1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
|
///////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// An slist is a singly-linked list. The C++ standard library doesn't define
// such a thing as an slist, nor does the C++ TR1. Our implementation of slist
// largely follows the design of the SGI STL slist container, which is also
// found in STLPort. Singly-linked lists use less memory than doubly-linked
// lists, but are less flexible.
//
// In looking at slist, you will notice a lot of references to things like
// 'before first', 'before last', 'insert after', and 'erase after'. This is
// due to the fact that std::list insert and erase works on the node before
// the referenced node, whereas slist is singly linked and operations are only
// efficient if they work on the node after the referenced node. This is because
// with an slist node you know the node after it but not the node before it.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef EASTL_SLIST_H
#define EASTL_SLIST_H
#include <EASTL/internal/config.h>
#include <EASTL/allocator.h>
#include <EASTL/type_traits.h>
#include <EASTL/iterator.h>
#include <EASTL/algorithm.h>
#include <EASTL/initializer_list.h>
#include <EASTL/sort.h>
#include <EASTL/bonus/compressed_pair.h>
#include <stddef.h>
EA_DISABLE_ALL_VC_WARNINGS();
#include <new>
EA_RESTORE_ALL_VC_WARNINGS();
EA_DISABLE_SN_WARNING(828); // The EDG SN compiler has a bug in its handling of variadic template arguments and mistakenly reports "parameter "args" was never referenced"
// 4530 - C++ exception handler used, but unwind semantics are not enabled. Specify /EHsc
// 4345 - Behavior change: an object of POD type constructed with an initializer of the form () will be default-initialized
// 4571 - catch(...) semantics changed since Visual C++ 7.1; structured exceptions (SEH) are no longer caught.
EA_DISABLE_VC_WARNING(4530 4345 4571);
#if defined(EA_PRAGMA_ONCE_SUPPORTED)
#pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
#endif
namespace eastl
{
/// EASTL_SLIST_DEFAULT_NAME
///
/// Defines a default container name in the absence of a user-provided name.
///
#ifndef EASTL_SLIST_DEFAULT_NAME
#define EASTL_SLIST_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " slist" // Unless the user overrides something, this is "EASTL slist".
#endif
/// EASTL_SLIST_DEFAULT_ALLOCATOR
///
#ifndef EASTL_SLIST_DEFAULT_ALLOCATOR
#define EASTL_SLIST_DEFAULT_ALLOCATOR allocator_type(EASTL_SLIST_DEFAULT_NAME)
#endif
/// SListNodeBase
///
/// This is a standalone struct so that operations on it can be done without templates
/// and so that an empty slist can have an SListNodeBase and thus not create any
/// instances of T.
///
struct SListNodeBase
{
SListNodeBase* mpNext;
} EASTL_LIST_PROXY_MAY_ALIAS;
#if EASTL_LIST_PROXY_ENABLED
/// SListNodeBaseProxy
///
/// In debug builds, we define SListNodeBaseProxy to be the same thing as
/// SListNodeBase, except it is templated on the parent SListNode class.
/// We do this because we want users in debug builds to be able to easily
/// view the slist's contents in a debugger GUI. We do this only in a debug
/// build for the reasons described above: that SListNodeBase needs to be
/// as efficient as possible and not cause code bloat or extra function
/// calls (inlined or not).
///
/// SListNodeBaseProxy *must* be separate from its parent class SListNode
/// because the slist class must have a member node which contains no T value.
/// It is thus incorrect for us to have one single SListNode class which
/// has both mpNext and mValue. So we do a recursive template trick in the
/// definition and use of SListNodeBaseProxy.
///
template <typename SLN>
struct SListNodeBaseProxy
{
SLN* mpNext;
};
template <typename T>
struct SListNode : public SListNodeBaseProxy< SListNode<T> >
{
T mValue;
};
#else
template <typename T>
struct SListNode : public SListNodeBase
{
T mValue;
};
#endif
/// SListIterator
///
template <typename T, typename Pointer, typename Reference>
struct SListIterator
{
typedef SListIterator<T, Pointer, Reference> this_type;
typedef SListIterator<T, T*, T&> iterator;
typedef SListIterator<T, const T*, const T&> const_iterator;
typedef eastl_size_t size_type; // See config.h for the definition of eastl_size_t, which defaults to size_t.
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef SListNode<T> node_type;
typedef Pointer pointer;
typedef Reference reference;
typedef EASTL_ITC_NS::forward_iterator_tag iterator_category;
public:
node_type* mpNode;
public:
SListIterator();
SListIterator(const SListNodeBase* pNode);
SListIterator(const iterator& x);
reference operator*() const;
pointer operator->() const;
this_type& operator++();
this_type operator++(int);
};
/// SListBase
///
/// See VectorBase (class vector) for an explanation of why we
/// create this separate base class.
///
template <typename T, typename Allocator>
struct SListBase
{
public:
typedef Allocator allocator_type;
typedef SListNode<T> node_type;
typedef eastl_size_t size_type; // See config.h for the definition of eastl_size_t, which defaults to size_t.
typedef ptrdiff_t difference_type;
#if EASTL_LIST_PROXY_ENABLED
typedef SListNodeBaseProxy< SListNode<T> > base_node_type;
#else
typedef SListNodeBase base_node_type; // We use SListNodeBase instead of SListNode<T> because we don't want to create a T.
#endif
protected:
eastl::compressed_pair<base_node_type, allocator_type> mNodeAllocator;
#if EASTL_SLIST_SIZE_CACHE
size_type mSize;
#endif
base_node_type& internalNode() EA_NOEXCEPT { return mNodeAllocator.first(); }
base_node_type const& internalNode() const EA_NOEXCEPT { return mNodeAllocator.first(); }
allocator_type& internalAllocator() EA_NOEXCEPT { return mNodeAllocator.second(); }
const allocator_type& internalAllocator() const EA_NOEXCEPT { return mNodeAllocator.second(); }
public:
const allocator_type& get_allocator() const EA_NOEXCEPT;
allocator_type& get_allocator() EA_NOEXCEPT;
void set_allocator(const allocator_type& allocator);
protected:
SListBase();
SListBase(const allocator_type& a);
~SListBase();
node_type* DoAllocateNode();
void DoFreeNode(node_type* pNode);
SListNodeBase* DoEraseAfter(SListNodeBase* pNode);
SListNodeBase* DoEraseAfter(SListNodeBase* pNode, SListNodeBase* pNodeLast);
}; // class SListBase
/// slist
///
/// This is the equivalent of C++11's forward_list.
///
/// -- size() is O(n) --
/// Note that as of this writing, list::size() is an O(n) operation when EASTL_SLIST_SIZE_CACHE is disabled.
/// That is, getting the size of the list is not a fast operation, as it requires traversing the list and
/// counting the nodes. We could make list::size() be fast by having a member mSize variable. There are reasons
/// for having such functionality and reasons for not having such functionality. We currently choose
/// to not have a member mSize variable as it would add four bytes to the class, add a tiny amount
/// of processing to functions such as insert and erase, and would only serve to improve the size
/// function, but no others. The alternative argument is that the C++ standard states that std::list
/// should be an O(1) operation (i.e. have a member size variable), most C++ standard library list
/// implementations do so, the size is but an integer which is quick to update, and many users
/// expect to have a fast size function. The EASTL_SLIST_SIZE_CACHE option changes this.
/// To consider: Make size caching an optional template parameter.
///
/// Pool allocation
/// If you want to make a custom memory pool for a list container, your pool
/// needs to contain items of type slist::node_type. So if you have a memory
/// pool that has a constructor that takes the size of pool items and the
/// count of pool items, you would do this (assuming that MemoryPool implements
/// the Allocator interface):
/// typedef slist<Widget, MemoryPool> WidgetList; // Delare your WidgetList type.
/// MemoryPool myPool(sizeof(WidgetList::node_type), 100); // Make a pool of 100 Widget nodes.
/// WidgetList myList(&myPool); // Create a list that uses the pool.
///
template <typename T, typename Allocator = EASTLAllocatorType >
class slist : public SListBase<T, Allocator>
{
typedef SListBase<T, Allocator> base_type;
typedef slist<T, Allocator> this_type;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef SListIterator<T, T*, T&> iterator;
typedef SListIterator<T, const T*, const T&> const_iterator;
typedef typename base_type::size_type size_type;
typedef typename base_type::difference_type difference_type;
typedef typename base_type::allocator_type allocator_type;
typedef typename base_type::node_type node_type;
typedef typename base_type::base_node_type base_node_type;
using base_type::mNodeAllocator;
using base_type::DoEraseAfter;
using base_type::DoAllocateNode;
using base_type::DoFreeNode;
#if EASTL_SLIST_SIZE_CACHE
using base_type::mSize;
#endif
using base_type::internalNode;
using base_type::internalAllocator;
public:
slist();
slist(const allocator_type& allocator);
explicit slist(size_type n, const allocator_type& allocator = EASTL_SLIST_DEFAULT_ALLOCATOR);
slist(size_type n, const value_type& value, const allocator_type& allocator = EASTL_SLIST_DEFAULT_ALLOCATOR);
slist(const this_type& x);
slist(std::initializer_list<value_type> ilist, const allocator_type& allocator = EASTL_SLIST_DEFAULT_ALLOCATOR);
slist(this_type&& x);
slist(this_type&& x, const allocator_type& allocator);
template <typename InputIterator>
slist(InputIterator first, InputIterator last); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.
this_type& operator=(const this_type& x);
this_type& operator=(std::initializer_list<value_type>);
this_type& operator=(this_type&& x);
void swap(this_type& x);
void assign(size_type n, const value_type& value);
void assign(std::initializer_list<value_type> ilist);
template <typename InputIterator>
void assign(InputIterator first, InputIterator last);
iterator begin() EA_NOEXCEPT;
const_iterator begin() const EA_NOEXCEPT;
const_iterator cbegin() const EA_NOEXCEPT;
iterator end() EA_NOEXCEPT;
const_iterator end() const EA_NOEXCEPT;
const_iterator cend() const EA_NOEXCEPT;
iterator before_begin() EA_NOEXCEPT;
const_iterator before_begin() const EA_NOEXCEPT;
const_iterator cbefore_begin() const EA_NOEXCEPT;
iterator previous(const_iterator position);
const_iterator previous(const_iterator position) const;
reference front();
const_reference front() const;
template <class... Args>
void emplace_front(Args&&... args);
void push_front(const value_type& value);
reference push_front();
void push_front(value_type&& value);
void pop_front();
bool empty() const EA_NOEXCEPT;
size_type size() const EA_NOEXCEPT;
void resize(size_type n, const value_type& value);
void resize(size_type n);
iterator insert(const_iterator position);
iterator insert(const_iterator position, const value_type& value);
void insert(const_iterator position, size_type n, const value_type& value);
template <typename InputIterator>
void insert(const_iterator position, InputIterator first, InputIterator last);
// Returns an iterator pointing to the last inserted element, or position if insertion count is zero.
iterator insert_after(const_iterator position);
iterator insert_after(const_iterator position, const value_type& value);
iterator insert_after(const_iterator position, size_type n, const value_type& value);
iterator insert_after(const_iterator position, std::initializer_list<value_type> ilist);
iterator insert_after(const_iterator position, value_type&& value);
template <class... Args>
iterator emplace_after(const_iterator position, Args&&... args);
template <typename InputIterator>
iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
iterator erase_after(const_iterator position);
iterator erase_after(const_iterator before_first, const_iterator last);
void clear() EA_NOEXCEPT;
void reset_lose_memory() EA_NOEXCEPT; // This is a unilateral reset to an initially empty state. No destructors are called, no deallocation occurs.
void remove(const value_type& value);
template <typename Predicate>
void remove_if(Predicate predicate);
void reverse() EA_NOEXCEPT;
// splice splices to before position, like with the list container. However, in order to do so
// it must walk the list from beginning to position, which is an O(n) operation that can thus
// be slow. It's recommended that the splice_after functions be used whenever possible as they are O(1).
void splice(const_iterator position, this_type& x);
void splice(const_iterator position, this_type& x, const_iterator i);
void splice(const_iterator position, this_type& x, const_iterator first, const_iterator last);
void splice(const_iterator position, this_type&& x);
void splice(const_iterator position, this_type&& x, const_iterator i);
void splice(const_iterator position, this_type&& x, const_iterator first, const_iterator last);
void splice_after(const_iterator position, this_type& x);
void splice_after(const_iterator position, this_type& x, const_iterator i);
void splice_after(const_iterator position, this_type& x, const_iterator first, const_iterator last);
void splice_after(const_iterator position, this_type&& x);
void splice_after(const_iterator position, this_type&& x, const_iterator i);
void splice_after(const_iterator position, this_type&& x, const_iterator first, const_iterator last);
// The following splice_after funcions are deprecated, as they don't allow for recognizing
// the allocator, cannot maintain the source mSize, and are not in the C++11 Standard definition
// of std::forward_list (which is the equivalent of this class).
void splice_after(const_iterator position, const_iterator before_first, const_iterator before_last); // before_first and before_last come from a source container.
void splice_after(const_iterator position, const_iterator previous); // previous comes from a source container.
// Sorting functionality
// This is independent of the global sort algorithms, as lists are
// linked nodes and can be sorted more efficiently by moving nodes
// around in ways that global sort algorithms aren't privy to.
void sort();
template <class Compare>
void sort(Compare compare);
// Not yet implemented:
// void merge(this_type& x);
// void merge(this_type&& x);
// template <class Compare>
// void merge(this_type& x, Compare compare);
// template <class Compare>
// void merge(this_type&& x, Compare compare);
// If these get implemented then make sure to override them in fixed_slist.
bool validate() const;
int validate_iterator(const_iterator i) const;
protected:
node_type* DoCreateNode();
template<typename... Args>
node_type* DoCreateNode(Args&&... args);
template <typename Integer>
void DoAssign(Integer n, Integer value, true_type);
template <typename InputIterator>
void DoAssign(InputIterator first, InputIterator last, false_type);
void DoAssignValues(size_type n, const value_type& value);
template <typename InputIterator>
node_type* DoInsertAfter(SListNodeBase* pNode, InputIterator first, InputIterator last);
template <typename Integer>
node_type* DoInsertAfter(SListNodeBase* pNode, Integer n, Integer value, true_type);
template <typename InputIterator>
node_type* DoInsertAfter(SListNodeBase* pNode, InputIterator first, InputIterator last, false_type);
node_type* DoInsertValueAfter(SListNodeBase* pNode);
node_type* DoInsertValuesAfter(SListNodeBase* pNode, size_type n, const value_type& value);
template<typename... Args>
node_type* DoInsertValueAfter(SListNodeBase* pNode, Args&&... args);
void DoSwap(this_type& x);
}; // class slist
///////////////////////////////////////////////////////////////////////
// SListNodeBase functions
///////////////////////////////////////////////////////////////////////
inline SListNodeBase* SListNodeInsertAfter(SListNodeBase* pPrevNode, SListNodeBase* pNode)
{
pNode->mpNext = pPrevNode->mpNext;
pPrevNode->mpNext = pNode;
return pNode;
}
inline SListNodeBase* SListNodeGetPrevious(SListNodeBase* pNodeBase, const SListNodeBase* pNode)
{
while(pNodeBase && (pNodeBase->mpNext != pNode))
pNodeBase = pNodeBase->mpNext;
return pNodeBase;
}
inline const SListNodeBase* SListNodeGetPrevious(const SListNodeBase* pNodeBase, const SListNodeBase* pNode)
{
while(pNodeBase && (pNodeBase->mpNext != pNode))
pNodeBase = pNodeBase->mpNext;
return pNodeBase;
}
inline void SListNodeSpliceAfter(SListNodeBase* pNode, SListNodeBase* pNodeBeforeFirst, SListNodeBase* pNodeBeforeLast)
{
if((pNode != pNodeBeforeFirst) && (pNode != pNodeBeforeLast))
{
SListNodeBase* const pFirst = pNodeBeforeFirst->mpNext;
SListNodeBase* const pPosition = pNode->mpNext;
pNodeBeforeFirst->mpNext = pNodeBeforeLast->mpNext;
pNode->mpNext = pFirst;
pNodeBeforeLast->mpNext = pPosition;
}
}
inline void SListNodeSpliceAfter(SListNodeBase* pNode, SListNodeBase* pNodeBase)
{
SListNodeBase* const pNodeBeforeLast = SListNodeGetPrevious(pNodeBase, NULL);
if(pNodeBeforeLast != pNodeBase)
{
SListNodeBase* const pPosition = pNode->mpNext;
pNode->mpNext = pNodeBase->mpNext;
pNodeBase->mpNext = NULL;
pNodeBeforeLast->mpNext = pPosition;
}
}
inline SListNodeBase* SListNodeReverse(SListNodeBase* pNode)
{
SListNodeBase* pNodeFirst = pNode;
pNode = pNode->mpNext;
pNodeFirst->mpNext = NULL;
while(pNode)
{
SListNodeBase* const pTemp = pNode->mpNext;
pNode->mpNext = pNodeFirst;
pNodeFirst = pNode;
pNode = pTemp;
}
return pNodeFirst;
}
inline uint32_t SListNodeGetSize(SListNodeBase* pNode)
{
uint32_t n = 0;
while(pNode)
{
++n;
pNode = pNode->mpNext;
}
return n;
}
///////////////////////////////////////////////////////////////////////
// SListIterator functions
///////////////////////////////////////////////////////////////////////
template <typename T, typename Pointer, typename Reference>
inline SListIterator<T, Pointer, Reference>::SListIterator()
: mpNode(NULL)
{
// Empty
}
template <typename T, typename Pointer, typename Reference>
inline SListIterator<T, Pointer, Reference>::SListIterator(const SListNodeBase* pNode)
: mpNode(static_cast<node_type*>((SListNode<T>*)const_cast<SListNodeBase*>(pNode))) // All this casting is in the name of making runtime debugging much easier on the user.
{
// Empty
}
template <typename T, typename Pointer, typename Reference>
inline SListIterator<T, Pointer, Reference>::SListIterator(const iterator& x)
: mpNode(const_cast<node_type*>(x.mpNode))
{
// Empty
}
template <typename T, typename Pointer, typename Reference>
inline typename SListIterator<T, Pointer, Reference>::reference
SListIterator<T, Pointer, Reference>::operator*() const
{
return mpNode->mValue;
}
template <typename T, typename Pointer, typename Reference>
inline typename SListIterator<T, Pointer, Reference>::pointer
SListIterator<T, Pointer, Reference>::operator->() const
{
return &mpNode->mValue;
}
template <typename T, typename Pointer, typename Reference>
inline typename SListIterator<T, Pointer, Reference>::this_type&
SListIterator<T, Pointer, Reference>::operator++()
{
mpNode = static_cast<node_type*>(mpNode->mpNext);
return *this;
}
template <typename T, typename Pointer, typename Reference>
inline typename SListIterator<T, Pointer, Reference>::this_type
SListIterator<T, Pointer, Reference>::operator++(int)
{
this_type temp(*this);
mpNode = static_cast<node_type*>(mpNode->mpNext);
return temp;
}
// The C++ defect report #179 requires that we support comparisons between const and non-const iterators.
// Thus we provide additional template paremeters here to support this. The defect report does not
// require us to support comparisons between reverse_iterators and const_reverse_iterators.
template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB>
inline bool operator==(const SListIterator<T, PointerA, ReferenceA>& a,
const SListIterator<T, PointerB, ReferenceB>& b)
{
return a.mpNode == b.mpNode;
}
template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB>
inline bool operator!=(const SListIterator<T, PointerA, ReferenceA>& a,
const SListIterator<T, PointerB, ReferenceB>& b)
{
return a.mpNode != b.mpNode;
}
// We provide a version of operator!= for the case where the iterators are of the
// same type. This helps prevent ambiguity errors in the presence of rel_ops.
template <typename T, typename Pointer, typename Reference>
inline bool operator!=(const SListIterator<T, Pointer, Reference>& a,
const SListIterator<T, Pointer, Reference>& b)
{
return a.mpNode != b.mpNode;
}
///////////////////////////////////////////////////////////////////////
// SListBase functions
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
inline SListBase<T, Allocator>::SListBase()
: mNodeAllocator(base_node_type(), allocator_type(EASTL_SLIST_DEFAULT_NAME))
#if EASTL_SLIST_SIZE_CACHE
, mSize(0)
#endif
{
internalNode().mpNext = NULL;
}
template <typename T, typename Allocator>
inline SListBase<T, Allocator>::SListBase(const allocator_type& allocator)
: mNodeAllocator(base_node_type(), allocator)
#if EASTL_SLIST_SIZE_CACHE
, mSize(0)
#endif
{
internalNode().mpNext = NULL;
}
template <typename T, typename Allocator>
inline SListBase<T, Allocator>::~SListBase()
{
DoEraseAfter((SListNodeBase*)&internalNode(), NULL);
}
template <typename T, typename Allocator>
inline const typename SListBase<T, Allocator>::allocator_type&
SListBase<T, Allocator>::get_allocator() const EA_NOEXCEPT
{
return internalAllocator();
}
template <typename T, typename Allocator>
inline typename SListBase<T, Allocator>::allocator_type&
SListBase<T, Allocator>::get_allocator() EA_NOEXCEPT
{
return internalAllocator();
}
template <typename T, typename Allocator>
void
SListBase<T, Allocator>::set_allocator(const allocator_type& allocator)
{
EASTL_ASSERT((internalAllocator() == allocator) || (static_cast<node_type*>(internalNode().mpNext) == NULL)); // We can only assign a different allocator if we are empty of elements.
internalAllocator() = allocator;
}
template <typename T, typename Allocator>
inline SListNode<T>* SListBase<T, Allocator>::DoAllocateNode()
{
return (node_type*)allocate_memory(internalAllocator(), sizeof(node_type), EASTL_ALIGN_OF(T), 0);
}
template <typename T, typename Allocator>
inline void SListBase<T, Allocator>::DoFreeNode(node_type* pNode)
{
EASTLFree(internalAllocator(), pNode, sizeof(node_type));
}
template <typename T, typename Allocator>
SListNodeBase* SListBase<T, Allocator>::DoEraseAfter(SListNodeBase* pNode)
{
node_type* const pNodeNext = static_cast<node_type*>((base_node_type*)pNode->mpNext);
SListNodeBase* const pNodeNextNext = (SListNodeBase*)pNodeNext->mpNext;
pNode->mpNext = pNodeNextNext;
pNodeNext->~node_type();
DoFreeNode(pNodeNext);
#if EASTL_SLIST_SIZE_CACHE
--mSize;
#endif
return pNodeNextNext;
}
template <typename T, typename Allocator>
SListNodeBase* SListBase<T, Allocator>::DoEraseAfter(SListNodeBase* pNode, SListNodeBase* pNodeLast)
{
node_type* pNodeCurrent = static_cast<node_type*>((base_node_type*)pNode->mpNext);
while(pNodeCurrent != (base_node_type*)pNodeLast)
{
node_type* const pNodeTemp = pNodeCurrent;
pNodeCurrent = static_cast<node_type*>((base_node_type*)pNodeCurrent->mpNext);
pNodeTemp->~node_type();
DoFreeNode(pNodeTemp);
#if EASTL_SLIST_SIZE_CACHE
--mSize;
#endif
}
pNode->mpNext = pNodeLast;
return pNodeLast;
}
///////////////////////////////////////////////////////////////////////
// slist functions
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist()
: base_type()
{
// Empty
}
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist(const allocator_type& allocator)
: base_type(allocator)
{
// Empty
}
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist(size_type n, const allocator_type& allocator)
: base_type(allocator)
{
DoInsertValuesAfter((SListNodeBase*)&internalNode(), n, value_type());
}
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist(size_type n, const value_type& value, const allocator_type& allocator)
: base_type(allocator)
{
DoInsertValuesAfter((SListNodeBase*)&internalNode(), n, value);
}
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist(const slist& x)
: base_type(x.internalAllocator())
{
DoInsertAfter((SListNodeBase*)&internalNode(), const_iterator((SListNodeBase*)x.internalNode().mpNext), const_iterator(NULL), false_type());
}
template <typename T, typename Allocator>
slist<T, Allocator>::slist(this_type&& x)
: base_type(x.internalAllocator())
{
swap(x);
}
template <typename T, typename Allocator>
slist<T, Allocator>::slist(this_type&& x, const allocator_type& allocator)
: base_type(allocator)
{
swap(x); // member swap handles the case that x has a different allocator than our allocator by doing a copy.
}
template <typename T, typename Allocator>
inline slist<T, Allocator>::slist(std::initializer_list<value_type> ilist, const allocator_type& allocator)
: base_type(allocator)
{
DoInsertAfter((SListNodeBase*)&internalNode(), ilist.begin(), ilist.end());
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline slist<T, Allocator>::slist(InputIterator first, InputIterator last)
: base_type(EASTL_SLIST_DEFAULT_ALLOCATOR)
{
DoInsertAfter((SListNodeBase*)&internalNode(), first, last);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::begin() EA_NOEXCEPT
{
return iterator((SListNodeBase*)internalNode().mpNext);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::begin() const EA_NOEXCEPT
{
return const_iterator((SListNodeBase*)internalNode().mpNext);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::cbegin() const EA_NOEXCEPT
{
return const_iterator((SListNodeBase*)internalNode().mpNext);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::end() EA_NOEXCEPT
{
return iterator(NULL);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::end() const EA_NOEXCEPT
{
return const_iterator(NULL);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::cend() const EA_NOEXCEPT
{
return const_iterator(NULL);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::before_begin() EA_NOEXCEPT
{
return iterator((SListNodeBase*)&internalNode());
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::before_begin() const EA_NOEXCEPT
{
return const_iterator((SListNodeBase*)&internalNode());
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::cbefore_begin() const EA_NOEXCEPT
{
return const_iterator((SListNodeBase*)&internalNode());
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::previous(const_iterator position)
{
return iterator(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_iterator
slist<T, Allocator>::previous(const_iterator position) const
{
return const_iterator(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::reference
slist<T, Allocator>::front()
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(internalNode().mpNext == NULL))
EASTL_FAIL_MSG("slist::front -- empty container");
#endif
EA_ANALYSIS_ASSUME(internalNode().mpNext != NULL);
return ((node_type*)internalNode().mpNext)->mValue;
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::const_reference
slist<T, Allocator>::front() const
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(internalNode().mpNext == NULL))
EASTL_FAIL_MSG("slist::front -- empty container");
#endif
EA_ANALYSIS_ASSUME(internalNode().mpNext != NULL);
return static_cast<node_type*>(internalNode().mpNext)->mValue;
}
template <typename T, typename Allocator>
template <class... Args>
void slist<T, Allocator>::emplace_front(Args&&... args)
{
DoInsertValueAfter((SListNodeBase*)&internalNode(), eastl::forward<Args>(args)...);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::push_front(const value_type& value)
{
SListNodeInsertAfter((SListNodeBase*)&internalNode(), (SListNodeBase*)DoCreateNode(value));
#if EASTL_SLIST_SIZE_CACHE
++mSize;
#endif
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::reference
slist<T, Allocator>::push_front()
{
SListNodeInsertAfter((SListNodeBase*)&internalNode(), (SListNodeBase*)DoCreateNode());
#if EASTL_SLIST_SIZE_CACHE
++mSize;
#endif
return ((node_type*)internalNode().mpNext)->mValue; // Same as return front();
}
template <typename T, typename Allocator>
void slist<T, Allocator>::push_front(value_type&& value)
{
emplace_after(before_begin(), eastl::move(value));
}
template <typename T, typename Allocator>
void slist<T, Allocator>::pop_front()
{
#if EASTL_ASSERT_ENABLED
if(EASTL_UNLIKELY(internalNode().mpNext == NULL))
EASTL_FAIL_MSG("slist::front -- empty container");
#endif
EA_ANALYSIS_ASSUME(internalNode().mpNext != NULL);
node_type* const pNode = static_cast<node_type*>(internalNode().mpNext);
internalNode().mpNext = pNode->mpNext;
pNode->~node_type();
DoFreeNode(pNode);
#if EASTL_SLIST_SIZE_CACHE
--mSize;
#endif
}
template <typename T, typename Allocator>
typename slist<T, Allocator>::this_type& slist<T, Allocator>::operator=(const this_type& x)
{
if(&x != this)
{
// If (EASTL_ALLOCATOR_COPY_ENABLED == 1) and the current contents are allocated by an
// allocator that's unequal to x's allocator, we need to reallocate our elements with
// our current allocator and reallocate it with x's allocator. If the allocators are
// equal then we can use a more optimal algorithm that doesn't reallocate our elements
// but instead can copy them in place.
#if EASTL_ALLOCATOR_COPY_ENABLED
bool bSlowerPathwayRequired = (internalAllocator() != x.internalAllocator());
#else
bool bSlowerPathwayRequired = false;
#endif
if(bSlowerPathwayRequired)
{
clear();
#if EASTL_ALLOCATOR_COPY_ENABLED
internalAllocator() = x.internalAllocator();
#endif
}
DoAssign(x.begin(), x.end(), eastl::false_type());
}
return *this;
}
template <typename T, typename Allocator>
typename slist<T, Allocator>::this_type& slist<T, Allocator>::operator=(this_type&& x)
{
if(this != &x)
{
clear(); // To consider: Are we really required to clear here? x is going away soon and will clear itself in its dtor.
swap(x); // member swap handles the case that x has a different allocator than our allocator by doing a copy.
}
return *this;
}
template <typename T, typename Allocator>
typename slist<T, Allocator>::this_type& slist<T, Allocator>::operator=(std::initializer_list<value_type> ilist)
{
DoAssign(ilist.begin(), ilist.end(), false_type());
return *this;
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::assign(std::initializer_list<value_type> ilist)
{
DoAssign(ilist.begin(), ilist.end(), false_type());
}
template <typename T, typename Allocator>
template <typename InputIterator> // It turns out that the C++ std::list specifies a two argument
inline void slist<T, Allocator>::assign(InputIterator first, InputIterator last) // version of assign that takes (int size, int value). These are not
{ // iterators, so we need to do a template compiler trick to do the right thing.
DoAssign(first, last, is_integral<InputIterator>());
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::assign(size_type n, const value_type& value)
{
// To do: get rid of DoAssignValues and put its implementation directly here.
DoAssignValues(n, value);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::swap(this_type& x)
{
if(internalAllocator() == x.internalAllocator()) // If allocators are equivalent...
DoSwap(x);
else // else swap the contents.
{
const this_type temp(*this); // Can't call eastl::swap because that would
*this = x; // itself call this member swap function.
x = temp;
}
}
template <typename T, typename Allocator>
inline bool slist<T, Allocator>::empty() const EA_NOEXCEPT
{
return internalNode().mpNext == NULL;
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::size_type
slist<T, Allocator>::size() const EA_NOEXCEPT
{
return SListNodeGetSize((SListNodeBase*)internalNode().mpNext);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::clear() EA_NOEXCEPT
{
DoEraseAfter((SListNodeBase*)&internalNode(), NULL);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::reset_lose_memory() EA_NOEXCEPT
{
// The reset function is a special extension function which unilaterally
// resets the container to an empty state without freeing the memory of
// the contained objects. This is useful for very quickly tearing down a
// container built into scratch memory.
internalNode().mpNext = NULL;
#if EASTL_SLIST_SIZE_CACHE
mSize = 0;
#endif
}
template <typename T, typename Allocator>
void slist<T, Allocator>::resize(size_type n, const value_type& value)
{
SListNodeBase* pNode = (SListNodeBase*)&internalNode();
for(; pNode->mpNext && (n > 0); --n)
pNode = pNode->mpNext;
if(pNode->mpNext)
DoEraseAfter(pNode, NULL);
else
DoInsertValuesAfter(pNode, n, value);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::resize(size_type n)
{
resize(n, value_type());
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert(const_iterator position)
{
return iterator((SListNodeBase*)DoInsertValueAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode), value_type()));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert(const_iterator position, const value_type& value)
{
return iterator((SListNodeBase*)DoInsertValueAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode), value));
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::insert(const_iterator position, size_type n, const value_type& value)
{
// To do: get rid of DoAssignValues and put its implementation directly here.
DoInsertValuesAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode), n, value);
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline void slist<T, Allocator>::insert(const_iterator position, InputIterator first, InputIterator last)
{
DoInsertAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode), first, last);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position)
{
return insert_after(position, value_type());
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position, const value_type& value)
{
return iterator((SListNodeBase*)DoInsertValueAfter((SListNodeBase*)position.mpNode, value));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position, size_type n, const value_type& value)
{
return iterator((SListNodeBase*)DoInsertValuesAfter((SListNodeBase*)position.mpNode, n, value));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position, std::initializer_list<value_type> ilist)
{
return iterator((SListNodeBase*)DoInsertAfter((SListNodeBase*)position.mpNode, ilist.begin(), ilist.end(), false_type()));
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position, InputIterator first, InputIterator last)
{
return iterator((SListNodeBase*)DoInsertAfter((SListNodeBase*)position.mpNode, first, last));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::insert_after(const_iterator position, value_type&& value)
{
return emplace_after(position, eastl::move(value));
}
template <typename T, typename Allocator>
template <class... Args>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::emplace_after(const_iterator position, Args&&... args)
{
return iterator((SListNodeBase*)DoInsertValueAfter(position.mpNode, eastl::forward<Args>(args)...));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase(const_iterator position)
{
return DoEraseAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase(const_iterator first, const_iterator last)
{
return DoEraseAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)first.mpNode), (SListNodeBase*)last.mpNode);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase_after(const_iterator position)
{
return iterator(DoEraseAfter((SListNodeBase*)position.mpNode));
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase_after(const_iterator before_first, const_iterator last)
{
return iterator(DoEraseAfter((SListNodeBase*)before_first.mpNode, (SListNodeBase*)last.mpNode));
}
template <typename T, typename Allocator>
void slist<T, Allocator>::remove(const value_type& value)
{
base_node_type* pNode = &internalNode();
while(pNode && pNode->mpNext)
{
if(static_cast<node_type*>(pNode->mpNext)->mValue == value)
DoEraseAfter((SListNodeBase*)pNode); // This will take care of modifying pNode->mpNext.
else
pNode = pNode->mpNext;
}
}
template <typename T, typename Allocator>
template <typename Predicate>
void slist<T, Allocator>::remove_if(Predicate predicate)
{
base_node_type* pNode = &internalNode();
while(pNode && pNode->mpNext)
{
if(predicate(static_cast<node_type*>(pNode->mpNext)->mValue))
DoEraseAfter((SListNodeBase*)pNode); // This will take care of modifying pNode->mpNext.
else
pNode = pNode->mpNext;
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice(const_iterator position, this_type& x)
{
// Splicing operations cannot succeed if the two containers use unequal allocators.
// This issue is not addressed in the C++ 1998 standard but is discussed in the
// LWG defect reports, such as #431. There is no simple solution to this problem.
// One option is to throw an exception. Another option which probably captures the
// user intent most of the time is to copy the range from the source to the dest and
// remove it from the source. Until then it's simply disallowed to splice with unequal allocators.
// EASTL_ASSERT(internalAllocator() == x.internalAllocator()); // Disabled because our member sort function uses splice but with allocators that may be unequal. There isn't a simple workaround aside from disabling this assert.
if(x.internalNode().mpNext) // If there is anything to splice...
{
if(internalAllocator() == x.internalAllocator())
{
SListNodeSpliceAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode),
(SListNodeBase*)&x.internalNode(),
SListNodeGetPrevious((SListNodeBase*)&x.internalNode(), NULL));
#if EASTL_SLIST_SIZE_CACHE
mSize += x.mSize;
x.mSize = 0;
#endif
}
else
{
insert(position, x.begin(), x.end());
x.clear();
}
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice(const_iterator position, this_type& x, const_iterator i)
{
if(internalAllocator() == x.internalAllocator())
{
SListNodeSpliceAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode),
SListNodeGetPrevious((SListNodeBase*)&x.internalNode(), (SListNodeBase*)i.mpNode),
(SListNodeBase*)i.mpNode);
#if EASTL_SLIST_SIZE_CACHE
++mSize;
--x.mSize;
#endif
}
else
{
insert(position, *i);
x.erase(i);
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice(const_iterator position, this_type& x, const_iterator first, const_iterator last)
{
if(first != last) // If there is anything to splice...
{
if(internalAllocator() == x.internalAllocator())
{
#if EASTL_SLIST_SIZE_CACHE
const size_type n = (size_type)eastl::distance(first, last);
mSize += n;
x.mSize -= n;
#endif
SListNodeSpliceAfter(SListNodeGetPrevious((SListNodeBase*)&internalNode(), (SListNodeBase*)position.mpNode),
SListNodeGetPrevious((SListNodeBase*)&x.internalNode(), (SListNodeBase*)first.mpNode),
SListNodeGetPrevious((SListNodeBase*)first.mpNode, (SListNodeBase*)last.mpNode));
}
else
{
insert(position, first, last);
x.erase(first, last);
}
}
}
template <typename T, typename Allocator>
void slist<T, Allocator>::splice(const_iterator position, this_type&& x)
{
return splice(position, x); // This will splice(const_iterator, this_type&)
}
template <typename T, typename Allocator>
void slist<T, Allocator>::splice(const_iterator position, this_type&& x, const_iterator i)
{
return splice(position, x, i); // This will splice_after(const_iterator, this_type&, const_iterator)
}
template <typename T, typename Allocator>
void slist<T, Allocator>::splice(const_iterator position, this_type&& x, const_iterator first, const_iterator last)
{
return splice(position, x, first, last); // This will splice(const_iterator, this_type&, const_iterator, const_iterator)
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type& x)
{
if(!x.empty()) // If there is anything to splice...
{
if(internalAllocator() == x.internalAllocator())
{
SListNodeSpliceAfter((SListNodeBase*)position.mpNode, (SListNodeBase*)&x.internalNode());
#if EASTL_SLIST_SIZE_CACHE
mSize += x.mSize;
x.mSize = 0;
#endif
}
else
{
insert_after(position, x.begin(), x.end());
x.clear();
}
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type& x, const_iterator i)
{
if(internalAllocator() == x.internalAllocator())
{
SListNodeSpliceAfter((SListNodeBase*)position.mpNode, (SListNodeBase*)i.mpNode);
#if EASTL_SLIST_SIZE_CACHE
mSize++;
x.mSize--;
#endif
}
else
{
const_iterator iNext(i);
insert_after(position, i, ++iNext);
x.erase(i);
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type& x, const_iterator first, const_iterator last)
{
if(first != last) // If there is anything to splice...
{
if(internalAllocator() == x.internalAllocator())
{
#if EASTL_SLIST_SIZE_CACHE
const size_type n = (size_type)eastl::distance(first, last);
mSize += n;
x.mSize -= n;
#endif
SListNodeSpliceAfter((SListNodeBase*)position.mpNode, (SListNodeBase*)first.mpNode, (SListNodeBase*)last.mpNode);
}
else
{
insert_after(position, first, last);
x.erase(first, last);
}
}
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type&& x)
{
return splice_after(position, x); // This will call splice_after(const_iterator, this_type&)
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type&& x, const_iterator i)
{
return splice_after(position, x, i); // This will call splice_after(const_iterator, this_type&, const_iterator)
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, this_type&& x, const_iterator first, const_iterator last)
{
return splice_after(position, x, first, last); // This will call splice_after(const_iterator, this_type&, const_iterator, const_iterator)
}
// This function is deprecated.
// We have no way of knowing what the container or allocator for before_first/before_last is.
// Thus this function requires that the iterators come from equivalent allocators.
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, const_iterator before_first, const_iterator before_last)
{
if(before_first != before_last) // If there is anything to splice...
{
#if EASTL_SLIST_SIZE_CACHE
// We have a problem here because the inserted range may come from *this or
// it may come from some other list. We have no choice but to implement an O(n)
// brute-force search in our list for 'previous'.
iterator i((SListNodeBase*)&internalNode());
iterator iEnd(NULL);
for( ; i != iEnd; ++i)
{
if(i == before_first)
break;
}
if(i == iEnd) // If the input came from an external range...
mSize += (size_type)eastl::distance(before_first, before_last); // Note that we have no way of knowing how to decrementing the size from the external container, assuming it came from one.
else
{ EASTL_FAIL_MSG("slist::splice_after: Impossible to decrement source mSize. Use the other splice_after function instead."); }
#endif
// Insert the range of [before_first + 1, before_last + 1) after position.
SListNodeSpliceAfter((SListNodeBase*)position.mpNode, (SListNodeBase*)before_first.mpNode, (SListNodeBase*)before_last.mpNode);
}
}
// This function is deprecated.
// We have no way of knowing what the container or allocator for previous is.
// Thus this function requires that the iterators come from equivalent allocators.
template <typename T, typename Allocator>
inline void slist<T, Allocator>::splice_after(const_iterator position, const_iterator previous)
{
#if EASTL_SLIST_SIZE_CACHE
// We have a problem here because the inserted range may come from *this or
// it may come from some other list. We have no choice but to implement an O(n)
// brute-force search in our list for 'previous'.
iterator i((SListNodeBase*)&internalNode());
iterator iEnd(NULL);
for( ; i != iEnd; ++i)
{
if(i == previous)
break;
}
if(i == iEnd) // If the input came from an external range...
++mSize; // Note that we have no way of knowing how to decrementing the size from the external container, assuming it came from one.
else
{ EASTL_FAIL_MSG("slist::splice_after: Impossible to decrement source mSize. Use the other splice_after function instead."); }
#endif
// Insert the element at previous + 1 after position.
SListNodeSpliceAfter((SListNodeBase*)position.mpNode, (SListNodeBase*)previous.mpNode, (SListNodeBase*)previous.mpNode->mpNext);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::sort()
{
// To do: look at using a merge sort, which may well be faster.
eastl::comb_sort(begin(), end());
}
template <typename T, typename Allocator>
template <class Compare>
inline void slist<T, Allocator>::sort(Compare compare)
{
// To do: look at using a merge sort, which may well be faster.
eastl::comb_sort(begin(), end(), compare);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::reverse() EA_NOEXCEPT
{
if(internalNode().mpNext)
internalNode().mpNext = static_cast<node_type*>((base_node_type*)SListNodeReverse((SListNodeBase*)internalNode().mpNext));
}
template <typename T, typename Allocator>
template<typename... Args>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoCreateNode(Args&&... args)
{
node_type* const pNode = DoAllocateNode(); // pNode is of type node_type, but it's uninitialized memory.
#if EASTL_EXCEPTIONS_ENABLED
try
{
::new((void*)&pNode->mValue) value_type(eastl::forward<Args>(args)...);
}
catch(...)
{
DoFreeNode(pNode);
throw;
}
#else
::new((void*)&pNode->mValue) value_type(eastl::forward<Args>(args)...);
#endif
return pNode;
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoCreateNode()
{
node_type* const pNode = DoAllocateNode();
#if EASTL_EXCEPTIONS_ENABLED
try
{
::new((void*)&pNode->mValue) value_type();
}
catch(...)
{
DoFreeNode(pNode);
throw;
}
#else
::new((void*)&pNode->mValue) value_type();
#endif
return pNode;
}
template <typename T, typename Allocator>
template <typename Integer>
void slist<T, Allocator>::DoAssign(Integer n, Integer value, true_type)
{
DoAssignValues(static_cast<size_type>(n), static_cast<value_type>(value));
}
template <typename T, typename Allocator>
template <typename InputIterator>
void slist<T, Allocator>::DoAssign(InputIterator first, InputIterator last, false_type)
{
base_node_type* pNodePrev = &internalNode();
node_type* pNode = static_cast<node_type*>(internalNode().mpNext);
for(; pNode && (first != last); ++first)
{
pNode->mValue = *first;
pNodePrev = pNode;
pNode = static_cast<node_type*>(pNode->mpNext);
}
if(first == last)
DoEraseAfter((SListNodeBase*)pNodePrev, NULL);
else
DoInsertAfter((SListNodeBase*)pNodePrev, first, last);
}
template <typename T, typename Allocator>
void slist<T, Allocator>::DoAssignValues(size_type n, const value_type& value)
{
base_node_type* pNodePrev = &internalNode();
node_type* pNode = static_cast<node_type*>(internalNode().mpNext);
for(; pNode && (n > 0); --n)
{
pNode->mValue = value;
pNodePrev = pNode;
pNode = static_cast<node_type*>(pNode->mpNext);
}
if(n)
DoInsertValuesAfter((SListNodeBase*)pNodePrev, n, value);
else
DoEraseAfter((SListNodeBase*)pNodePrev, NULL);
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertAfter(SListNodeBase* pNode, InputIterator first, InputIterator last)
{
return DoInsertAfter(pNode, first, last, is_integral<InputIterator>());
}
template <typename T, typename Allocator>
template <typename Integer>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertAfter(SListNodeBase* pNode, Integer n, Integer value, true_type)
{
return DoInsertValuesAfter(pNode, n, value);
}
template <typename T, typename Allocator>
template <typename InputIterator>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertAfter(SListNodeBase* pNode, InputIterator first, InputIterator last, false_type)
{
for(; first != last; ++first)
{
pNode = SListNodeInsertAfter((SListNodeBase*)pNode, (SListNodeBase*)DoCreateNode(*first));
#if EASTL_SLIST_SIZE_CACHE
++mSize;
#endif
}
return static_cast<node_type*>((base_node_type*)pNode);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertValueAfter(SListNodeBase* pNode)
{
#if EASTL_SLIST_SIZE_CACHE
pNode = SListNodeInsertAfter((SListNodeBase*)pNode, (SListNodeBase*)DoCreateNode());
++mSize;
return static_cast<node_type*>((base_node_type*)pNode);
#else
return static_cast<node_type*>((base_node_type*)SListNodeInsertAfter((SListNodeBase*)pNode, (SListNodeBase*)DoCreateNode()));
#endif
}
template <typename T, typename Allocator>
template<typename... Args>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertValueAfter(SListNodeBase* pNode, Args&&... args)
{
SListNodeBase* pNodeNew = (SListNodeBase*)DoCreateNode(eastl::forward<Args>(args)...);
pNode = SListNodeInsertAfter(pNode, pNodeNew);
#if EASTL_LIST_SIZE_CACHE
++mSize; // Increment the size after the node creation because we need to assume an exception can occur in the creation.
#endif
return static_cast<node_type*>((base_node_type*)pNode);
}
template <typename T, typename Allocator>
inline typename slist<T, Allocator>::node_type*
slist<T, Allocator>::DoInsertValuesAfter(SListNodeBase* pNode, size_type n, const value_type& value)
{
for(size_type i = 0; i < n; ++i)
{
pNode = SListNodeInsertAfter((SListNodeBase*)pNode, (SListNodeBase*)DoCreateNode(value));
#if EASTL_SLIST_SIZE_CACHE
++mSize; // We don't do a single mSize += n at the end because an exception may result in only a partial range insertion.
#endif
}
return static_cast<node_type*>((base_node_type*)pNode);
}
template <typename T, typename Allocator>
inline void slist<T, Allocator>::DoSwap(this_type& x)
{
eastl::swap(internalNode().mpNext, x.internalNode().mpNext);
eastl::swap(internalAllocator(), x.internalAllocator()); // We do this even if EASTL_ALLOCATOR_COPY_ENABLED is 0.
#if EASTL_LIST_SIZE_CACHE
eastl::swap(mSize, x.mSize);
#endif
}
template <typename T, typename Allocator>
inline bool slist<T, Allocator>::validate() const
{
#if EASTL_SLIST_SIZE_CACHE
size_type n = 0;
for(const_iterator i(begin()), iEnd(end()); i != iEnd; ++i)
++n;
if(n != mSize)
return false;
#endif
// To do: More validation.
return true;
}
template <typename T, typename Allocator>
inline int slist<T, Allocator>::validate_iterator(const_iterator i) const
{
// To do: Come up with a more efficient mechanism of doing this.
for(const_iterator temp = begin(), tempEnd = end(); temp != tempEnd; ++temp)
{
if(temp == i)
return (isf_valid | isf_current | isf_can_dereference);
}
if(i == end())
return (isf_valid | isf_current);
return isf_none;
}
///////////////////////////////////////////////////////////////////////
// global operators
///////////////////////////////////////////////////////////////////////
template <typename T, typename Allocator>
bool operator==(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
typename slist<T, Allocator>::const_iterator ia = a.begin();
typename slist<T, Allocator>::const_iterator ib = b.begin();
typename slist<T, Allocator>::const_iterator enda = a.end();
#if EASTL_SLIST_SIZE_CACHE
if(a.size() == b.size())
{
while((ia != enda) && (*ia == *ib))
{
++ia;
++ib;
}
return (ia == enda);
}
return false;
#else
typename slist<T, Allocator>::const_iterator endb = b.end();
while((ia != enda) && (ib != endb) && (*ia == *ib))
{
++ia;
++ib;
}
return (ia == enda) && (ib == endb);
#endif
}
template <typename T, typename Allocator>
inline bool operator<(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
}
template <typename T, typename Allocator>
inline bool operator!=(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
return !(a == b);
}
template <typename T, typename Allocator>
inline bool operator>(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
return b < a;
}
template <typename T, typename Allocator>
inline bool operator<=(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
return !(b < a);
}
template <typename T, typename Allocator>
inline bool operator>=(const slist<T, Allocator>& a, const slist<T, Allocator>& b)
{
return !(a < b);
}
template <typename T, typename Allocator>
inline void swap(slist<T, Allocator>& a, slist<T, Allocator>& b)
{
a.swap(b);
}
/// erase / erase_if
///
/// https://en.cppreference.com/w/cpp/container/forward_list/erase2
template <class T, class Allocator, class U>
void erase(slist<T, Allocator>& c, const U& value)
{
// Erases all elements that compare equal to value from the container.
c.remove_if([&](auto& elem) { return elem == value; });
}
template <class T, class Allocator, class Predicate>
void erase_if(slist<T, Allocator>& c, Predicate predicate)
{
// Erases all elements that satisfy the predicate pred from the container.
c.remove_if(predicate);
}
/// insert_iterator
///
/// We borrow a trick from SGI STL here and define an insert_iterator
/// specialization for slist. This allows slist insertions to be O(1)
/// instead of O(n/2), due to caching of the previous node.
///
template <typename T, typename Allocator>
class insert_iterator< slist<T, Allocator> >
{
public:
typedef slist<T, Allocator> Container;
typedef typename Container::const_reference const_reference;
typedef typename Container::iterator iterator_type;
typedef EASTL_ITC_NS::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
protected:
Container& container;
iterator_type it;
public:
insert_iterator(Container& x, iterator_type i)
: container(x)
{
if(i == x.begin())
it = x.before_begin();
else
it = x.previous(i);
}
insert_iterator<Container>& operator=(const_reference value)
{ it = container.insert_after(it, value); return *this; }
insert_iterator<Container>& operator*()
{ return *this; }
insert_iterator<Container>& operator++()
{ return *this; } // This is by design.
insert_iterator<Container>& operator++(int)
{ return *this; } // This is by design.
}; // insert_iterator<slist>
} // namespace eastl
EA_RESTORE_SN_WARNING()
EA_RESTORE_VC_WARNING();
#endif // Header include guard
|