aboutsummaryrefslogtreecommitdiff
path: root/include/EASTL/deque.h
blob: c2d55b1c6d650e961aa1b1845124194f59b9b088 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
/////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
/////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////
// deque design
//
// A deque (pronounced "deck") is a double-ended queue, though this is partially 
// of a misnomer. A deque does indeed let you add and remove values from both ends
// of the container, but it's not usually used for such a thing and instead is used
// as a more flexible version of a vector. It provides operator[] (random access) 
// and can insert items anywhere and not just at the front and back.
// 
// While you can implement a double-ended queue via a doubly-linked list, deque is 
// instead implemented as a list of arrays. The benefit of this is that memory usage 
// is lower and that random access can be had with decent efficiency. 
// 
// Our implementation of deque is just like every other implementation of deque,
// as the C++ standard all but dictates that you make it work this way. Below 
// we have a depiction of an array (or vector) of 48 items, with each node being 
// a '+' character and extra capacity being a '-' character. What we have is one 
// contiguous block of memory:
// 
//     ++++++++++++++++++++++++++++++++++++++++++++++++-----------------
//     0                                              47
// 
// With a deque, the same array of 48 items would be implemented as multiple smaller
// arrays of contiguous memory, each of fixed size. We will call these "sub-arrays."
// In the case here, we have six arrays of 8 nodes:
// 
//     ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ ++++++++
// 
// With an vector, item [0] is the first item and item [47] is the last item. With a 
// deque, item [0] is usually not the first item and neither is item [47]. There is 
// extra capacity on both the front side and the back side of the deque. So a deque
// (of 24 items) actually looks like this:
// 
//     -------- -----+++ ++++++++ ++++++++ +++++--- --------
//                   0                         23
// 
// To insert items at the front, you move into the capacity on the left, and to insert
// items at the back, you append items on the right. As you can see, inserting an item
// at the front doesn't require allocating new memory nor does it require moving any 
// items in the container. It merely involves moving the pointer to the [0] item to
// the left by one node.
// 
// We keep track of these sub-arrays by having an array of pointers, with each array 
// entry pointing to each of the sub-arrays. We could alternatively use a linked
// list of pointers, but it turns out we can implement our deque::operator[] more 
// efficiently if we use an array of pointers instead of a list of pointers.
//
// To implement deque::iterator, we could keep a struct which is essentially this:
//     struct iterator {
//        int subArrayIndex;
//        int subArrayOffset;
//     }
//
// In practice, we implement iterators a little differently, but in reality our 
// implementation isn't much different from the above. It turns out that it's most
// simple if we also manage the location of item [0] and item [end] by using these
// same iterators.
//
// To consider: Implement the deque as a circular deque instead of a linear one.
//              This would use a similar subarray layout but iterators would
//              wrap around when they reached the end of the subarray pointer list.
//
//////////////////////////////////////////////////////////////////////////////


#ifndef EASTL_DEQUE_H
#define EASTL_DEQUE_H


#include <EASTL/internal/config.h>
#include <EASTL/allocator.h>
#include <EASTL/algorithm.h>
#include <EASTL/type_traits.h>
#include <EASTL/iterator.h>
#include <EASTL/memory.h>
#include <EASTL/initializer_list.h>

EA_DISABLE_ALL_VC_WARNINGS()
#include <new>
#include <stddef.h>
EA_RESTORE_ALL_VC_WARNINGS()

#if EASTL_EXCEPTIONS_ENABLED
	EA_DISABLE_ALL_VC_WARNINGS()
	#include <stdexcept> // std::out_of_range, std::length_error.
	EA_RESTORE_ALL_VC_WARNINGS()
#endif


// 4267 - 'argument' : conversion from 'size_t' to 'const uint32_t', possible loss of data. This is a bogus warning resulting from a bug in VC++.
// 4345 - Behavior change: an object of POD type constructed with an initializer of the form () will be default-initialized
// 4480 - nonstandard extension used: specifying underlying type for enum
// 4530 - C++ exception handler used, but unwind semantics are not enabled. Specify /EHsc
// 4571 - catch(...) semantics changed since Visual C++ 7.1; structured exceptions (SEH) are no longer caught.
EA_DISABLE_VC_WARNING(4267 4345 4480 4530 4571);

#if EASTL_EXCEPTIONS_ENABLED
	// 4703 - potentially uninitialized local pointer variable used. VC++ is mistakenly analyzing the possibility of uninitialized variables, though it's not easy for it to do so.
	// 4701 - potentially uninitialized local variable used.
	EA_DISABLE_VC_WARNING(4703 4701)
#endif


#if defined(EA_PRAGMA_ONCE_SUPPORTED)
	#pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
#endif


namespace eastl
{

	/// EASTL_DEQUE_DEFAULT_NAME
	///
	/// Defines a default container name in the absence of a user-provided name.
	///
	#ifndef EASTL_DEQUE_DEFAULT_NAME
		#define EASTL_DEQUE_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " deque" // Unless the user overrides something, this is "EASTL deque".
	#endif


	/// EASTL_DEQUE_DEFAULT_ALLOCATOR
	///
	#ifndef EASTL_DEQUE_DEFAULT_ALLOCATOR
		#define EASTL_DEQUE_DEFAULT_ALLOCATOR allocator_type(EASTL_DEQUE_DEFAULT_NAME)
	#endif


	/// DEQUE_DEFAULT_SUBARRAY_SIZE
	///
	/// Defines the default number of items in a subarray.
	/// Note that the user has the option of specifying the subarray size
	/// in the deque template declaration.
	///
	#if !defined(__GNUC__) || (__GNUC__ >= 3) // GCC 2.x can't handle the declaration below.
		#define DEQUE_DEFAULT_SUBARRAY_SIZE(T) ((sizeof(T) <= 4) ? 64 : ((sizeof(T) <= 8) ? 32 : ((sizeof(T) <= 16) ? 16 : ((sizeof(T) <= 32) ? 8 : 4))))
	#else
		#define DEQUE_DEFAULT_SUBARRAY_SIZE(T) 16
	#endif



	/// DequeIterator
	///
	/// The DequeIterator provides both const and non-const iterators for deque. 
	/// It also is used for the tracking of the begin and end for the deque.
	///
	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	struct DequeIterator
	{
		typedef DequeIterator<T, Pointer, Reference, kDequeSubarraySize>  this_type;
		typedef DequeIterator<T, T*, T&, kDequeSubarraySize>              iterator;
		typedef DequeIterator<T, const T*, const T&, kDequeSubarraySize>  const_iterator;
		typedef ptrdiff_t                                                 difference_type;
		typedef EASTL_ITC_NS::random_access_iterator_tag                  iterator_category;
		typedef T                                                         value_type;
		typedef T*                                                        pointer;
		typedef T&                                                        reference;

	public:
		DequeIterator();
		DequeIterator(const iterator& x);

		pointer   operator->() const;
		reference operator*() const;

		this_type& operator++();
		this_type  operator++(int);

		this_type& operator--();
		this_type  operator--(int);

		this_type& operator+=(difference_type n);
		this_type& operator-=(difference_type n);

		this_type operator+(difference_type n) const;
		this_type operator-(difference_type n) const;

	protected:
		template <typename, typename, typename, unsigned>
		friend struct DequeIterator;

		template <typename, typename, unsigned>
		friend struct DequeBase;

		template <typename, typename, unsigned>
		friend class deque;

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator==(const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator!=(const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerU, typename ReferenceU, unsigned kDequeSubarraySizeU>
		friend bool operator!=(const DequeIterator<U, PointerU, ReferenceU, kDequeSubarraySizeU>& a, 
							   const DequeIterator<U, PointerU, ReferenceU, kDequeSubarraySizeU>& b);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator< (const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator> (const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator<=(const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend bool operator>=(const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>&, 
							   const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>&);

		template <typename U, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySizeU>
		friend typename DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>::difference_type
		operator-(const DequeIterator<U, PointerA, ReferenceA, kDequeSubarraySizeU>& a,
				  const DequeIterator<U, PointerB, ReferenceB, kDequeSubarraySizeU>& b);

	protected:
		T*  mpCurrent;          // Where we currently point. Declared first because it's used most often.
		T*  mpBegin;            // The beginning of the current subarray.
		T*  mpEnd;              // The end of the current subarray. To consider: remove this member, as it is always equal to 'mpBegin + kDequeSubarraySize'. Given that deque subarrays usually consist of hundreds of bytes, this isn't a massive win. Also, now that we are implementing a zero-allocation new deque policy, mpEnd may in fact not be equal to 'mpBegin + kDequeSubarraySize'.
		T** mpCurrentArrayPtr;  // Pointer to current subarray. We could alternatively implement this as a list node iterator if the deque used a linked list.

		struct Increment {};
		struct Decrement {};
		struct FromConst {};

		DequeIterator(T** pCurrentArrayPtr, T* pCurrent);
		DequeIterator(const const_iterator& x, FromConst) : mpCurrent(x.mpCurrent), mpBegin(x.mpBegin), mpEnd(x.mpEnd), mpCurrentArrayPtr(x.mpCurrentArrayPtr){}
		DequeIterator(const iterator&       x, Increment);
		DequeIterator(const iterator&       x, Decrement);

		this_type copy(const iterator& first, const iterator& last, true_type);  // true means that value_type has the type_trait has_trivial_relocate,
		this_type copy(const iterator& first, const iterator& last, false_type); // false means it does not. 

		void copy_backward(const iterator& first, const iterator& last, true_type);  // true means that value_type has the type_trait has_trivial_relocate,
		void copy_backward(const iterator& first, const iterator& last, false_type); // false means it does not.

		void SetSubarray(T** pCurrentArrayPtr);
	};




	/// DequeBase
	///
	/// The DequeBase implements memory allocation for deque.
	/// See VectorBase (class vector) for an explanation of why we 
	/// create this separate base class.
	///
	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	struct DequeBase
	{
		typedef T                                                        value_type;
		typedef Allocator                                                allocator_type;
		typedef eastl_size_t                                             size_type;     // See config.h for the definition of eastl_size_t, which defaults to size_t.
		typedef ptrdiff_t                                                difference_type;
		typedef DequeIterator<T, T*, T&, kDequeSubarraySize>             iterator;
		typedef DequeIterator<T, const T*, const T&, kDequeSubarraySize> const_iterator;

		static const size_type npos     = (size_type)-1;      /// 'npos' means non-valid position or simply non-position.
		static const size_type kMaxSize = (size_type)-2;      /// -1 is reserved for 'npos'. It also happens to be slightly beneficial that kMaxSize is a value less than -1, as it helps us deal with potential integer wraparound issues.

		enum
		{
			kMinPtrArraySize = 8,                               /// A new empty deque has a ptrArraySize of 0, but any allocated ptrArrays use this min size.
			kSubarraySize    = kDequeSubarraySize               /// 
		  //kNodeSize        = kDequeSubarraySize * sizeof(T)   /// Disabled because it prevents the ability to do this: struct X{ eastl::deque<X, EASTLAllocatorType, 16> mDequeOfSelf; };
		};

		enum Side       /// Defines the side of the deque: front or back.
		{
			kSideFront, /// Identifies the front side of the deque.
			kSideBack   /// Identifies the back side of the deque.
		};

	protected:
		T**             mpPtrArray;         // Array of pointers to subarrays.
		size_type       mnPtrArraySize;     // Possibly we should store this as T** mpArrayEnd.
		iterator        mItBegin;           // Where within the subarrays is our beginning.
		iterator        mItEnd;             // Where within the subarrays is our end.
		allocator_type  mAllocator;         // To do: Use base class optimization to make this go away.

	public:
		DequeBase(const allocator_type& allocator);
		DequeBase(size_type n);
		DequeBase(size_type n, const allocator_type& allocator);
	   ~DequeBase();

		const allocator_type& get_allocator() const EA_NOEXCEPT;
		allocator_type&       get_allocator() EA_NOEXCEPT;
		void                  set_allocator(const allocator_type& allocator);

	protected:
		T*       DoAllocateSubarray();
		void     DoFreeSubarray(T* p);
		void     DoFreeSubarrays(T** pBegin, T** pEnd);

		T**      DoAllocatePtrArray(size_type n);
		void     DoFreePtrArray(T** p, size_t n);

		iterator DoReallocSubarray(size_type nAdditionalCapacity, Side allocationSide);
		void     DoReallocPtrArray(size_type nAdditionalCapacity, Side allocationSide);

		void     DoInit(size_type n);

	}; // DequeBase




	/// deque
	///
	/// Implements a conventional C++ double-ended queue. The implementation used here
	/// is very much like any other deque implementations you may have seen, as it 
	/// follows the standard algorithm for deque design. 
	///
	/// Note:
	/// As of this writing, deque does not support zero-allocation initial emptiness.
	/// A newly created deque with zero elements will still allocate a subarray
	/// pointer set. We are looking for efficient and clean ways to get around this,
	/// but current efforts have resulted in less efficient and more fragile code.
	/// The logic of this class doesn't lend itself to a clean implementation. 
	/// It turns out that deques are one of the least likely classes you'd want this
	/// behaviour in, so until this functionality becomes very important to somebody,
	/// we will leave it as-is. It can probably be solved by adding some extra code to
	/// the Do* functions and adding good comments explaining the situation.
	/// 
	template <typename T, typename Allocator = EASTLAllocatorType, unsigned kDequeSubarraySize = DEQUE_DEFAULT_SUBARRAY_SIZE(T)>
	class deque : public DequeBase<T, Allocator, kDequeSubarraySize>
	{
	public:
		typedef DequeBase<T, Allocator, kDequeSubarraySize>              base_type;
		typedef deque<T, Allocator, kDequeSubarraySize>                  this_type;
		typedef T                                                        value_type;
		typedef T*                                                       pointer;
		typedef const T*                                                 const_pointer;
		typedef T&                                                       reference;
		typedef const T&                                                 const_reference;
		typedef DequeIterator<T, T*, T&, kDequeSubarraySize>             iterator;
		typedef DequeIterator<T, const T*, const T&, kDequeSubarraySize> const_iterator;
		typedef eastl::reverse_iterator<iterator>                        reverse_iterator;
		typedef eastl::reverse_iterator<const_iterator>                  const_reverse_iterator;
		typedef typename base_type::size_type                            size_type;
		typedef typename base_type::difference_type                      difference_type;
		typedef typename base_type::allocator_type                       allocator_type;

		using base_type::kSideFront;
		using base_type::kSideBack;
		using base_type::mpPtrArray;
		using base_type::mnPtrArraySize;
		using base_type::mItBegin;
		using base_type::mItEnd;
		using base_type::mAllocator;
		using base_type::npos;
		using base_type::DoAllocateSubarray;
		using base_type::DoFreeSubarray;
		using base_type::DoFreeSubarrays;
		using base_type::DoAllocatePtrArray;
		using base_type::DoFreePtrArray;
		using base_type::DoReallocSubarray;
		using base_type::DoReallocPtrArray;

	public:
		deque();
		explicit deque(const allocator_type& allocator);
		explicit deque(size_type n, const allocator_type& allocator = EASTL_DEQUE_DEFAULT_ALLOCATOR);
		deque(size_type n, const value_type& value, const allocator_type& allocator = EASTL_DEQUE_DEFAULT_ALLOCATOR);
		deque(const this_type& x);
		deque(this_type&& x);
		deque(this_type&& x, const allocator_type& allocator);
		deque(std::initializer_list<value_type> ilist, const allocator_type& allocator = EASTL_DEQUE_DEFAULT_ALLOCATOR);

		template <typename InputIterator>
		deque(InputIterator first, InputIterator last); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.

	   ~deque();

		this_type& operator=(const this_type& x);
		this_type& operator=(std::initializer_list<value_type> ilist);
		this_type& operator=(this_type&& x);

		void swap(this_type& x);

		void assign(size_type n, const value_type& value);
		void assign(std::initializer_list<value_type> ilist);

		template <typename InputIterator>                       // It turns out that the C++ std::deque<int, int> specifies a two argument
		void assign(InputIterator first, InputIterator last);   // version of assign that takes (int size, int value). These are not 
																// iterators, so we need to do a template compiler trick to do the right thing.

		iterator       begin() EA_NOEXCEPT;
		const_iterator begin() const EA_NOEXCEPT;
		const_iterator cbegin() const EA_NOEXCEPT;

		iterator       end() EA_NOEXCEPT;
		const_iterator end() const EA_NOEXCEPT;
		const_iterator cend() const EA_NOEXCEPT;

		reverse_iterator       rbegin() EA_NOEXCEPT;
		const_reverse_iterator rbegin() const EA_NOEXCEPT;
		const_reverse_iterator crbegin() const EA_NOEXCEPT;

		reverse_iterator       rend() EA_NOEXCEPT;
		const_reverse_iterator rend() const EA_NOEXCEPT;
		const_reverse_iterator crend() const EA_NOEXCEPT;

		bool      empty() const EA_NOEXCEPT; 
		size_type size() const EA_NOEXCEPT;

		void resize(size_type n, const value_type& value);
		void resize(size_type n);

		void shrink_to_fit();
		void set_capacity(size_type n = base_type::npos);

		reference       operator[](size_type n);
		const_reference operator[](size_type n) const;

		reference       at(size_type n);
		const_reference at(size_type n) const;

		reference       front();
		const_reference front() const;

		reference       back();
		const_reference back() const;

		void      push_front(const value_type& value);
		reference push_front();
		void      push_front(value_type&& value);

		void      push_back(const value_type& value);
		reference push_back();
		void      push_back(value_type&& value);

		void pop_front();
		void pop_back();

		template<class... Args>
		iterator emplace(const_iterator position, Args&&... args);

		template<class... Args>
		void emplace_front(Args&&... args);

		template<class... Args>
		void emplace_back(Args&&... args);

		iterator insert(const_iterator position, const value_type& value);
		iterator insert(const_iterator position, value_type&& value);
		void     insert(const_iterator position, size_type n, const value_type& value);
		iterator insert(const_iterator position, std::initializer_list<value_type> ilist);

		template <typename InputIterator>
		void insert(const_iterator position, InputIterator first, InputIterator last);

		iterator         erase(const_iterator position);
		iterator         erase(const_iterator first, const_iterator last);
		reverse_iterator erase(reverse_iterator position);
		reverse_iterator erase(reverse_iterator first, reverse_iterator last);

		void clear();
		//void reset_lose_memory(); // Disabled until it can be implemented efficiently and cleanly.  // This is a unilateral reset to an initially empty state. No destructors are called, no deallocation occurs.

		bool validate() const;
		int  validate_iterator(const_iterator i) const;

	protected:
		template <typename Integer>
		void DoInit(Integer n, Integer value, true_type);

		template <typename InputIterator>
		void DoInit(InputIterator first, InputIterator last, false_type);

		template <typename InputIterator>
		void DoInitFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag);

		template <typename ForwardIterator>
		void DoInitFromIterator(ForwardIterator first, ForwardIterator last, EASTL_ITC_NS::forward_iterator_tag);

		void DoFillInit(const value_type& value);

		template <typename Integer>
		void DoAssign(Integer n, Integer value, true_type);

		template <typename InputIterator>
		void DoAssign(InputIterator first, InputIterator last, false_type);

		void DoAssignValues(size_type n, const value_type& value);

		template <typename Integer>
		void DoInsert(const const_iterator& position, Integer n, Integer value, true_type);

		template <typename InputIterator>
		void DoInsert(const const_iterator& position, const InputIterator& first, const InputIterator& last, false_type);

		template <typename InputIterator>
		void DoInsertFromIterator(const_iterator position, const InputIterator& first, const InputIterator& last, EASTL_ITC_NS::forward_iterator_tag);

		void DoInsertValues(const_iterator position, size_type n, const value_type& value);

		void DoSwap(this_type& x);
	}; // class deque




	///////////////////////////////////////////////////////////////////////
	// DequeBase
	///////////////////////////////////////////////////////////////////////

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	DequeBase<T, Allocator, kDequeSubarraySize>::DequeBase(const allocator_type& allocator)
		: mpPtrArray(NULL),
		  mnPtrArraySize(0),
		  mItBegin(),
		  mItEnd(),
		  mAllocator(allocator)
	{
		// It is assumed here that the deque subclass will init us when/as needed.
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	DequeBase<T, Allocator, kDequeSubarraySize>::DequeBase(size_type n)
		: mpPtrArray(NULL),
		  mnPtrArraySize(0),
		  mItBegin(),
		  mItEnd(),
		  mAllocator(EASTL_DEQUE_DEFAULT_NAME)
	{
		// It's important to note that DoInit creates space for elements and assigns 
		// mItBegin/mItEnd to point to them, but these elements are not constructed. 
		// You need to immediately follow this constructor with code that constructs the values.
		DoInit(n); 
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	DequeBase<T, Allocator, kDequeSubarraySize>::DequeBase(size_type n, const allocator_type& allocator)
		: mpPtrArray(NULL),
		  mnPtrArraySize(0),
		  mItBegin(),
		  mItEnd(),
		  mAllocator(allocator)
	{
		// It's important to note that DoInit creates space for elements and assigns 
		// mItBegin/mItEnd to point to them, but these elements are not constructed. 
		// You need to immediately follow this constructor with code that constructs the values.
		DoInit(n); 
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	DequeBase<T, Allocator, kDequeSubarraySize>::~DequeBase()
	{
		if(mpPtrArray)
		{
			DoFreeSubarrays(mItBegin.mpCurrentArrayPtr, mItEnd.mpCurrentArrayPtr + 1);
			DoFreePtrArray(mpPtrArray, mnPtrArraySize);
			mpPtrArray = nullptr;
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	const typename DequeBase<T, Allocator, kDequeSubarraySize>::allocator_type&
	DequeBase<T, Allocator, kDequeSubarraySize>::get_allocator() const EA_NOEXCEPT
	{
		return mAllocator;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename DequeBase<T, Allocator, kDequeSubarraySize>::allocator_type&
	DequeBase<T, Allocator, kDequeSubarraySize>::get_allocator() EA_NOEXCEPT
	{
		return mAllocator;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::set_allocator(const allocator_type& allocator)
	{
		// The only time you can set an allocator is with an empty unused container, such as right after construction.
		if(EASTL_LIKELY(mAllocator != allocator))
		{
			if(EASTL_LIKELY(mpPtrArray && (mItBegin.mpCurrentArrayPtr == mItEnd.mpCurrentArrayPtr))) // If we are empty and so can safely deallocate the existing memory... We could also test for empty(), but that's a more expensive calculation and more involved clearing, though it would be more flexible.
			{
				DoFreeSubarrays(mItBegin.mpCurrentArrayPtr, mItEnd.mpCurrentArrayPtr + 1);
				DoFreePtrArray(mpPtrArray, mnPtrArraySize);

				mAllocator = allocator;
				DoInit(0);
			}
			else
			{
				EASTL_FAIL_MSG("DequeBase::set_allocator -- atempt to change allocator after allocating elements.");
			}
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	T* DequeBase<T, Allocator, kDequeSubarraySize>::DoAllocateSubarray()
	{
		T* p = (T*)allocate_memory(mAllocator, kDequeSubarraySize * sizeof(T), EASTL_ALIGN_OF(T), 0);
		EASTL_ASSERT_MSG(p != nullptr, "the behaviour of eastl::allocators that return nullptr is not defined.");

		#if EASTL_DEBUG
			memset((void*)p, 0, kDequeSubarraySize * sizeof(T));
		#endif

		return (T*)p;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::DoFreeSubarray(T* p)
	{
		if(p)
			EASTLFree(mAllocator, p, kDequeSubarraySize * sizeof(T)); 
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::DoFreeSubarrays(T** pBegin, T** pEnd)
	{
		while(pBegin < pEnd)
			DoFreeSubarray(*pBegin++);
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	T** DequeBase<T, Allocator, kDequeSubarraySize>::DoAllocatePtrArray(size_type n)
	{
		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY(n >= 0x80000000))
				EASTL_FAIL_MSG("deque::DoAllocatePtrArray -- improbably large request.");
		#endif

		T** pp = (T**)allocate_memory(mAllocator, n * sizeof(T*), EASTL_ALIGN_OF(T), 0);
		EASTL_ASSERT_MSG(pp != nullptr, "the behaviour of eastl::allocators that return nullptr is not defined.");

		#if EASTL_DEBUG
			memset((void*)pp, 0, n * sizeof(T*));
		#endif

		return pp;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::DoFreePtrArray(T** pp, size_t n)
	{
		if(pp)
			EASTLFree(mAllocator, pp, n * sizeof(T*)); 
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename DequeBase<T, Allocator, kDequeSubarraySize>::iterator
	DequeBase<T, Allocator, kDequeSubarraySize>::DoReallocSubarray(size_type nAdditionalCapacity, Side allocationSide)
	{
		// nAdditionalCapacity refers to the amount of additional space we need to be 
		// able to store in this deque. Typically this function is called as part of 
		// an insert or append operation. This is the function that makes sure there
		// is enough capacity for the new elements to be copied into the deque.
		// The new capacity here is always at the front or back of the deque.
		// This function returns an iterator to that points to the new begin or
		// the new end of the deque space, depending on allocationSide.

		if(allocationSide == kSideFront)
		{
			// There might be some free space (nCurrentAdditionalCapacity) at the front of the existing subarray.
			const size_type nCurrentAdditionalCapacity = (size_type)(mItBegin.mpCurrent - mItBegin.mpBegin);

			if(EASTL_UNLIKELY(nCurrentAdditionalCapacity < nAdditionalCapacity)) // If we need to grow downward into a new subarray...
			{
				const difference_type nSubarrayIncrease = (difference_type)(((nAdditionalCapacity - nCurrentAdditionalCapacity) + kDequeSubarraySize - 1) / kDequeSubarraySize);
				difference_type i;

				if(nSubarrayIncrease > (mItBegin.mpCurrentArrayPtr - mpPtrArray)) // If there are not enough pointers in front of the current (first) one...
					DoReallocPtrArray((size_type)(nSubarrayIncrease - (mItBegin.mpCurrentArrayPtr - mpPtrArray)), kSideFront);

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						for(i = 1; i <= nSubarrayIncrease; ++i)
							mItBegin.mpCurrentArrayPtr[-i] = DoAllocateSubarray();
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						for(difference_type j = 1; j < i; ++j)
							DoFreeSubarray(mItBegin.mpCurrentArrayPtr[-j]);
						throw;
					}
				#endif
			}

			return mItBegin - (difference_type)nAdditionalCapacity;
		}
		else // else kSideBack
		{
			const size_type nCurrentAdditionalCapacity = (size_type)((mItEnd.mpEnd - 1) - mItEnd.mpCurrent);

			if(EASTL_UNLIKELY(nCurrentAdditionalCapacity < nAdditionalCapacity)) // If we need to grow forward into a new subarray...
			{
				const difference_type nSubarrayIncrease = (difference_type)(((nAdditionalCapacity - nCurrentAdditionalCapacity) + kDequeSubarraySize - 1) / kDequeSubarraySize);
				difference_type i;

				if(nSubarrayIncrease > ((mpPtrArray + mnPtrArraySize) - mItEnd.mpCurrentArrayPtr) - 1)  // If there are not enough pointers after the current (last) one...
					DoReallocPtrArray((size_type)(nSubarrayIncrease - (((mpPtrArray + mnPtrArraySize) - mItEnd.mpCurrentArrayPtr) - 1)), kSideBack);

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						for(i = 1; i <= nSubarrayIncrease; ++i)
							mItEnd.mpCurrentArrayPtr[i] = DoAllocateSubarray();
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						for(difference_type j = 1; j < i; ++j)
							DoFreeSubarray(mItEnd.mpCurrentArrayPtr[j]);
						throw;
					}
				#endif
			}

			return mItEnd + (difference_type)nAdditionalCapacity;
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::DoReallocPtrArray(size_type nAdditionalCapacity, Side allocationSide)
	{
		// This function is not called unless the capacity is known to require a resize.
		//
		// We have an array of pointers (mpPtrArray), of which a segment of them are in use and 
		// at either end of the array are zero or more unused pointers. This function is being
		// called because we need to extend the capacity on either side of this array by 
		// nAdditionalCapacity pointers. However, it's possible that if the user is continually
		// using push_back and pop_front then the pointer array will continue to be extended 
		// on the back side and unused on the front side. So while we are doing this resizing 
		// here we also take the opportunity to recenter the pointers and thus be balanced.
		// It man turn out that we don't even need to reallocate the pointer array in order
		// to increase capacity on one side, as simply moving the pointers to the center may
		// be enough to open up the requires space.
		//
		// Balanced pointer array     Unbalanced pointer array (unused space at front, no free space at back)
		// ----++++++++++++----        ---------+++++++++++

		const size_type nUnusedPtrCountAtFront = (size_type)(mItBegin.mpCurrentArrayPtr - mpPtrArray);
		const size_type nUsedPtrCount          = (size_type)(mItEnd.mpCurrentArrayPtr - mItBegin.mpCurrentArrayPtr) + 1;
		const size_type nUsedPtrSpace          = nUsedPtrCount * sizeof(void*);
		const size_type nUnusedPtrCountAtBack  = (mnPtrArraySize - nUnusedPtrCountAtFront) - nUsedPtrCount;
		value_type**    pPtrArrayBegin;

		if((allocationSide == kSideBack) && (nAdditionalCapacity <= nUnusedPtrCountAtFront))  // If we can take advantage of unused pointers at the front without doing any reallocation...
		{
			if(nAdditionalCapacity < (nUnusedPtrCountAtFront / 2))  // Possibly use more space than required, if there's a lot of extra space.
				nAdditionalCapacity = (nUnusedPtrCountAtFront / 2);

			pPtrArrayBegin = mpPtrArray + (nUnusedPtrCountAtFront - nAdditionalCapacity);
			memmove(pPtrArrayBegin, mItBegin.mpCurrentArrayPtr, nUsedPtrSpace);

			#if EASTL_DEBUG
				memset(pPtrArrayBegin + nUsedPtrCount, 0, (size_t)(mpPtrArray + mnPtrArraySize) - (size_t)(pPtrArrayBegin + nUsedPtrCount));
			#endif
		}
		else if((allocationSide == kSideFront) && (nAdditionalCapacity <= nUnusedPtrCountAtBack)) // If we can take advantage of unused pointers at the back without doing any reallocation...
		{
			if(nAdditionalCapacity < (nUnusedPtrCountAtBack / 2))  // Possibly use more space than required, if there's a lot of extra space.
				nAdditionalCapacity = (nUnusedPtrCountAtBack / 2);

			pPtrArrayBegin = mItBegin.mpCurrentArrayPtr + nAdditionalCapacity;
			memmove(pPtrArrayBegin, mItBegin.mpCurrentArrayPtr, nUsedPtrSpace);

			#if EASTL_DEBUG
				memset(mpPtrArray, 0, (size_t)((uintptr_t)pPtrArrayBegin - (uintptr_t)mpPtrArray));
			#endif
		}
		else
		{
			// In this case we will have to do a reallocation.
			const size_type    nNewPtrArraySize = mnPtrArraySize + eastl::max_alt(mnPtrArraySize, nAdditionalCapacity) + 2;  // Allocate extra capacity.
			value_type** const pNewPtrArray     = DoAllocatePtrArray(nNewPtrArraySize);

			pPtrArrayBegin = pNewPtrArray + (mItBegin.mpCurrentArrayPtr - mpPtrArray) + ((allocationSide == kSideFront) ? nAdditionalCapacity : 0);

			// The following is equivalent to: eastl::copy(mItBegin.mpCurrentArrayPtr, mItEnd.mpCurrentArrayPtr + 1, pPtrArrayBegin);
			// It's OK to use memcpy instead of memmove because the destination is guaranteed to non-overlap the source.
			if(mpPtrArray) // Could also say: 'if(mItBegin.mpCurrentArrayPtr)' 
				memcpy(pPtrArrayBegin, mItBegin.mpCurrentArrayPtr, nUsedPtrSpace);

			DoFreePtrArray(mpPtrArray, mnPtrArraySize);

			mpPtrArray     = pNewPtrArray;
			mnPtrArraySize = nNewPtrArraySize;
		}

		// We need to reset the begin and end iterators, as code that calls this expects them to *not* be invalidated.
		mItBegin.SetSubarray(pPtrArrayBegin);
		mItEnd.SetSubarray((pPtrArrayBegin + nUsedPtrCount) - 1);
	}
	

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void DequeBase<T, Allocator, kDequeSubarraySize>::DoInit(size_type n)
	{
		// This code is disabled because it doesn't currently work properly.
		// We are trying to make it so that a deque can have a zero allocation 
		// initial empty state, but we (OK, I) am having a hard time making
		// this elegant and efficient. 
		//if(n)
		//{
			const size_type nNewPtrArraySize = (size_type)((n / kDequeSubarraySize) + 1); // Always have at least one, even if n is zero.
			const size_type kMinPtrArraySize_ = kMinPtrArraySize;

			mnPtrArraySize = eastl::max_alt(kMinPtrArraySize_, (nNewPtrArraySize + 2)); 
			mpPtrArray     = DoAllocatePtrArray(mnPtrArraySize);

			value_type** const pPtrArrayBegin   = (mpPtrArray + ((mnPtrArraySize - nNewPtrArraySize) / 2)); // Try to place it in the middle.
			value_type** const pPtrArrayEnd     = pPtrArrayBegin + nNewPtrArraySize;
			value_type**       pPtrArrayCurrent = pPtrArrayBegin;

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
					try
					{
			#endif
						while(pPtrArrayCurrent < pPtrArrayEnd)
							*pPtrArrayCurrent++ = DoAllocateSubarray();
			#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						DoFreeSubarrays(pPtrArrayBegin, pPtrArrayCurrent);
						throw;
					}
				}
				catch(...)
				{
					DoFreePtrArray(mpPtrArray, mnPtrArraySize);
					mpPtrArray     = NULL;
					mnPtrArraySize = 0;
					throw;
				}
			#endif

			mItBegin.SetSubarray(pPtrArrayBegin);
			mItBegin.mpCurrent = mItBegin.mpBegin;

			mItEnd.SetSubarray(pPtrArrayEnd - 1);
			mItEnd.mpCurrent = mItEnd.mpBegin + (difference_type)(n % kDequeSubarraySize);
		//}
		//else // Else we do a zero-allocation initialization.
		//{
		//    mpPtrArray     = NULL;
		//    mnPtrArraySize = 0;
		//
		//    mItBegin.mpCurrentArrayPtr = NULL;
		//    mItBegin.mpBegin           = NULL;
		//    mItBegin.mpEnd             = NULL; // We intentionally create a situation whereby the subarray that has no capacity.
		//    mItBegin.mpCurrent         = NULL;
		//
		//    mItEnd = mItBegin;
		//}
	}



	///////////////////////////////////////////////////////////////////////
	// DequeIterator
	///////////////////////////////////////////////////////////////////////

	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::DequeIterator()
		: mpCurrent(NULL), mpBegin(NULL), mpEnd(NULL), mpCurrentArrayPtr(NULL)
	{
		// Empty
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::DequeIterator(T** pCurrentArrayPtr, T* pCurrent)
		: mpCurrent(pCurrent), mpBegin(*pCurrentArrayPtr), mpEnd(pCurrent + kDequeSubarraySize), mpCurrentArrayPtr(pCurrentArrayPtr)
	{
		// Empty
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::DequeIterator(const iterator& x)
		: mpCurrent(x.mpCurrent), mpBegin(x.mpBegin), mpEnd(x.mpEnd), mpCurrentArrayPtr(x.mpCurrentArrayPtr)
	{
		// Empty
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::DequeIterator(const iterator& x, Increment)
		: mpCurrent(x.mpCurrent), mpBegin(x.mpBegin), mpEnd(x.mpEnd), mpCurrentArrayPtr(x.mpCurrentArrayPtr)
	{
		operator++();
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::DequeIterator(const iterator& x, Decrement)
		: mpCurrent(x.mpCurrent), mpBegin(x.mpBegin), mpEnd(x.mpEnd), mpCurrentArrayPtr(x.mpCurrentArrayPtr)
	{
		operator--();
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::pointer
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator->() const
	{
		return mpCurrent;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::reference
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator*() const
	{
		return *mpCurrent;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type&
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator++()
	{
		if(EASTL_UNLIKELY(++mpCurrent == mpEnd))
		{
			mpBegin   = *++mpCurrentArrayPtr;
			mpEnd     = mpBegin + kDequeSubarraySize;
			mpCurrent = mpBegin;
		}
		return *this;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator++(int)
	{
		const this_type temp(*this);
		operator++();
		return temp;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type&
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator--()
	{
		if(EASTL_UNLIKELY(mpCurrent == mpBegin))
		{
			mpBegin   = *--mpCurrentArrayPtr;
			mpEnd     = mpBegin + kDequeSubarraySize;
			mpCurrent = mpEnd; // fall through...
		}
		--mpCurrent;
		return *this;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator--(int)
	{
		const this_type temp(*this);
		operator--();
		return temp;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type&
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator+=(difference_type n)
	{
		const difference_type subarrayPosition = (mpCurrent - mpBegin) + n;

		// Cast from signed to unsigned (size_t) in order to obviate the need to compare to < 0. 
		if((size_t)subarrayPosition < (size_t)kDequeSubarraySize) // If the new position is within the current subarray (i.e. >= 0 && < kSubArraySize)...
			mpCurrent += n;
		else
		{
			// This implementation is a branchless version which works by offsetting 
			// the math to always be in the positive range. Much of the values here
			// reduce to constants and both the multiplication and division are of 
			// power of two sizes and so this calculation ends up compiling down to 
			// just one addition, one shift and one subtraction. This algorithm has 
			// a theoretical weakness in that on 32 bit systems it will fail if the 
			// value of n is >= (2^32 - 2^24) or 4,278,190,080 of if kDequeSubarraySize
			// is >= 2^24 or 16,777,216.
			EASTL_CT_ASSERT((kDequeSubarraySize & (kDequeSubarraySize - 1)) == 0); // Verify that it is a power of 2.
			const difference_type subarrayIndex = (((16777216 + subarrayPosition) / (difference_type)kDequeSubarraySize)) - (16777216 / (difference_type)kDequeSubarraySize);

			SetSubarray(mpCurrentArrayPtr + subarrayIndex);
			mpCurrent = mpBegin + (subarrayPosition - (subarrayIndex * (difference_type)kDequeSubarraySize));
		}
		return *this;
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type&
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator-=(difference_type n)
	{
		return (*this).operator+=(-n);
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator+(difference_type n) const
	{
		return this_type(*this).operator+=(n);
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::operator-(difference_type n) const
	{
		return this_type(*this).operator+=(-n);
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::copy(const iterator& first, const iterator& last, true_type)
	{
		// To do: Implement this as a loop which does memcpys between subarrays appropriately.
		//        Currently we only do memcpy if the entire operation occurs within a single subarray.
		if((first.mpBegin == last.mpBegin) && (first.mpBegin == mpBegin)) // If all operations are within the same subarray, implement the operation as a memmove.
		{
			memmove(mpCurrent, first.mpCurrent, (size_t)((uintptr_t)last.mpCurrent - (uintptr_t)first.mpCurrent));
			return *this + (last.mpCurrent - first.mpCurrent);
		}
		return eastl::copy(eastl::make_move_iterator(first), eastl::make_move_iterator(last), eastl::make_move_iterator(*this)).base();
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	typename DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::this_type
	DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::copy(const iterator& first, const iterator& last, false_type)
	{
		return eastl::copy(eastl::make_move_iterator(first), eastl::make_move_iterator(last), eastl::make_move_iterator(*this)).base();
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	void DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::copy_backward(const iterator& first, const iterator& last, true_type)
	{
		// To do: Implement this as a loop which does memmoves between subarrays appropriately.
		//        Currently we only do memcpy if the entire operation occurs within a single subarray.
		if((first.mpBegin == last.mpBegin) && (first.mpBegin == mpBegin)) // If all operations are within the same subarray, implement the operation as a memcpy.
			memmove(mpCurrent - (last.mpCurrent - first.mpCurrent), first.mpCurrent, (size_t)((uintptr_t)last.mpCurrent - (uintptr_t)first.mpCurrent));
		else
			eastl::copy_backward(eastl::make_move_iterator(first), eastl::make_move_iterator(last), eastl::make_move_iterator(*this));
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	void DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::copy_backward(const iterator& first, const iterator& last, false_type)
	{
		eastl::copy_backward(eastl::make_move_iterator(first), eastl::make_move_iterator(last), eastl::make_move_iterator(*this)).base();
	}


	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	void DequeIterator<T, Pointer, Reference, kDequeSubarraySize>::SetSubarray(T** pCurrentArrayPtr)
	{
		mpCurrentArrayPtr = pCurrentArrayPtr;
		mpBegin           = *pCurrentArrayPtr;
		mpEnd             = mpBegin + kDequeSubarraySize;
	}


	// The C++ defect report #179 requires that we support comparisons between const and non-const iterators.
	// Thus we provide additional template paremeters here to support this. The defect report does not
	// require us to support comparisons between reverse_iterators and const_reverse_iterators.
	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator==(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						   const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return a.mpCurrent == b.mpCurrent;
	}


	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator!=(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						   const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return a.mpCurrent != b.mpCurrent;
	}


	// We provide a version of operator!= for the case where the iterators are of the 
	// same type. This helps prevent ambiguity errors in the presence of rel_ops.
	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	inline bool operator!=(const DequeIterator<T, Pointer, Reference, kDequeSubarraySize>& a, 
						   const DequeIterator<T, Pointer, Reference, kDequeSubarraySize>& b)
	{
		return a.mpCurrent != b.mpCurrent;
	}


	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator<(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						  const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return (a.mpCurrentArrayPtr == b.mpCurrentArrayPtr) ? (a.mpCurrent < b.mpCurrent) : (a.mpCurrentArrayPtr < b.mpCurrentArrayPtr);
	}


	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator>(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						  const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return (a.mpCurrentArrayPtr == b.mpCurrentArrayPtr) ? (a.mpCurrent > b.mpCurrent) : (a.mpCurrentArrayPtr > b.mpCurrentArrayPtr);
	}


	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator<=(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						   const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return (a.mpCurrentArrayPtr == b.mpCurrentArrayPtr) ? (a.mpCurrent <= b.mpCurrent) : (a.mpCurrentArrayPtr <= b.mpCurrentArrayPtr);
	}


	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline bool operator>=(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a, 
						   const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		return (a.mpCurrentArrayPtr == b.mpCurrentArrayPtr) ? (a.mpCurrent >= b.mpCurrent) : (a.mpCurrentArrayPtr >= b.mpCurrentArrayPtr);
	}


	// Random access iterators must support operator + and operator -.
	// You can only add an integer to an iterator, and you cannot add two iterators.
	template <typename T, typename Pointer, typename Reference, unsigned kDequeSubarraySize>
	inline DequeIterator<T, Pointer, Reference, kDequeSubarraySize>
	operator+(ptrdiff_t n, const DequeIterator<T, Pointer, Reference, kDequeSubarraySize>& x)
	{
		return x + n; // Implement (n + x) in terms of (x + n).
	}


	// You can only add an integer to an iterator, but you can subtract two iterators.
	// The C++ defect report #179 mentioned above specifically refers to 
	// operator - and states that we support the subtraction of const and non-const iterators.
	template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, unsigned kDequeSubarraySize>
	inline typename DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>::difference_type
	operator-(const DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>& a,
			  const DequeIterator<T, PointerB, ReferenceB, kDequeSubarraySize>& b)
	{
		// This is a fairly clever algorithm that has been used in STL deque implementations since the original HP STL:
		typedef typename DequeIterator<T, PointerA, ReferenceA, kDequeSubarraySize>::difference_type difference_type;

		return ((difference_type)kDequeSubarraySize * ((a.mpCurrentArrayPtr - b.mpCurrentArrayPtr) - 1)) + (a.mpCurrent - a.mpBegin) + (b.mpEnd - b.mpCurrent);
	}




	///////////////////////////////////////////////////////////////////////
	// deque
	///////////////////////////////////////////////////////////////////////

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque()
		: base_type((size_type)0)
	{
		// Empty
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(const allocator_type& allocator)
		: base_type((size_type)0, allocator)
	{
		// Empty
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(size_type n, const allocator_type& allocator)
		: base_type(n, allocator)
	{
		DoFillInit(value_type());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(size_type n, const value_type& value, const allocator_type& allocator)
		: base_type(n, allocator)
	{
		DoFillInit(value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(const this_type& x)
		: base_type(x.size(), x.mAllocator)
	{
		eastl::uninitialized_copy(x.mItBegin, x.mItEnd, mItBegin);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(this_type&& x)
	  : base_type((size_type)0, x.mAllocator)
	{
		swap(x);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(this_type&& x, const allocator_type& allocator)
	  : base_type((size_type)0, allocator)
	{
		swap(x); // member swap handles the case that x has a different allocator than our allocator by doing a copy.
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(std::initializer_list<value_type> ilist, const allocator_type& allocator)
		: base_type(allocator)
	{
		DoInit(ilist.begin(), ilist.end(), false_type());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	inline deque<T, Allocator, kDequeSubarraySize>::deque(InputIterator first, InputIterator last)
		: base_type(EASTL_DEQUE_DEFAULT_ALLOCATOR) // Call the empty base constructor, which does nothing. We need to do all the work in our own DoInit.
	{
		DoInit(first, last, is_integral<InputIterator>());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline deque<T, Allocator, kDequeSubarraySize>::~deque()
	{
		// Call destructors. Parent class will free the memory.
		for(iterator itCurrent(mItBegin); itCurrent != mItEnd; ++itCurrent)
			itCurrent.mpCurrent->~value_type();
	} 


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::this_type& 
	deque<T, Allocator, kDequeSubarraySize>::operator=(const this_type& x)
	{
		if(&x != this) // If not assigning to ourselves...
		{
			// If (EASTL_ALLOCATOR_COPY_ENABLED == 1) and the current contents are allocated by an 
			// allocator that's unequal to x's allocator, we need to reallocate our elements with 
			// our current allocator and reallocate it with x's allocator. If the allocators are 
			// equal then we can use a more optimal algorithm that doesn't reallocate our elements
			// but instead can copy them in place.

			#if EASTL_ALLOCATOR_COPY_ENABLED
				bool bSlowerPathwayRequired = (mAllocator != x.mAllocator);
			#else
				bool bSlowerPathwayRequired = false;
			#endif

			if(bSlowerPathwayRequired)
			{
				// We can't currently use set_capacity(0) or shrink_to_fit, because they 
				// leave a remaining allocation with our old allocator. So we do a similar 
				// thing but set our allocator to x.mAllocator while doing so.
				this_type temp(x.mAllocator);
				DoSwap(temp);
				// Now we have an empty container with an allocator equal to x.mAllocator, ready to assign from x.
			}

			DoAssign(x.begin(), x.end(), eastl::false_type());
		}

		return *this;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::this_type& 
	deque<T, Allocator, kDequeSubarraySize>::operator=(this_type&& x)
	{
		if(this != &x)
		{
			set_capacity(0); // To consider: Are we really required to clear here? x is going away soon and will clear itself in its dtor.
			swap(x);         // member swap handles the case that x has a different allocator than our allocator by doing a copy.
		}
		return *this; 
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::this_type& 
	deque<T, Allocator, kDequeSubarraySize>::operator=(std::initializer_list<value_type> ilist)
	{
		DoAssign(ilist.begin(), ilist.end(), false_type());
		return *this;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::assign(size_type n, const value_type& value)
	{
		DoAssignValues(n, value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::assign(std::initializer_list<value_type> ilist)
	{
		DoAssign(ilist.begin(), ilist.end(), false_type());
	}


	// It turns out that the C++ std::deque specifies a two argument
	// version of assign that takes (int size, int value). These are not
	// iterators, so we need to do a template compiler trick to do the right thing. 
	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	inline void deque<T, Allocator, kDequeSubarraySize>::assign(InputIterator first, InputIterator last)
	{
		DoAssign(first, last, is_integral<InputIterator>());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::iterator 
	deque<T, Allocator, kDequeSubarraySize>::begin() EA_NOEXCEPT
	{
		return mItBegin;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_iterator 
	deque<T, Allocator, kDequeSubarraySize>::begin() const EA_NOEXCEPT
	{
		return mItBegin;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_iterator 
	deque<T, Allocator, kDequeSubarraySize>::cbegin() const EA_NOEXCEPT
	{
		return mItBegin;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::iterator 
	deque<T, Allocator, kDequeSubarraySize>::end() EA_NOEXCEPT
	{
		return mItEnd;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::const_iterator
	deque<T, Allocator, kDequeSubarraySize>::end() const EA_NOEXCEPT
	{
		return mItEnd;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_iterator
	deque<T, Allocator, kDequeSubarraySize>::cend() const EA_NOEXCEPT
	{
		return mItEnd;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::rbegin() EA_NOEXCEPT
	{
		return reverse_iterator(mItEnd);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::rbegin() const EA_NOEXCEPT
	{
		return const_reverse_iterator(mItEnd);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::crbegin() const EA_NOEXCEPT
	{
		return const_reverse_iterator(mItEnd);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::rend() EA_NOEXCEPT
	{
		return reverse_iterator(mItBegin);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::rend() const EA_NOEXCEPT
	{
		return const_reverse_iterator(mItBegin);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline typename deque<T, Allocator, kDequeSubarraySize>::const_reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::crend() const EA_NOEXCEPT
	{
		return const_reverse_iterator(mItBegin);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool deque<T, Allocator, kDequeSubarraySize>::empty() const EA_NOEXCEPT
	{
		return mItBegin.mpCurrent == mItEnd.mpCurrent;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::size_type
	inline deque<T, Allocator, kDequeSubarraySize>::size() const EA_NOEXCEPT
	{
		return (size_type)(mItEnd - mItBegin);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::resize(size_type n, const value_type& value)
	{
		const size_type nSizeCurrent = size();

		if(n > nSizeCurrent) // We expect that more often than not, resizes will be upsizes.
			insert(mItEnd, n - nSizeCurrent, value);
		else
			erase(mItBegin + (difference_type)n, mItEnd);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::resize(size_type n)
	{
		resize(n, value_type());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::shrink_to_fit()
	{
		this_type x(eastl::make_move_iterator(begin()), eastl::make_move_iterator(end()));
		swap(x);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::set_capacity(size_type n)
	{
		// Currently there isn't a way to remove all allocations from a deque, as it 
		// requires a single starting allocation for the subarrays. So we can't just
		// free all memory without leaving it in a bad state. So the best means of 
		// implementing set_capacity() is to do what we do below.

		if(n == 0)
		{
			this_type temp(mAllocator);
			DoSwap(temp);
		}
		else if(n < size())
		{
			// We currently ignore the request to reduce capacity. To do: Implement this
			// and do it in a way that doesn't result in temporarily ~doubling our memory usage.
			// That might involve trimming unused subarrays from the front or back of 
			// the container.
			resize(n);
		}        
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::operator[](size_type n)
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY(n >= (size_type)(mItEnd - mItBegin)))
				EASTL_FAIL_MSG("deque::operator[] -- out of range");
		#elif EASTL_ASSERT_ENABLED
			// We allow taking a reference to deque[0]
			if (EASTL_UNLIKELY((n != 0) && n >= (size_type)(mItEnd - mItBegin)))
				EASTL_FAIL_MSG("deque::operator[] -- out of range");
		#endif

		// See DequeIterator::operator+=() for an explanation of the code below.
		iterator it(mItBegin);

		const difference_type subarrayPosition = (difference_type)((it.mpCurrent - it.mpBegin) + (difference_type)n);
		const difference_type subarrayIndex    = (((16777216 + subarrayPosition) / (difference_type)kDequeSubarraySize)) - (16777216 / (difference_type)kDequeSubarraySize);

		return *(*(it.mpCurrentArrayPtr + subarrayIndex) + (subarrayPosition - (subarrayIndex * (difference_type)kDequeSubarraySize)));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::const_reference
	deque<T, Allocator, kDequeSubarraySize>::operator[](size_type n) const
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY(n >= (size_type)(mItEnd - mItBegin)))
				EASTL_FAIL_MSG("deque::operator[] -- out of range");
		#elif EASTL_ASSERT_ENABLED
			// We allow the user to use a reference to deque[0] of an empty container.
			if (EASTL_UNLIKELY((n != 0) && n >= (size_type)(mItEnd - mItBegin)))
				EASTL_FAIL_MSG("deque::operator[] -- out of range");
		#endif

		// See DequeIterator::operator+=() for an explanation of the code below.
		iterator it(mItBegin);

		const difference_type subarrayPosition = (it.mpCurrent - it.mpBegin) + (difference_type)n;
		const difference_type subarrayIndex    = (((16777216 + subarrayPosition) / (difference_type)kDequeSubarraySize)) - (16777216 / (difference_type)kDequeSubarraySize);

		return *(*(it.mpCurrentArrayPtr + subarrayIndex) + (subarrayPosition - (subarrayIndex * (difference_type)kDequeSubarraySize)));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::at(size_type n)
	{
		#if EASTL_EXCEPTIONS_ENABLED
			if(n >= (size_type)(mItEnd - mItBegin))
				throw std::out_of_range("deque::at -- out of range");
		#elif EASTL_ASSERT_ENABLED
			if(n >= (size_type)(mItEnd - mItBegin))
				EASTL_FAIL_MSG("deque::at -- out of range");
		#endif
		return *(mItBegin.operator+((difference_type)n));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::const_reference
	deque<T, Allocator, kDequeSubarraySize>::at(size_type n) const
	{
		#if EASTL_EXCEPTIONS_ENABLED
			if(n >= (size_type)(mItEnd - mItBegin))
				throw std::out_of_range("deque::at -- out of range");
		#elif EASTL_ASSERT_ENABLED
			if(n >= (size_type)(mItEnd - mItBegin))
				EASTL_FAIL_MSG("deque::at -- out of range");
		#endif
		return *(mItBegin.operator+((difference_type)n));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::front()
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::front -- empty deque");
		#else
			// We allow the user to reference an empty container.
		#endif

		return *mItBegin;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::const_reference
	deque<T, Allocator, kDequeSubarraySize>::front() const
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::front -- empty deque");
		#else
			// We allow the user to reference an empty container.
		#endif

		return *mItBegin;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::back()
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::back -- empty deque");
		#else
			// We allow the user to reference an empty container.
		#endif

		return *iterator(mItEnd, typename iterator::Decrement());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::const_reference
	deque<T, Allocator, kDequeSubarraySize>::back() const
	{
		#if EASTL_ASSERT_ENABLED && EASTL_EMPTY_REFERENCE_ASSERT_ENABLED
			if (EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::back -- empty deque");
		#else
			// We allow the user to reference an empty container.
		#endif

		return *iterator(mItEnd, typename iterator::Decrement());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::push_front(const value_type& value)
	{
		emplace_front(value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::push_front(value_type&& value)
	{
		emplace_front(eastl::move(value));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::push_front()
	{
		emplace_front(value_type());
		return *mItBegin;   // Same as return front();
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::push_back(const value_type& value)
	{
		emplace_back(value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::push_back(value_type&& value)
	{
		emplace_back(eastl::move(value));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reference
	deque<T, Allocator, kDequeSubarraySize>::push_back()
	{
		emplace_back(value_type());
		return *iterator(mItEnd, typename iterator::Decrement()); // Same thing as return back();
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::pop_front()
	{
		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::pop_front -- empty deque");
		#endif

		if((mItBegin.mpCurrent + 1) != mItBegin.mpEnd) // If the operation is very simple...
			(mItBegin.mpCurrent++)->~value_type();
		else
		{
			// This is executed only when we are popping the end (last) item off the front-most subarray.
			// In this case we need to free the subarray and point mItBegin to the next subarray.
			#ifdef EA_DEBUG
				value_type** pp = mItBegin.mpCurrentArrayPtr;
			#endif

			mItBegin.mpCurrent->~value_type(); // mpCurrent == mpEnd - 1
			DoFreeSubarray(mItBegin.mpBegin);
			mItBegin.SetSubarray(mItBegin.mpCurrentArrayPtr + 1);
			mItBegin.mpCurrent = mItBegin.mpBegin;

			#ifdef EA_DEBUG
				*pp = NULL;
			#endif
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::pop_back()
	{
		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY((size_type)(mItEnd == mItBegin)))
				EASTL_FAIL_MSG("deque::pop_back -- empty deque");
		#endif

		if(mItEnd.mpCurrent != mItEnd.mpBegin) // If the operation is very simple...
			(--mItEnd.mpCurrent)->~value_type();
		else
		{
			// This is executed only when we are popping the first item off the last subarray.
			// In this case we need to free the subarray and point mItEnd to the previous subarray.
			#ifdef EA_DEBUG
				value_type** pp = mItEnd.mpCurrentArrayPtr;
			#endif

			DoFreeSubarray(mItEnd.mpBegin);
			mItEnd.SetSubarray(mItEnd.mpCurrentArrayPtr - 1);
			mItEnd.mpCurrent = mItEnd.mpEnd - 1;        // Recall that mItEnd points to one-past the last item in the container.
			mItEnd.mpCurrent->~value_type();            // Thus we need to call the destructor on the item *before* that last item.

			#ifdef EA_DEBUG
				*pp = NULL;
			#endif
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template<class... Args>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::emplace(const_iterator position, Args&&... args)
	{
		if(EASTL_UNLIKELY(position.mpCurrent == mItEnd.mpCurrent)) // If we are doing the same thing as push_back...
		{
			emplace_back(eastl::forward<Args>(args)...);
			return iterator(mItEnd, typename iterator::Decrement()); // Unfortunately, we need to make an iterator here, as the above push_back is an operation that can invalidate existing iterators.
		}
		else if(EASTL_UNLIKELY(position.mpCurrent == mItBegin.mpCurrent)) // If we are doing the same thing as push_front...
		{
			emplace_front(eastl::forward<Args>(args)...);
			return mItBegin;
		}

		iterator              itPosition(position, typename iterator::FromConst());
		value_type  valueSaved(eastl::forward<Args>(args)...); // We need to save this because value may come from within our container. It would be somewhat tedious to make a workaround that could avoid this.
		const difference_type i(itPosition - mItBegin);

		#if EASTL_ASSERT_ENABLED
			EASTL_ASSERT(!empty()); // The push_front and push_back calls below assume that we are non-empty. It turns out this is never called unless so.

			if(EASTL_UNLIKELY(!(validate_iterator(itPosition) & isf_valid)))
				EASTL_FAIL_MSG("deque::emplace -- invalid iterator");
		#endif

		if(i < (difference_type)(size() / 2)) // Should we insert at the front or at the back? We divide the range in half.
		{
			emplace_front(eastl::move(*mItBegin)); // This operation potentially invalidates all existing iterators and so we need to assign them anew relative to mItBegin below.

			itPosition = mItBegin + i;

			const iterator newPosition  (itPosition, typename iterator::Increment());
				  iterator oldBegin     (mItBegin,   typename iterator::Increment());
			const iterator oldBeginPlus1(oldBegin,   typename iterator::Increment());

			oldBegin.copy(oldBeginPlus1, newPosition, eastl::has_trivial_relocate<value_type>());
		}
		else
		{
			emplace_back(eastl::move(*iterator(mItEnd, typename iterator::Decrement())));

			itPosition = mItBegin + i;

				  iterator oldBack      (mItEnd,  typename iterator::Decrement());
			const iterator oldBackMinus1(oldBack, typename iterator::Decrement());

			oldBack.copy_backward(itPosition, oldBackMinus1, eastl::has_trivial_relocate<value_type>());
		}

		*itPosition = eastl::move(valueSaved);

		return itPosition;
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template<class... Args>
	void deque<T, Allocator, kDequeSubarraySize>::emplace_front(Args&&... args)
	{
		if(mItBegin.mpCurrent != mItBegin.mpBegin)                                         // If we have room in the first subarray... we hope that usually this 'new' pathway gets executed, as it is slightly faster.
			::new((void*)--mItBegin.mpCurrent) value_type(eastl::forward<Args>(args)...);  // Construct in place. If args is a single arg of type value_type&& then it this will be a move construction.
		else
		{
			// To consider: Detect if value isn't coming from within this container and handle that efficiently.
			value_type  valueSaved(eastl::forward<Args>(args)...);                          // We need to make a temporary, because args may be a value_type that comes from within our container and the operations below may change the container. But we can use move instead of copy.

			if(mItBegin.mpCurrentArrayPtr == mpPtrArray)                                   // If there are no more pointers in front of the current (first) one...
				DoReallocPtrArray(1, kSideFront);

			mItBegin.mpCurrentArrayPtr[-1] = DoAllocateSubarray();

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					mItBegin.SetSubarray(mItBegin.mpCurrentArrayPtr - 1);
					mItBegin.mpCurrent = mItBegin.mpEnd - 1;
					::new((void*)mItBegin.mpCurrent) value_type(eastl::move(valueSaved));
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					++mItBegin; // The exception could only occur in the new operation above, after we have incremented mItBegin. So we need to undo it.
					DoFreeSubarray(mItBegin.mpCurrentArrayPtr[-1]);
					throw;
				}
			#endif
		}
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template<class... Args>
	void deque<T, Allocator, kDequeSubarraySize>::emplace_back(Args&&... args)
	{
		if((mItEnd.mpCurrent + 1) != mItEnd.mpEnd)                                       // If we have room in the last subarray... we hope that usually this 'new' pathway gets executed, as it is slightly faster.
			::new((void*)mItEnd.mpCurrent++) value_type(eastl::forward<Args>(args)...);  // Construct in place. If args is a single arg of type value_type&& then it this will be a move construction.
		else
		{
			// To consider: Detect if value isn't coming from within this container and handle that efficiently.
			value_type  valueSaved(eastl::forward<Args>(args)...);                          // We need to make a temporary, because args may be a value_type that comes from within our container and the operations below may change the container. But we can use move instead of copy.
			if(((mItEnd.mpCurrentArrayPtr - mpPtrArray) + 1) >= (difference_type)mnPtrArraySize) // If there are no more pointers after the current (last) one.
				DoReallocPtrArray(1, kSideBack);

			mItEnd.mpCurrentArrayPtr[1] = DoAllocateSubarray();

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					::new((void*)mItEnd.mpCurrent) value_type(eastl::move(valueSaved)); // We can move valueSaved into position.
					mItEnd.SetSubarray(mItEnd.mpCurrentArrayPtr + 1);
					mItEnd.mpCurrent = mItEnd.mpBegin;
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					// No need to execute '--mItEnd', as the exception could only occur in the new operation above before we set mItEnd.
					DoFreeSubarray(mItEnd.mpCurrentArrayPtr[1]);
					throw;
				}
			#endif
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::insert(const_iterator position, const value_type& value)
	{
		return emplace(position, value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::insert(const_iterator position, value_type&& value)
	{
		return emplace(position, eastl::move(value));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::insert(const_iterator position, size_type n, const value_type& value)
	{
		DoInsertValues(position, n, value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::insert(const_iterator position, InputIterator first, InputIterator last)
	{
		DoInsert(position, first, last, is_integral<InputIterator>()); // The C++ standard requires this sort of behaviour, as InputIterator might actually be Integer and 'first' is really 'count' and 'last' is really 'value'.
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::insert(const_iterator position, std::initializer_list<value_type> ilist)
	{
		const difference_type i(position - mItBegin);
		DoInsert(position, ilist.begin(), ilist.end(), false_type());
		return (mItBegin + i);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::erase(const_iterator position)
	{
		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY(!(validate_iterator(position) & isf_valid)))
				EASTL_FAIL_MSG("deque::erase -- invalid iterator");

			if(EASTL_UNLIKELY(position == end()))
				EASTL_FAIL_MSG("deque::erase -- end() iterator is an invalid iterator for erase");
		#endif

		iterator itPosition(position, typename iterator::FromConst());
		iterator itNext(itPosition, typename iterator::Increment());
		const difference_type i(itPosition - mItBegin);

		if(i < (difference_type)(size() / 2)) // Should we move the front entries forward or the back entries backward? We divide the range in half.
		{
			itNext.copy_backward(mItBegin, itPosition, eastl::has_trivial_relocate<value_type>());
			pop_front();
		}
		else
		{
			itPosition.copy(itNext, mItEnd, eastl::has_trivial_relocate<value_type>());
			pop_back();
		}

		return mItBegin + i;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::iterator
	deque<T, Allocator, kDequeSubarraySize>::erase(const_iterator first, const_iterator last)
	{
		iterator itFirst(first, typename iterator::FromConst());
		iterator itLast(last, typename iterator::FromConst());

		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY(!(validate_iterator(itFirst) & isf_valid)))
				EASTL_FAIL_MSG("deque::erase -- invalid iterator");
			if(EASTL_UNLIKELY(!(validate_iterator(itLast) & isf_valid)))
				EASTL_FAIL_MSG("deque::erase -- invalid iterator");
		#endif

		if((itFirst != mItBegin) || (itLast != mItEnd)) // If not erasing everything... (We expect that the user won't call erase(begin, end) because instead the user would just call clear.)
		{
			const difference_type n(itLast - itFirst);
			const difference_type i(itFirst - mItBegin);

			if(i < (difference_type)((size() - n) / 2)) // Should we move the front entries forward or the back entries backward? We divide the range in half.
			{
				const iterator itNewBegin(mItBegin + n);
				value_type** const pPtrArrayBegin = mItBegin.mpCurrentArrayPtr;

				itLast.copy_backward(mItBegin, itFirst, eastl::has_trivial_relocate<value_type>());

				for(; mItBegin != itNewBegin; ++mItBegin) // Question: If value_type is a POD type, will the compiler generate this loop at all?
					mItBegin.mpCurrent->~value_type();    //           If so, then we need to make a specialization for destructing PODs.

				DoFreeSubarrays(pPtrArrayBegin, itNewBegin.mpCurrentArrayPtr);

				// mItBegin = itNewBegin; <-- Not necessary, as the above loop makes it so already.
			}
			else // Else we will be moving back entries backward.
			{
				iterator itNewEnd(mItEnd - n);
				value_type** const pPtrArrayEnd = itNewEnd.mpCurrentArrayPtr + 1;

				itFirst.copy(itLast, mItEnd, eastl::has_trivial_relocate<value_type>());

				for(iterator itTemp(itNewEnd); itTemp != mItEnd; ++itTemp)
					itTemp.mpCurrent->~value_type();

				DoFreeSubarrays(pPtrArrayEnd, mItEnd.mpCurrentArrayPtr + 1);

				mItEnd = itNewEnd;
			}

			return mItBegin + i;
		}

		clear();
		return mItEnd;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::erase(reverse_iterator position)
	{
		return reverse_iterator(erase((++position).base()));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	typename deque<T, Allocator, kDequeSubarraySize>::reverse_iterator
	deque<T, Allocator, kDequeSubarraySize>::erase(reverse_iterator first, reverse_iterator last)
	{
		// Version which erases in order from first to last.
		// difference_type i(first.base() - last.base());
		// while(i--)
		//     first = erase(first);
		// return first;

		// Version which erases in order from last to first, but is slightly more efficient:
		return reverse_iterator(erase(last.base(), first.base()));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::clear()
	{
		// Destroy all values and all subarrays they belong to, except for the first one, 
		// as we need to reserve some space for a valid mItBegin/mItEnd.
		if(mItBegin.mpCurrentArrayPtr != mItEnd.mpCurrentArrayPtr) // If there are multiple subarrays (more often than not, this will be so)...
		{
			for(value_type* p1 = mItBegin.mpCurrent; p1 < mItBegin.mpEnd; ++p1)
				p1->~value_type();
			for(value_type* p2 = mItEnd.mpBegin; p2 < mItEnd.mpCurrent; ++p2)
				p2->~value_type();
			DoFreeSubarray(mItEnd.mpBegin); // Leave mItBegin with a valid subarray.
		}
		else
		{
			for(value_type* p = mItBegin.mpCurrent; p < mItEnd.mpCurrent; ++p)
				p->~value_type();
			// Don't free the one existing subarray, as we need it for mItBegin/mItEnd.
		}

		for(value_type** pPtrArray = mItBegin.mpCurrentArrayPtr + 1; pPtrArray < mItEnd.mpCurrentArrayPtr; ++pPtrArray)
		{
			for(value_type* p = *pPtrArray, *pEnd = *pPtrArray + kDequeSubarraySize; p < pEnd; ++p)
				p->~value_type();
			DoFreeSubarray(*pPtrArray);
		}

		mItEnd = mItBegin; // mItBegin/mItEnd will not be dereferencable.
	}


	//template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	//void deque<T, Allocator, kDequeSubarraySize>::reset_lose_memory()
	//{
	//    // The reset_lose_memory function is a special extension function which unilaterally 
	//    // resets the container to an empty state without freeing the memory of 
	//    // the contained objects. This is useful for very quickly tearing down a 
	//    // container built into scratch memory.
	//
	//    // Currently we are unable to get this reset_lose_memory operation to work correctly 
	//    // as we haven't been able to find a good way to have a deque initialize
	//    // without allocating memory. We can lose the old memory, but DoInit 
	//    // would necessarily do a ptrArray allocation. And this is not within
	//    // our definition of how reset_lose_memory works.
	//    base_type::DoInit(0);
	//
	//}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::swap(deque& x)
	{
	#if defined(EASTL_DEQUE_LEGACY_SWAP_BEHAVIOUR_REQUIRES_COPY_CTOR) && EASTL_DEQUE_LEGACY_SWAP_BEHAVIOUR_REQUIRES_COPY_CTOR
		if(mAllocator == x.mAllocator) // If allocators are equivalent...
			DoSwap(x);
		else // else swap the contents.
		{
			const this_type temp(*this); // Can't call eastl::swap because that would
			*this = x;                   // itself call this member swap function.
			x     = temp;
		}
	#else
		// NOTE(rparolin): The previous implementation required T to be copy-constructible in the fall-back case where
		// allocators with unique instances copied elements.  This was an unnecessary restriction and prevented the common
		// usage of deque with non-copyable types (eg. eastl::deque<non_copyable> or eastl::deque<unique_ptr>). 
		// 
		// The previous implementation violated the following requirements of deque::swap so the fall-back code has
		// been removed.  EASTL implicitly defines 'propagate_on_container_swap = false' therefore the fall-back case is
		// undefined behaviour.  We simply swap the contents and the allocator as that is the common expectation of
		// users and does not put the container into an invalid state since it can not free its memory via its current
		// allocator instance.
		//
		DoSwap(x);
	#endif
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename Integer>
	void deque<T, Allocator, kDequeSubarraySize>::DoInit(Integer n, Integer value, true_type)
	{
		base_type::DoInit(n);  // Call the base uninitialized init function. 
		DoFillInit(value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoInit(InputIterator first, InputIterator last, false_type)
	{
		typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
		DoInitFromIterator(first, last, IC());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoInitFromIterator(InputIterator first, InputIterator last, EASTL_ITC_NS::input_iterator_tag)
	{
		base_type::DoInit(0); // Call the base uninitialized init function, but don't actually allocate any values.

		#if EASTL_EXCEPTIONS_ENABLED
			try
			{
		#endif
				// We have little choice but to turn through the source iterator and call 
				// push_back for each item. It can be slow because it will keep reallocating the 
				// container memory as we go. We are not allowed to use distance() on an InputIterator.
				for(; first != last; ++first)   // InputIterators by definition actually only allow you to iterate through them once.
				{                               // Thus the standard *requires* that we do this (inefficient) implementation.  
					push_back(*first);          // Luckily, InputIterators are in practice almost never used, so this code will likely never get executed.
				}
		#if EASTL_EXCEPTIONS_ENABLED
			}
			catch(...)
			{
				clear();
				throw;
			}
		#endif
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename ForwardIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoInitFromIterator(ForwardIterator first, ForwardIterator last, EASTL_ITC_NS::forward_iterator_tag)
	{
		typedef typename eastl::remove_const<ForwardIterator>::type non_const_iterator_type; // If T is a const type (e.g. const int) then we need to initialize it as if it were non-const.
		typedef typename eastl::remove_const<value_type>::type      non_const_value_type;

		const size_type n = (size_type)eastl::distance(first, last);
		value_type** pPtrArrayCurrent;

		base_type::DoInit(n); // Call the base uninitialized init function.

		#if EASTL_EXCEPTIONS_ENABLED
			try
			{
		#endif
				for(pPtrArrayCurrent = mItBegin.mpCurrentArrayPtr; pPtrArrayCurrent < mItEnd.mpCurrentArrayPtr; ++pPtrArrayCurrent) // Copy to the known-to-be-completely-used subarrays.
				{
					// We implment an algorithm here whereby we use uninitialized_copy() and advance() instead of just iterating from first to last and constructing as we go. The reason for this is that we can take advantage of POD data types and implement construction as memcpy operations.
					ForwardIterator current(first); // To do: Implement a specialization of this algorithm for non-PODs which eliminates the need for 'current'.

					eastl::advance(current, kDequeSubarraySize);
					eastl::uninitialized_copy((non_const_iterator_type)first, (non_const_iterator_type)current, (non_const_value_type*)*pPtrArrayCurrent);
					first = current;
				}

				eastl::uninitialized_copy((non_const_iterator_type)first, (non_const_iterator_type)last, (non_const_value_type*)mItEnd.mpBegin);
		#if EASTL_EXCEPTIONS_ENABLED
			}
			catch(...)
			{
				for(iterator itCurrent(mItBegin), itEnd(pPtrArrayCurrent, *pPtrArrayCurrent); itCurrent != itEnd; ++itCurrent)
					itCurrent.mpCurrent->~value_type();
				throw;
			}
		#endif
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::DoFillInit(const value_type& value)
	{
		value_type** pPtrArrayCurrent = mItBegin.mpCurrentArrayPtr;

		#if EASTL_EXCEPTIONS_ENABLED
			try
			{
		#endif
				while(pPtrArrayCurrent < mItEnd.mpCurrentArrayPtr)
				{
					eastl::uninitialized_fill(*pPtrArrayCurrent, *pPtrArrayCurrent + kDequeSubarraySize, value);
					++pPtrArrayCurrent;
				}
				eastl::uninitialized_fill(mItEnd.mpBegin, mItEnd.mpCurrent, value);
		#if EASTL_EXCEPTIONS_ENABLED
			}
			catch(...)
			{
				for(iterator itCurrent(mItBegin), itEnd(pPtrArrayCurrent, *pPtrArrayCurrent); itCurrent != itEnd; ++itCurrent)
					itCurrent.mpCurrent->~value_type();
				throw;
			}
		#endif
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename Integer>
	void deque<T, Allocator, kDequeSubarraySize>::DoAssign(Integer n, Integer value, true_type) // false_type means this is the integer version instead of iterator version.
	{
		DoAssignValues(static_cast<size_type>(n), static_cast<value_type>(value));
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoAssign(InputIterator first, InputIterator last, false_type) // false_type means this is the iterator version instead of integer version.
	{
		// Actually, the implementation below requires first/last to be a ForwardIterator and not just an InputIterator.
		// But Paul Pedriana if you somehow need to work with an InputIterator and we can deal with it.
		const size_type n     = (size_type)eastl::distance(first, last);
		const size_type nSize = size();

		if(n > nSize) // If we are increasing the size...
		{
			InputIterator atEnd(first);

			eastl::advance(atEnd, (difference_type)nSize);
			eastl::copy(first, atEnd, mItBegin);
			insert(mItEnd, atEnd, last);
		}
		else // n is <= size.
		{
			iterator itEnd(eastl::copy(first, last, mItBegin));

			if(n < nSize) // If we need to erase any trailing elements...
				erase(itEnd, mItEnd);
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::DoAssignValues(size_type n, const value_type& value)
	{
		const size_type nSize = size();

		if(n > nSize) // If we are increasing the size...
		{
			eastl::fill(mItBegin, mItEnd, value);
			insert(mItEnd, n - nSize, value);
		}
		else
		{
			erase(mItBegin + (difference_type)n, mItEnd);
			eastl::fill(mItBegin, mItEnd, value);
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename Integer>
	void deque<T, Allocator, kDequeSubarraySize>::DoInsert(const const_iterator& position, Integer n, Integer value, true_type)
	{
		DoInsertValues(position, (size_type)n, (value_type)value);
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoInsert(const const_iterator& position, const InputIterator& first, const InputIterator& last, false_type)
	{
		typedef typename eastl::iterator_traits<InputIterator>::iterator_category IC;
		DoInsertFromIterator(position, first, last, IC());
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	template <typename InputIterator>
	void deque<T, Allocator, kDequeSubarraySize>::DoInsertFromIterator(const_iterator position, const InputIterator& first, const InputIterator& last, EASTL_ITC_NS::forward_iterator_tag)
	{
		const size_type n = (size_type)eastl::distance(first, last);

		// This implementation is nearly identical to DoInsertValues below. 
		// If you make a bug fix to one, you will likely want to fix the other.
		if(position.mpCurrent == mItBegin.mpCurrent) // If inserting at the beginning or into an empty container...
		{
			iterator itNewBegin(DoReallocSubarray(n, kSideFront)); // itNewBegin to mItBegin refers to memory that isn't initialized yet; so it's not truly a valid iterator. Or at least not a dereferencable one.

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					// We would like to use move here instead of copy when possible, which would be useful for 
					// when inserting from a std::initializer_list, for example.
					// To do: solve this by having a template or runtime parameter which specifies move vs copy.
					eastl::uninitialized_copy(first, last, itNewBegin);
					mItBegin = itNewBegin;
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					DoFreeSubarrays(itNewBegin.mpCurrentArrayPtr, mItBegin.mpCurrentArrayPtr);
					throw;
				}
			#endif
		}
		else if(EASTL_UNLIKELY(position.mpCurrent == mItEnd.mpCurrent)) // If inserting at the end (i.e. appending)...
		{
			const iterator itNewEnd(DoReallocSubarray(n, kSideBack)); // mItEnd to itNewEnd refers to memory that isn't initialized yet; so it's not truly a valid iterator. Or at least not a dereferencable one.

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					// We would like to use move here instead of copy when possible, which would be useful for 
					// when inserting from a std::initializer_list, for example.
					// To do: solve this by having a template or runtime parameter which specifies move vs copy.
					eastl::uninitialized_copy(first, last, mItEnd);
					mItEnd = itNewEnd;
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					DoFreeSubarrays(mItEnd.mpCurrentArrayPtr + 1, itNewEnd.mpCurrentArrayPtr + 1);
					throw;
				}
			#endif
		}
		else
		{
			const difference_type nInsertionIndex = position - mItBegin;
			const size_type       nSize           = size();

			if(nInsertionIndex < (difference_type)(nSize / 2)) // If the insertion index is in the front half of the deque... grow the deque at the front.
			{
				const iterator itNewBegin(DoReallocSubarray(n, kSideFront)); // itNewBegin to mItBegin refers to memory that isn't initialized yet; so it's not truly a valid iterator. Or at least not a dereferencable one.
				const iterator itOldBegin(mItBegin);
				const iterator itPosition(mItBegin + nInsertionIndex); // We need to reset this value because the reallocation above can invalidate iterators.

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						// We have a problem here: we would like to use move instead of copy, but it may be that the range to be inserted comes from
						// this container and comes from the segment we need to move. So we can't use move operations unless we are careful to handle
						// that situation. The newly inserted contents must be contents that were moved to and not moved from. To do: solve this.
						if(nInsertionIndex >= (difference_type)n) // If the newly inserted items will be entirely within the old area...
						{
							iterator itUCopyEnd(mItBegin + (difference_type)n);

							eastl::uninitialized_copy(mItBegin, itUCopyEnd, itNewBegin); // This can throw.
							itUCopyEnd = eastl::copy(itUCopyEnd, itPosition, itOldBegin); // Recycle 'itUCopyEnd' to mean something else.
							eastl::copy(first, last, itUCopyEnd);
						}
						else // Else the newly inserted items are going within the newly allocated area at the front.
						{
							InputIterator mid(first);

							eastl::advance(mid, (difference_type)n - nInsertionIndex);
							eastl::uninitialized_copy_copy(mItBegin, itPosition, first, mid, itNewBegin); // This can throw.
							eastl::copy(mid, last, itOldBegin);
						}
						mItBegin = itNewBegin;
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						DoFreeSubarrays(itNewBegin.mpCurrentArrayPtr, mItBegin.mpCurrentArrayPtr);
						throw;
					}
				#endif
			}
			else
			{
				const iterator        itNewEnd(DoReallocSubarray(n, kSideBack));
				const iterator        itOldEnd(mItEnd);
				const difference_type nPushedCount = (difference_type)nSize - nInsertionIndex;
				const iterator        itPosition(mItEnd - nPushedCount); // We need to reset this value because the reallocation above can invalidate iterators.

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						// We have a problem here: we would like to use move instead of copy, but it may be that the range to be inserted comes from
						// this container and comes from the segment we need to move. So we can't use move operations unless we are careful to handle
						// that situation. The newly inserted contents must be contents that were moved to and not moved from. To do: solve this.
						if(nPushedCount > (difference_type)n)
						{
							const iterator itUCopyEnd(mItEnd - (difference_type)n);

							eastl::uninitialized_copy(itUCopyEnd, mItEnd, mItEnd);
							eastl::copy_backward(itPosition, itUCopyEnd, itOldEnd);
							eastl::copy(first, last, itPosition);
						}
						else
						{
							InputIterator mid(first);

							eastl::advance(mid, nPushedCount);
							eastl::uninitialized_copy_copy(mid, last, itPosition, mItEnd, mItEnd);
							eastl::copy(first, mid, itPosition);
						}
						mItEnd = itNewEnd;
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						DoFreeSubarrays(mItEnd.mpCurrentArrayPtr + 1, itNewEnd.mpCurrentArrayPtr + 1);
						throw;
					}
				#endif
			}
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	void deque<T, Allocator, kDequeSubarraySize>::DoInsertValues(const_iterator position, size_type n, const value_type& value)
	{
		#if EASTL_ASSERT_ENABLED
			if(EASTL_UNLIKELY(!(validate_iterator(position) & isf_valid)))
				EASTL_FAIL_MSG("deque::insert -- invalid iterator");
		#endif

		// This implementation is nearly identical to DoInsertFromIterator above. 
		// If you make a bug fix to one, you will likely want to fix the other.
		if(position.mpCurrent == mItBegin.mpCurrent) // If inserting at the beginning...
		{
			const iterator itNewBegin(DoReallocSubarray(n, kSideFront));

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					// Note that we don't make a temp copy of 'value' here. This is because in a 
					// deque, insertion at either the front or back doesn't cause a reallocation
					// or move of data in the middle. That's a key feature of deques, in fact.
					eastl::uninitialized_fill(itNewBegin, mItBegin, value);
					mItBegin = itNewBegin;
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					DoFreeSubarrays(itNewBegin.mpCurrentArrayPtr, mItBegin.mpCurrentArrayPtr);
					throw;
				}
			#endif
		}
		else if(EASTL_UNLIKELY(position.mpCurrent == mItEnd.mpCurrent)) // If inserting at the end (i.e. appending)...
		{
			const iterator itNewEnd(DoReallocSubarray(n, kSideBack));

			#if EASTL_EXCEPTIONS_ENABLED
				try
				{
			#endif
					// Note that we don't make a temp copy of 'value' here. This is because in a 
					// deque, insertion at either the front or back doesn't cause a reallocation
					// or move of data in the middle. That's a key feature of deques, in fact.
					eastl::uninitialized_fill(mItEnd, itNewEnd, value);
					mItEnd = itNewEnd;
			#if EASTL_EXCEPTIONS_ENABLED
				}
				catch(...)
				{
					DoFreeSubarrays(mItEnd.mpCurrentArrayPtr + 1, itNewEnd.mpCurrentArrayPtr + 1);
					throw;
				}
			#endif
		}
		else
		{
			// A key purpose of a deque is to implement insertions and removals more efficiently 
			// than with a vector. We are inserting into the middle of the deque here. A quick and 
			// dirty implementation of this would be to reallocate the subarrays and simply push 
			// all values in the middle upward like you would do with a vector. Instead we implement
			// the minimum amount of reallocations needed but may need to do some value moving, 
			// as the subarray sizes need to remain constant and can have no holes in them.
			const difference_type nInsertionIndex = position - mItBegin;
			const size_type       nSize = size();
			const value_type      valueSaved(value);

			if(nInsertionIndex < (difference_type)(nSize / 2)) // If the insertion index is in the front half of the deque... grow the deque at the front.
			{
				const iterator itNewBegin(DoReallocSubarray(n, kSideFront));
				const iterator itOldBegin(mItBegin);
				const iterator itPosition(mItBegin + nInsertionIndex); // We need to reset this value because the reallocation above can invalidate iterators.

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						if(nInsertionIndex >= (difference_type)n) // If the newly inserted items will be entirely within the old area...
						{
							iterator itUCopyEnd(mItBegin + (difference_type)n);

							eastl::uninitialized_move_if_noexcept(mItBegin, itUCopyEnd, itNewBegin); // This can throw.
							itUCopyEnd = eastl::move(itUCopyEnd, itPosition, itOldBegin); // Recycle 'itUCopyEnd' to mean something else.
							eastl::fill(itUCopyEnd, itPosition, valueSaved);
						}
						else // Else the newly inserted items are going within the newly allocated area at the front.
						{
							eastl::uninitialized_move_fill(mItBegin, itPosition, itNewBegin, mItBegin, valueSaved); // This can throw.
							eastl::fill(itOldBegin, itPosition, valueSaved);
						}
						mItBegin = itNewBegin;
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						DoFreeSubarrays(itNewBegin.mpCurrentArrayPtr, mItBegin.mpCurrentArrayPtr);
						throw;
					}
				#endif
			}
			else // Else the insertion index is in the back half of the deque, so grow the deque at the back.
			{
				const iterator        itNewEnd(DoReallocSubarray(n, kSideBack));
				const iterator        itOldEnd(mItEnd);
				const difference_type nPushedCount = (difference_type)nSize - nInsertionIndex;
				const iterator        itPosition(mItEnd - nPushedCount); // We need to reset this value because the reallocation above can invalidate iterators.

				#if EASTL_EXCEPTIONS_ENABLED
					try
					{
				#endif
						if(nPushedCount > (difference_type)n) // If the newly inserted items will be entirely within the old area...
						{
							iterator itUCopyEnd(mItEnd - (difference_type)n);

							eastl::uninitialized_move_if_noexcept(itUCopyEnd, mItEnd, mItEnd); // This can throw.
							itUCopyEnd = eastl::move_backward(itPosition, itUCopyEnd, itOldEnd); // Recycle 'itUCopyEnd' to mean something else.
							eastl::fill(itPosition, itUCopyEnd, valueSaved);
						}
						else // Else the newly inserted items are going within the newly allocated area at the back.
						{
							eastl::uninitialized_fill_move(mItEnd, itPosition + (difference_type)n, valueSaved, itPosition, mItEnd); // This can throw.
							eastl::fill(itPosition, itOldEnd, valueSaved);
						}
						mItEnd = itNewEnd;
				#if EASTL_EXCEPTIONS_ENABLED
					}
					catch(...)
					{
						DoFreeSubarrays(mItEnd.mpCurrentArrayPtr + 1, itNewEnd.mpCurrentArrayPtr + 1);
						throw;
					}
				#endif
			}
		}
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void deque<T, Allocator, kDequeSubarraySize>::DoSwap(this_type& x)
	{
		eastl::swap(mpPtrArray,     x.mpPtrArray);
		eastl::swap(mnPtrArraySize, x.mnPtrArraySize);
		eastl::swap(mItBegin,       x.mItBegin);
		eastl::swap(mItEnd,         x.mItEnd);
		eastl::swap(mAllocator,     x.mAllocator);  // We do this even if EASTL_ALLOCATOR_COPY_ENABLED is 0.

	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool deque<T, Allocator, kDequeSubarraySize>::validate() const
	{
		// To do: More detailed validation.
		// To do: Try to make the validation resistant to crashes if the data is invalid.
		if((end() - begin()) < 0)
			return false;
		return true;
	}


	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline int deque<T, Allocator, kDequeSubarraySize>::validate_iterator(const_iterator i) const
	{
		// To do: We don't currently track isf_current, will need to make it do so.
		// To do: Fix the validation below, as it will not catch all invalid iterators.
		if((i - begin()) < 0)
			return isf_none;

		if((end() - i) < 0)
			return isf_none;

		if(i == end())
			return (isf_valid | isf_current);

		return (isf_valid | isf_current | isf_can_dereference);
	}



	///////////////////////////////////////////////////////////////////////
	// global operators
	///////////////////////////////////////////////////////////////////////

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator==(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return ((a.size() == b.size()) && eastl::equal(a.begin(), a.end(), b.begin()));
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator!=(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return ((a.size() != b.size()) || !eastl::equal(a.begin(), a.end(), b.begin()));
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator<(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator>(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return b < a;
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator<=(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return !(b < a);
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline bool operator>=(const deque<T, Allocator, kDequeSubarraySize>& a, const deque<T, Allocator, kDequeSubarraySize>& b)
	{
		return !(a < b);
	}

	template <typename T, typename Allocator, unsigned kDequeSubarraySize>
	inline void swap(deque<T, Allocator, kDequeSubarraySize>& a, deque<T, Allocator, kDequeSubarraySize>& b)
	{
		a.swap(b);
	}

	///////////////////////////////////////////////////////////////////////
	// erase / erase_if
	//
	// https://en.cppreference.com/w/cpp/container/deque/erase2
	///////////////////////////////////////////////////////////////////////
	template <class T, class Allocator, class U>
	void erase(deque<T, Allocator>& c, const U& value)
	{
		// Erases all elements that compare equal to value from the container.
		c.erase(eastl::remove(c.begin(), c.end(), value), c.end());
	}

	template <class T, class Allocator, class Predicate>
	void erase_if(deque<T, Allocator>& c, Predicate predicate)
	{
		// Erases all elements that satisfy the predicate pred from the container.
		c.erase(eastl::remove_if(c.begin(), c.end(), predicate), c.end());
	}


} // namespace eastl


EA_RESTORE_VC_WARNING();
#if EASTL_EXCEPTIONS_ENABLED
	EA_RESTORE_VC_WARNING();
#endif


#endif // Header include guard