(iTemp, nExtra);
eastl::uninitialized_copy_ptr(iTemp, last, mpEnd);
eastl::uninitialized_move_ptr(destPosition, mpEnd, mpEnd + n - nExtra);
eastl::copy_backward(first, iTemp, destPosition + nExtra);
}
mpEnd += n;
}
else // else we need to expand our capacity.
{
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nGrowSize = GetNewCapacity(nPrevSize);
const size_type nNewSize = nGrowSize > (nPrevSize + n) ? nGrowSize : (nPrevSize + n);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData;
try
{
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData);
pNewEnd = eastl::uninitialized_copy_ptr(first, last, pNewEnd);
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, pNewEnd);
}
catch(...)
{
eastl::destruct(pNewData, pNewEnd);
DoFree(pNewData, nNewSize);
throw;
}
#else
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData);
pNewEnd = eastl::uninitialized_copy_ptr(first, last, pNewEnd);
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, pNewEnd);
#endif
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
}
}
template <typename T, typename Allocator>
void vector<T, Allocator>::DoInsertValues(const_iterator position, size_type n, const value_type& value)
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position > mpEnd)))
EASTL_FAIL_MSG("vector::insert -- invalid position");
#endif
// C++11 stipulates that position is const_iterator, but the return value is iterator.
iterator destPosition = const_cast<value_type*>(position);
if(n <= size_type(internalCapacityPtr() - mpEnd)) // If n is <= capacity...
{
if(n > 0) // To do: See if there is a way we can eliminate this 'if' statement.
{
// To consider: Make this algorithm work more like DoInsertValue whereby a pointer to value is used.
const value_type temp = value;
const size_type nExtra = static_cast<size_type>(mpEnd - destPosition);
if(n < nExtra)
{
eastl::uninitialized_move_ptr(mpEnd - n, mpEnd, mpEnd);
eastl::move_backward(destPosition, mpEnd - n, mpEnd); // We need move_backward because of potential overlap issues.
eastl::fill(destPosition, destPosition + n, temp);
}
else
{
eastl::uninitialized_fill_n_ptr(mpEnd, n - nExtra, temp);
eastl::uninitialized_move_ptr(destPosition, mpEnd, mpEnd + n - nExtra);
eastl::fill(destPosition, mpEnd, temp);
}
mpEnd += n;
}
}
else // else n > capacity
{
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nGrowSize = GetNewCapacity(nPrevSize);
const size_type nNewSize = nGrowSize > (nPrevSize + n) ? nGrowSize : (nPrevSize + n);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData;
try
{
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData);
eastl::uninitialized_fill_n_ptr(pNewEnd, n, value);
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, pNewEnd + n);
}
catch(...)
{
eastl::destruct(pNewData, pNewEnd);
DoFree(pNewData, nNewSize);
throw;
}
#else
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData);
eastl::uninitialized_fill_n_ptr(pNewEnd, n, value);
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, pNewEnd + n);
#endif
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
}
template <typename T, typename Allocator>
void vector<T, Allocator>::DoClearCapacity() // This function exists because set_capacity() currently indirectly requires value_type to be default-constructible,
{ // and some functions that need to clear our capacity (e.g. operator=) aren't supposed to require default-constructibility.
clear();
this_type temp(eastl::move(*this)); // This is the simplest way to accomplish this,
swap(temp); // and it is as efficient as any other.
}
template <typename T, typename Allocator>
void vector<T, Allocator>::DoGrow(size_type n)
{
pointer const pNewData = DoAllocate(n);
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + n;
}
template <typename T, typename Allocator>
inline void vector<T, Allocator>::DoSwap(this_type& x)
{
eastl::swap(mpBegin, x.mpBegin);
eastl::swap(mpEnd, x.mpEnd);
eastl::swap(mCapacityAllocator, x.mCapacityAllocator); // We do this even if EASTL_ALLOCATOR_COPY_ENABLED is 0.
}
// The code duplication between this and the version that takes no value argument and default constructs the values
// is unfortunate but not easily resolved without relying on C++11 perfect forwarding.
template <typename T, typename Allocator>
void vector<T, Allocator>::DoInsertValuesEnd(size_type n, const value_type& value)
{
if(n > size_type(internalCapacityPtr() - mpEnd))
{
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nGrowSize = GetNewCapacity(nPrevSize);
const size_type nNewSize = eastl::max(nGrowSize, nPrevSize + n);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData; // Assign pNewEnd a value here in case the copy throws.
try
{
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
}
catch(...)
{
eastl::destruct(pNewData, pNewEnd);
DoFree(pNewData, nNewSize);
throw;
}
#else
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
#endif
eastl::uninitialized_fill_n_ptr(pNewEnd, n, value);
pNewEnd += n;
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
else
{
eastl::uninitialized_fill_n_ptr(mpEnd, n, value);
mpEnd += n;
}
}
template <typename T, typename Allocator>
void vector<T, Allocator>::DoInsertValuesEnd(size_type n)
{
if (n > size_type(internalCapacityPtr() - mpEnd))
{
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nGrowSize = GetNewCapacity(nPrevSize);
const size_type nNewSize = eastl::max(nGrowSize, nPrevSize + n);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData; // Assign pNewEnd a value here in case the copy throws.
try { pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData); }
catch (...)
{
eastl::destruct(pNewData, pNewEnd);
DoFree(pNewData, nNewSize);
throw;
}
#else
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
#endif
eastl::uninitialized_default_fill_n(pNewEnd, n);
pNewEnd += n;
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
else
{
eastl::uninitialized_default_fill_n(mpEnd, n);
mpEnd += n;
}
}
template <typename T, typename Allocator>
template<typename... Args>
void vector<T, Allocator>::DoInsertValue(const_iterator position, Args&&... args)
{
// To consider: It's feasible that the args is from a value_type comes from within the current sequence itself and
// so we need to be sure to handle that case. This is different from insert(position, const value_type&) because in
// this case value is potentially being modified.
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY((position < mpBegin) || (position > mpEnd)))
EASTL_FAIL_MSG("vector::insert/emplace -- invalid position");
#endif
// C++11 stipulates that position is const_iterator, but the return value is iterator.
iterator destPosition = const_cast<value_type*>(position);
if(mpEnd != internalCapacityPtr()) // If size < capacity ...
{
// We need to take into account the possibility that args is a value_type that comes from within the vector itself.
// creating a temporary value on the stack here is not an optimal way to solve this because sizeof(value_type) may be
// too much for the given platform. An alternative solution may be to specialize this function for the case of the
// argument being const value_type& or value_type&&.
EASTL_ASSERT(position < mpEnd); // While insert at end() is valid, our design is such that calling code should handle that case before getting here, as our streamlined logic directly doesn't handle this particular case due to resulting negative ranges.
#if EASTL_USE_FORWARD_WORKAROUND
auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code.
#else
value_type value(eastl::forward<Args>(args)...); // Need to do this before the move_backward below because maybe args refers to something within the moving range.
#endif
::new(static_cast<void*>(mpEnd)) value_type(eastl::move(*(mpEnd - 1))); // mpEnd is uninitialized memory, so we must construct into it instead of move into it like we do with the other elements below.
eastl::move_backward(destPosition, mpEnd - 1, mpEnd); // We need to go backward because of potential overlap issues.
eastl::destruct(destPosition);
::new(static_cast<void*>(destPosition)) value_type(eastl::move(value)); // Move the value argument to the given position.
++mpEnd;
}
else // else (size == capacity)
{
const size_type nPosSize = size_type(destPosition - mpBegin); // Index of the insertion position.
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nNewSize = GetNewCapacity(nPrevSize);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData;
try
{ // To do: We are not handling exceptions properly below. In particular we don't want to
// call eastl::destruct on the entire range if only the first part of the range was constructed.
::new((void*)(pNewData + nPosSize)) value_type(eastl::forward<Args>(args)...); // Because the old data is potentially being moved rather than copied, we need to move.
pNewEnd = NULL; // Set to NULL so that in catch we can tell the exception occurred during the next call.
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData); // the value first, because it might possibly be a reference to the old data being moved.
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, ++pNewEnd);
}
catch(...)
{
if(pNewEnd)
eastl::destruct(pNewData, pNewEnd); // Destroy what has been constructed so far.
else
eastl::destruct(pNewData + nPosSize); // The exception occurred during the first uninitialized move, so destroy only the value at nPosSize.
DoFree(pNewData, nNewSize);
throw;
}
#else
::new((void*)(pNewData + nPosSize)) value_type(eastl::forward<Args>(args)...); // Because the old data is potentially being moved rather than copied, we need to move
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, destPosition, pNewData); // the value first, because it might possibly be a reference to the old data being moved.
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(destPosition, mpEnd, ++pNewEnd); // Question: with exceptions disabled, do we assume all operations are noexcept and thus there's no need for uninitialized_move_ptr_if_noexcept?
#endif
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
}
template <typename T, typename Allocator>
template<typename... Args>
void vector<T, Allocator>::DoInsertValueEnd(Args&&... args)
{
const size_type nPrevSize = size_type(mpEnd - mpBegin);
const size_type nNewSize = GetNewCapacity(nPrevSize);
pointer const pNewData = DoAllocate(nNewSize);
#if EASTL_EXCEPTIONS_ENABLED
pointer pNewEnd = pNewData; // Assign pNewEnd a value here in case the copy throws.
try
{
pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
::new((void*)pNewEnd) value_type(eastl::forward<Args>(args)...);
pNewEnd++;
}
catch(...)
{
eastl::destruct(pNewData, pNewEnd);
DoFree(pNewData, nNewSize);
throw;
}
#else
pointer pNewEnd = eastl::uninitialized_move_ptr_if_noexcept(mpBegin, mpEnd, pNewData);
::new((void*)pNewEnd) value_type(eastl::forward<Args>(args)...);
pNewEnd++;
#endif
eastl::destruct(mpBegin, mpEnd);
DoFree(mpBegin, (size_type)(internalCapacityPtr() - mpBegin));
mpBegin = pNewData;
mpEnd = pNewEnd;
internalCapacityPtr() = pNewData + nNewSize;
}
template <typename T, typename Allocator>
inline bool vector<T, Allocator>::validate() const EA_NOEXCEPT
{
if(mpEnd < mpBegin)
return false;
if(internalCapacityPtr() < mpEnd)
return false;
return true;
}
template <typename T, typename Allocator>
inline int vector<T, Allocator>::validate_iterator(const_iterator i) const EA_NOEXCEPT
{
if(i >= mpBegin)
{
if(i < mpEnd)
return (isf_valid | isf_current | isf_can_dereference);
if(i <= mpEnd)
return (isf_valid | isf_current);
}
return isf_none;
}
///////////////////////////////////////////////////////////////////////
// global operators
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
inline bool operator==(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return ((a.size() == b.size()) && eastl::equal(a.begin(), a.end(), b.begin()));
}
template <typename T, typename Allocator>
inline bool operator!=(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return ((a.size() != b.size()) || !eastl::equal(a.begin(), a.end(), b.begin()));
}
template <typename T, typename Allocator>
inline bool operator<(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
}
template <typename T, typename Allocator>
inline bool operator>(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return b < a;
}
template <typename T, typename Allocator>
inline bool operator<=(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return !(b < a);
}
template <typename T, typename Allocator>
inline bool operator>=(const vector<T, Allocator>& a, const vector<T, Allocator>& b)
{
return !(a < b);
}
template <typename T, typename Allocator>
inline void swap(vector<T, Allocator>& a, vector<T, Allocator>& b) EA_NOEXCEPT_IF(EA_NOEXCEPT_EXPR(a.swap(b)))
{
a.swap(b);
}
///////////////////////////////////////////////////////////////////////
// erase / erase_if
//
// https://en.cppreference.com/w/cpp/container/vector/erase2
///////////////////////////////////////////////////////////////////////
template <class T, class Allocator, class U>
void erase(vector<T, Allocator>& c, const U& value)
{
// Erases all elements that compare equal to value from the container.
c.erase(eastl::remove(c.begin(), c.end(), value), c.end());
}
template <class T, class Allocator, class Predicate>
void erase_if(vector<T, Allocator>& c, Predicate predicate)
{
// Erases all elements that satisfy the predicate pred from the container.
c.erase(eastl::remove_if(c.begin(), c.end(), predicate), c.end());
}
} // namespace eastl
EA_RESTORE_VC_WARNING();
EA_RESTORE_VC_WARNING();
#endif // Header include guard
|