1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
|
/////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
/////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// A ring buffer is a FIFO (first-in, first-out) container which acts
// much like a queue. The difference is that a ring buffer is implemented
// via chasing pointers around a given container instead of like queue
// adds to the writes to the end of the container are reads from the begin.
// The benefit of a ring buffer is that memory allocations don't occur
// and new elements are neither added nor removed from the container.
// Elements in the container are simply assigned values in circles around
// the container.
///////////////////////////////////////////////////////////////////////////////
#ifndef EASTL_RING_BUFFER_H
#define EASTL_RING_BUFFER_H
#include <EASTL/internal/config.h>
#include <EASTL/iterator.h>
#include <EASTL/vector.h>
#include <EASTL/initializer_list.h>
#include <stddef.h>
#if defined(EA_PRAGMA_ONCE_SUPPORTED)
#pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
#endif
namespace eastl
{
/// EASTL_RING_BUFFER_DEFAULT_NAME
///
/// Defines a default container name in the absence of a user-provided name.
///
#ifndef EASTL_RING_BUFFER_DEFAULT_NAME
#define EASTL_RING_BUFFER_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " ring_buffer" // Unless the user overrides something, this is "EASTL ring_buffer".
#endif
/// EASTL_RING_BUFFER_DEFAULT_ALLOCATOR
///
#ifndef EASTL_RING_BUFFER_DEFAULT_ALLOCATOR
#define EASTL_RING_BUFFER_DEFAULT_ALLOCATOR allocator_type(EASTL_RING_BUFFER_DEFAULT_NAME)
#endif
/// ring_buffer_iterator
///
/// We force this iterator to act like a random access iterator even if
/// the underlying container doesn't support random access iteration.
/// Any BidirectionalIterator can be a RandomAccessIterator; it just
/// might be inefficient in some cases.
///
template <typename T, typename Pointer, typename Reference, typename Container>
struct ring_buffer_iterator
{
public:
typedef ring_buffer_iterator<T, Pointer, Reference, Container> this_type;
typedef T value_type;
typedef Pointer pointer;
typedef Reference reference;
typedef typename Container::size_type size_type;
typedef typename Container::difference_type difference_type;
typedef typename Container::iterator container_iterator;
typedef typename Container::const_iterator container_const_iterator;
typedef ring_buffer_iterator<T, T*, T&, Container> iterator;
typedef ring_buffer_iterator<T, const T*, const T&, Container> const_iterator;
typedef EASTL_ITC_NS::random_access_iterator_tag iterator_category;
public:
Container* mpContainer;
container_iterator mContainerIterator;
public:
ring_buffer_iterator();
ring_buffer_iterator(Container* pContainer, const container_iterator& containerIterator);
ring_buffer_iterator(const iterator& x);
ring_buffer_iterator& operator=(const iterator& x);
reference operator*() const;
pointer operator->() const;
this_type& operator++();
this_type operator++(int);
this_type& operator--();
this_type operator--(int);
this_type& operator+=(difference_type n);
this_type& operator-=(difference_type n);
this_type operator+(difference_type n) const;
this_type operator-(difference_type n) const;
protected:
void increment(difference_type n, EASTL_ITC_NS::input_iterator_tag);
void increment(difference_type n, EASTL_ITC_NS::random_access_iterator_tag);
}; // struct ring_buffer_iterator
/// ring_buffer
///
/// Implements a ring buffer via a given container type, which would
/// typically be a vector or array, though any container which supports
/// bidirectional iteration would work.
///
/// A ring buffer is a FIFO (first-in, first-out) container which acts
/// much like a queue. The difference is that a ring buffer is implemented
/// via chasing pointers around a container and moving the read and write
/// positions forward (and possibly wrapping around) as the container is
/// read and written via pop_front and push_back.
///
/// The benefit of a ring buffer is that memory allocations don't occur
/// and new elements are neither added nor removed from the container.
/// Elements in the container are simply assigned values in circles around
/// the container.
///
/// ring_buffer is different from other containers -- including adapter
/// containers -- in how iteration is done. Iteration of a ring buffer
/// starts at the current begin position, proceeds to the end of the underlying
/// container, and continues at the begin of the underlying container until
/// the ring buffer's current end position. Thus a ring_buffer does
/// indeed have a begin and an end, though the values of begin and end
/// chase each other around the container. An empty ring_buffer is one
/// in which end == begin, and a full ring_buffer is one in which
/// end + 1 == begin.
///
/// Example of a ring buffer layout, where + indicates queued items:
/// ++++++++++--------------------------------+++++++++
/// ^ ^
/// end begin
///
/// Empty ring buffer:
/// ---------------------------------------------------
/// ^
/// begin / end
///
/// Full ring buffer. Note that one item is necessarily unused; it is
/// analagous to a '\0' at the end of a C string:
/// +++++++++++++++++++++++++++++++++++++++++-+++++++++
/// ^^
/// end begin
///
/// A push_back operation on a ring buffer assigns the new value to end.
/// If there is no more space in the buffer, this will result in begin
/// being overwritten and the begin position being moved foward one position.
/// The user can use the full() function to detect this condition.
/// Note that elements in a ring buffer are not created or destroyed as
/// their are added and removed; they are merely assigned. Only on
/// container construction and destruction are any elements created and
/// destroyed.
///
/// The ring buffer can be used in either direction. By this we mean that
/// you can use push_back to add items and pop_front to remove them; or you can
/// use push_front to add items and pop_back to remove them. You aren't
/// limited to these operations; you can push or pop from either side
/// arbitrarily and you can insert or erase anywhere in the container.
///
/// The ring buffer requires the user to specify a Container type, which
/// by default is vector. However, any container with bidirectional iterators
/// will work, such as list, deque, string or any of the fixed_* versions
/// of these containers, such as fixed_string. Since ring buffer works via copying
/// elements instead of allocating and freeing nodes, inserting in the middle
/// of a ring buffer based on list (instead of vector) is no more efficient.
///
/// To use the ring buffer, its container must be resized to the desired
/// ring buffer size. Changing the size of a ring buffer may cause ring
/// buffer iterators to invalidate.
///
/// An alternative to using a ring buffer is to use a list with a user-created
/// node pool and custom allocator. There are various tradeoffs that result from this.
///
/// Example usage:
/// ring_buffer< int, list<int> > rb(100);
/// rb.push_back(1);
///
/// Example usage:
/// // Example of creating an on-screen debug log that shows 16
/// // strings at a time and scrolls older strings away.
///
/// // Create ring buffer of 16 strings.
/// ring_buffer< string, vector<string> > debugLogText(16);
///
/// // Reserve 128 chars for each line. This can make it so that no
/// // runtime memory allocations occur.
/// for(vector<string>::iterator it = debugLogText.get_container().begin(),
/// itEnd = debugLogText.get_container().end(); it != itEnd; ++it)
/// {
/// (*it).reserve(128);
/// }
///
/// // Add a new string, using push_front() and front() instead of
/// // push_front(str) in order to avoid creating a temporary str.
/// debugLogText.push_front();
/// debugLogText.front() = "Player fired weapon";
///
template <typename T, typename Container = eastl::vector<T>, typename Allocator = typename Container::allocator_type>
class ring_buffer
{
public:
typedef ring_buffer<T, Container, Allocator> this_type;
typedef Container container_type;
typedef Allocator allocator_type;
typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef typename Container::difference_type difference_type;
typedef typename Container::iterator container_iterator;
typedef typename Container::const_iterator container_const_iterator;
typedef ring_buffer_iterator<T, T*, T&, Container> iterator;
typedef ring_buffer_iterator<T, const T*, const T&, Container> const_iterator;
typedef eastl::reverse_iterator<iterator> reverse_iterator;
typedef eastl::reverse_iterator<const_iterator> const_reverse_iterator;
public: // We declare public so that global comparison operators can be implemented without adding an inline level and without tripping up GCC 2.x friend declaration failures. GCC (through at least v4.0) is poor at inlining and performance wins over correctness.
Container c; // We follow the naming convention established for stack, queue, priority_queue and name this 'c'. This variable must always have a size of at least 1, as even an empty ring_buffer has an unused terminating element.
protected:
container_iterator mBegin; // We keep track of where our begin and end are by using Container iterators.
container_iterator mEnd;
size_type mSize;
public:
// There currently isn't a ring_buffer constructor that specifies an initial size, unlike other containers.
explicit ring_buffer(size_type cap = 0); // Construct with an initial capacity (but size of 0).
explicit ring_buffer(size_type cap, const allocator_type& allocator);
explicit ring_buffer(const Container& x);
explicit ring_buffer(const allocator_type& allocator);
ring_buffer(const this_type& x);
ring_buffer(this_type&& x);
ring_buffer(this_type&& x, const allocator_type& allocator);
ring_buffer(std::initializer_list<value_type> ilist, const allocator_type& allocator = EASTL_RING_BUFFER_DEFAULT_ALLOCATOR); // This function sets the capacity to be equal to the size of the initializer list.
// No destructor necessary. Default will do.
this_type& operator=(const this_type& x);
this_type& operator=(std::initializer_list<value_type> ilist);
this_type& operator=(this_type&& x);
template <typename InputIterator>
void assign(InputIterator first, InputIterator last);
void swap(this_type& x);
iterator begin() EA_NOEXCEPT;
const_iterator begin() const EA_NOEXCEPT;
const_iterator cbegin() const EA_NOEXCEPT;
iterator end() EA_NOEXCEPT;
const_iterator end() const EA_NOEXCEPT;
const_iterator cend() const EA_NOEXCEPT;
reverse_iterator rbegin() EA_NOEXCEPT;
const_reverse_iterator rbegin() const EA_NOEXCEPT;
const_reverse_iterator crbegin() const EA_NOEXCEPT;
reverse_iterator rend() EA_NOEXCEPT;
const_reverse_iterator rend() const EA_NOEXCEPT;
const_reverse_iterator crend() const EA_NOEXCEPT;
bool empty() const EA_NOEXCEPT;
bool full() const EA_NOEXCEPT;
size_type size() const EA_NOEXCEPT;
size_type capacity() const EA_NOEXCEPT;
void resize(size_type n);
void set_capacity(size_type n); // Sets the capacity to the given value, including values less than the current capacity. Adjusts the size downward if n < size, by throwing out the oldest elements in the buffer.
void reserve(size_type n); // Reserve a given capacity. Doesn't decrease the capacity; it only increases it (for compatibility with other containers' behavior).
reference front();
const_reference front() const;
reference back();
const_reference back() const;
void push_back(const value_type& value);
reference push_back();
void push_front(const value_type& value);
reference push_front();
void pop_back();
void pop_front();
reference operator[](size_type n);
const_reference operator[](size_type n) const;
// To consider:
// size_type read(value_type* pDestination, size_type nCount);
// size_type read(iterator** pPosition1, iterator** pPosition2, size_type& nCount1, size_type& nCount2);
/* To do:
template <class... Args>
void emplace_front(Args&&... args);
template <class... Args>
void emplace_back(Args&&... args);
template <class... Args>
iterator emplace(const_iterator position, Args&&... args);
*/
iterator insert(const_iterator position, const value_type& value);
void insert(const_iterator position, size_type n, const value_type& value);
void insert(const_iterator position, std::initializer_list<value_type> ilist);
template <typename InputIterator>
void insert(const_iterator position, InputIterator first, InputIterator last);
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
reverse_iterator erase(const_reverse_iterator position);
reverse_iterator erase(const_reverse_iterator first, const_reverse_iterator last);
void clear();
container_type& get_container();
const container_type& get_container() const;
bool validate() const;
int validate_iterator(const_iterator i) const;
protected:
//size_type DoGetSize(EASTL_ITC_NS::input_iterator_tag) const;
//size_type DoGetSize(EASTL_ITC_NS::random_access_iterator_tag) const;
}; // class ring_buffer
///////////////////////////////////////////////////////////////////////
// ring_buffer_iterator
///////////////////////////////////////////////////////////////////////
template <typename T, typename Pointer, typename Reference, typename Container>
ring_buffer_iterator<T, Pointer, Reference, Container>::ring_buffer_iterator()
: mpContainer(NULL), mContainerIterator()
{
}
template <typename T, typename Pointer, typename Reference, typename Container>
ring_buffer_iterator<T, Pointer, Reference, Container>::ring_buffer_iterator(Container* pContainer, const container_iterator& containerIterator)
: mpContainer(pContainer), mContainerIterator(containerIterator)
{
}
template <typename T, typename Pointer, typename Reference, typename Container>
ring_buffer_iterator<T, Pointer, Reference, Container>::ring_buffer_iterator(const iterator& x)
: mpContainer(x.mpContainer), mContainerIterator(x.mContainerIterator)
{
}
template <typename T, typename Pointer, typename Reference, typename Container>
ring_buffer_iterator<T, Pointer, Reference, Container>&
ring_buffer_iterator<T, Pointer, Reference, Container>::operator=(const iterator& x)
{
mpContainer = x.mpContainer;
mContainerIterator = x.mContainerIterator;
return *this;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::reference
ring_buffer_iterator<T, Pointer, Reference, Container>::operator*() const
{
return *mContainerIterator;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::pointer
ring_buffer_iterator<T, Pointer, Reference, Container>::operator->() const
{
return &*mContainerIterator;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type&
ring_buffer_iterator<T, Pointer, Reference, Container>::operator++()
{
if(EASTL_UNLIKELY(++mContainerIterator == mpContainer->end()))
mContainerIterator = mpContainer->begin();
return *this;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type
ring_buffer_iterator<T, Pointer, Reference, Container>::operator++(int)
{
const this_type temp(*this);
if(EASTL_UNLIKELY(++mContainerIterator == mpContainer->end()))
mContainerIterator = mpContainer->begin();
return temp;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type&
ring_buffer_iterator<T, Pointer, Reference, Container>::operator--()
{
if(EASTL_UNLIKELY(mContainerIterator == mpContainer->begin()))
mContainerIterator = mpContainer->end();
--mContainerIterator;
return *this;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type
ring_buffer_iterator<T, Pointer, Reference, Container>::operator--(int)
{
const this_type temp(*this);
if(EASTL_UNLIKELY(mContainerIterator == mpContainer->begin()))
mContainerIterator = mpContainer->end();
--mContainerIterator;
return temp;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type&
ring_buffer_iterator<T, Pointer, Reference, Container>::operator+=(difference_type n)
{
typedef typename eastl::iterator_traits<container_iterator>::iterator_category IC;
increment(n, IC());
return *this;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type&
ring_buffer_iterator<T, Pointer, Reference, Container>::operator-=(difference_type n)
{
typedef typename eastl::iterator_traits<container_iterator>::iterator_category IC;
increment(-n, IC());
return *this;
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type
ring_buffer_iterator<T, Pointer, Reference, Container>::operator+(difference_type n) const
{
return this_type(*this).operator+=(n);
}
template <typename T, typename Pointer, typename Reference, typename Container>
typename ring_buffer_iterator<T, Pointer, Reference, Container>::this_type
ring_buffer_iterator<T, Pointer, Reference, Container>::operator-(difference_type n) const
{
return this_type(*this).operator+=(-n);
}
template <typename T, typename Pointer, typename Reference, typename Container>
void ring_buffer_iterator<T, Pointer, Reference, Container>::increment(difference_type n, EASTL_ITC_NS::input_iterator_tag)
{
// n cannot be negative, as input iterators don't support reverse iteration.
while(n-- > 0)
operator++();
}
template <typename T, typename Pointer, typename Reference, typename Container>
void ring_buffer_iterator<T, Pointer, Reference, Container>::increment(difference_type n, EASTL_ITC_NS::random_access_iterator_tag)
{
// We make the assumption here that the user is incrementing from a valid
// starting position to a valid ending position. Thus *this + n yields a
// valid iterator, including if n happens to be a negative value.
if(n >= 0)
{
const difference_type d = mpContainer->end() - mContainerIterator;
if(n < d)
mContainerIterator += n;
else
mContainerIterator = mpContainer->begin() + (n - d);
}
else
{
// Recall that n and d here will be negative and so the logic here works as intended.
const difference_type d = mpContainer->begin() - mContainerIterator;
if(n >= d)
mContainerIterator += n;
else
mContainerIterator = mpContainer->end() + (n - d);
}
}
// Random access iterators must support operator + and operator -.
// You can only add an integer to an iterator, and you cannot add two iterators.
template <typename T, typename Pointer, typename Reference, typename Container>
inline ring_buffer_iterator<T, Pointer, Reference, Container>
operator+(ptrdiff_t n, const ring_buffer_iterator<T, Pointer, Reference, Container>& x)
{
return x + n; // Implement (n + x) in terms of (x + n).
}
// You can only add an integer to an iterator, but you can subtract two iterators.
template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB, typename Container>
inline typename ring_buffer_iterator<T, PointerA, ReferenceA, Container>::difference_type
operator-(const ring_buffer_iterator<T, PointerA, ReferenceA, Container>& a,
const ring_buffer_iterator<T, PointerB, ReferenceB, Container>& b)
{
typedef typename ring_buffer_iterator<T, PointerA, ReferenceA, Container>::difference_type difference_type;
// To do: If container_iterator is a random access iterator, then do a simple calculation.
// Otherwise, we have little choice but to iterate from a to b and count as we go.
// See the ring_buffer::size function for an implementation of this.
// Iteration implementation:
difference_type d = 0;
for(ring_buffer_iterator<T, PointerA, ReferenceA, Container> temp(b); temp != a; ++temp)
++d;
return d;
}
// The C++ defect report #179 requires that we support comparisons between const and non-const iterators.
// Thus we provide additional template paremeters here to support this. The defect report does not
// require us to support comparisons between reverse_iterators and const_reverse_iterators.
template <typename T, typename PointerA, typename ReferenceA, typename ContainerA,
typename PointerB, typename ReferenceB, typename ContainerB>
inline bool operator==(const ring_buffer_iterator<T, PointerA, ReferenceA, ContainerA>& a,
const ring_buffer_iterator<T, PointerB, ReferenceB, ContainerB>& b)
{
// Perhaps we should compare the container pointer as well.
// However, for valid iterators this shouldn't be necessary.
return a.mContainerIterator == b.mContainerIterator;
}
template <typename T, typename PointerA, typename ReferenceA, typename ContainerA,
typename PointerB, typename ReferenceB, typename ContainerB>
inline bool operator!=(const ring_buffer_iterator<T, PointerA, ReferenceA, ContainerA>& a,
const ring_buffer_iterator<T, PointerB, ReferenceB, ContainerB>& b)
{
// Perhaps we should compare the container pointer as well.
// However, for valid iterators this shouldn't be necessary.
return !(a.mContainerIterator == b.mContainerIterator);
}
// We provide a version of operator!= for the case where the iterators are of the
// same type. This helps prevent ambiguity errors in the presence of rel_ops.
template <typename T, typename Pointer, typename Reference, typename Container>
inline bool operator!=(const ring_buffer_iterator<T, Pointer, Reference, Container>& a,
const ring_buffer_iterator<T, Pointer, Reference, Container>& b)
{
return !(a.mContainerIterator == b.mContainerIterator);
}
///////////////////////////////////////////////////////////////////////
// ring_buffer
///////////////////////////////////////////////////////////////////////
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(size_type cap)
: c() // Default construction with default allocator for the container.
{
// To do: This code needs to be amended to deal with possible exceptions
// that could occur during the resize call below.
// We add one because the element at mEnd is necessarily unused.
c.resize(cap + 1); // Possibly we could construct 'c' with size, but c may not have such a ctor, though we rely on it having a resize function.
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(size_type cap, const allocator_type& allocator)
: c(allocator)
{
// To do: This code needs to be amended to deal with possible exceptions
// that could occur during the resize call below.
// We add one because the element at mEnd is necessarily unused.
c.resize(cap + 1); // Possibly we could construct 'c' with size, but c may not have such a ctor, though we rely on it having a resize function.
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(const Container& x)
: c(x) // This copies elements from x, but unless the user is doing some tricks, the only thing that matters is that c.size() == x.size().
{
// To do: This code needs to be amended to deal with possible exceptions
// that could occur during the resize call below.
if(c.empty())
c.resize(1);
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(const allocator_type& allocator)
: c(allocator)
{
// To do: This code needs to be amended to deal with possible exceptions
// that could occur during the resize call below.
// We add one because the element at mEnd is necessarily unused.
c.resize(1); // Possibly we could construct 'c' with size, but c may not have such a ctor, though we rely on it having a resize function.
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(const this_type& x)
: c(x.c)
{
mBegin = c.begin();
mEnd = mBegin;
mSize = x.mSize;
eastl::advance(mBegin, eastl::distance(const_cast<this_type&>(x).c.begin(), x.mBegin)); // We can do a simple distance algorithm here, as there will be no wraparound.
eastl::advance(mEnd, eastl::distance(const_cast<this_type&>(x).c.begin(), x.mEnd));
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(this_type&& x)
: c() // Default construction with default allocator for the container.
{
c.resize(1); // Possibly we could construct 'c' with size, but c may not have such a ctor, though we rely on it having a resize function.
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
swap(x); // We are leaving x in an unusual state by swapping default-initialized members with it, as it won't be usable and can be only destructible.
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(this_type&& x, const allocator_type& allocator)
: c(allocator)
{
c.resize(1); // Possibly we could construct 'c' with size, but c may not have such a ctor, though we rely on it having a resize function.
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
if(c.get_allocator() == x.c.get_allocator())
swap(x); // We are leaving x in an unusual state by swapping default-initialized members with it, as it won't be usable and can be only destructible.
else
operator=(x);
}
template <typename T, typename Container, typename Allocator>
ring_buffer<T, Container, Allocator>::ring_buffer(std::initializer_list<value_type> ilist, const allocator_type& allocator)
: c(allocator)
{
c.resize((eastl_size_t)ilist.size() + 1);
mBegin = c.begin();
mEnd = mBegin;
mSize = 0;
assign(ilist.begin(), ilist.end());
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::this_type&
ring_buffer<T, Container, Allocator>::operator=(const this_type& x)
{
if(&x != this)
{
c = x.c;
mBegin = c.begin();
mEnd = mBegin;
mSize = x.mSize;
eastl::advance(mBegin, eastl::distance(const_cast<this_type&>(x).c.begin(), x.mBegin)); // We can do a simple distance algorithm here, as there will be no wraparound.
eastl::advance(mEnd, eastl::distance(const_cast<this_type&>(x).c.begin(), x.mEnd));
}
return *this;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::this_type&
ring_buffer<T, Container, Allocator>::operator=(this_type&& x)
{
swap(x);
return *this;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::this_type&
ring_buffer<T, Container, Allocator>::operator=(std::initializer_list<value_type> ilist)
{
assign(ilist.begin(), ilist.end());
return *this;
}
template <typename T, typename Container, typename Allocator>
template <typename InputIterator>
void ring_buffer<T, Container, Allocator>::assign(InputIterator first, InputIterator last)
{
// To consider: We can make specializations of this for pointer-based
// iterators to PODs and turn the action into a memcpy.
clear();
for(; first != last; ++first)
push_back(*first);
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::swap(this_type& x)
{
if(&x != this)
{
const difference_type dBegin = eastl::distance(c.begin(), mBegin); // We can do a simple distance algorithm here, as there will be no wraparound.
const difference_type dEnd = eastl::distance(c.begin(), mEnd);
const difference_type dxBegin = eastl::distance(x.c.begin(), x.mBegin);
const difference_type dxEnd = eastl::distance(x.c.begin(), x.mEnd);
eastl::swap(c, x.c);
eastl::swap(mSize, x.mSize);
mBegin = c.begin();
eastl::advance(mBegin, dxBegin); // We can do a simple advance algorithm here, as there will be no wraparound.
mEnd = c.begin();
eastl::advance(mEnd, dxEnd);
x.mBegin = x.c.begin();
eastl::advance(x.mBegin, dBegin);
x.mEnd = x.c.begin();
eastl::advance(x.mEnd, dEnd);
}
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::iterator
ring_buffer<T, Container, Allocator>::begin() EA_NOEXCEPT
{
return iterator(&c, mBegin);
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_iterator
ring_buffer<T, Container, Allocator>::begin() const EA_NOEXCEPT
{
return const_iterator(const_cast<Container*>(&c), mBegin); // We trust that the const_iterator will respect const-ness.
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_iterator
ring_buffer<T, Container, Allocator>::cbegin() const EA_NOEXCEPT
{
return const_iterator(const_cast<Container*>(&c), mBegin); // We trust that the const_iterator will respect const-ness.
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::iterator
ring_buffer<T, Container, Allocator>::end() EA_NOEXCEPT
{
return iterator(&c, mEnd);
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_iterator
ring_buffer<T, Container, Allocator>::end() const EA_NOEXCEPT
{
return const_iterator(const_cast<Container*>(&c), mEnd); // We trust that the const_iterator will respect const-ness.
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_iterator
ring_buffer<T, Container, Allocator>::cend() const EA_NOEXCEPT
{
return const_iterator(const_cast<Container*>(&c), mEnd); // We trust that the const_iterator will respect const-ness.
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reverse_iterator
ring_buffer<T, Container, Allocator>::rbegin() EA_NOEXCEPT
{
return reverse_iterator(iterator(&c, mEnd));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reverse_iterator
ring_buffer<T, Container, Allocator>::rbegin() const EA_NOEXCEPT
{
return const_reverse_iterator(const_iterator(const_cast<Container*>(&c), mEnd));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reverse_iterator
ring_buffer<T, Container, Allocator>::crbegin() const EA_NOEXCEPT
{
return const_reverse_iterator(const_iterator(const_cast<Container*>(&c), mEnd));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reverse_iterator
ring_buffer<T, Container, Allocator>::rend() EA_NOEXCEPT
{
return reverse_iterator(iterator(&c, mBegin));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reverse_iterator
ring_buffer<T, Container, Allocator>::rend() const EA_NOEXCEPT
{
return const_reverse_iterator(const_iterator(const_cast<Container*>(&c), mBegin));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reverse_iterator
ring_buffer<T, Container, Allocator>::crend() const EA_NOEXCEPT
{
return const_reverse_iterator(const_iterator(const_cast<Container*>(&c), mBegin));
}
template <typename T, typename Container, typename Allocator>
bool ring_buffer<T, Container, Allocator>::empty() const EA_NOEXCEPT
{
return mBegin == mEnd;
}
template <typename T, typename Container, typename Allocator>
bool ring_buffer<T, Container, Allocator>::full() const EA_NOEXCEPT
{
// Implementation that relies on c.size() being a fast operation:
// return mSize == (c.size() - 1); // (c.size() - 1) == capacity(); we are attempting to reduce function calls.
// Version that has constant speed guarantees, but is still pretty fast.
const_iterator afterEnd(end());
++afterEnd;
return afterEnd.mContainerIterator == mBegin;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::size_type
ring_buffer<T, Container, Allocator>::size() const EA_NOEXCEPT
{
return mSize;
// Alternatives:
// return eastl::distance(begin(), end());
// return end() - begin(); // This is more direct than using distance().
//typedef typename eastl::iterator_traits<container_iterator>::iterator_category IC;
//return DoGetSize(IC()); // This is more direct than using iterator math.
}
/*
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::size_type
ring_buffer<T, Container, Allocator>::DoGetSize(EASTL_ITC_NS::input_iterator_tag) const
{
// We could alternatively just use eastl::distance() here, but we happen to
// know that such code would boil down to what we have here, and we might
// as well remove function calls where possible.
difference_type d = 0;
for(const_iterator temp(begin()), tempEnd(end()); temp != tempEnd; ++temp)
++d;
return (size_type)d;
}
*/
/*
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::size_type
ring_buffer<T, Container, Allocator>::DoGetSize(EASTL_ITC_NS::random_access_iterator_tag) const
{
// A simpler but less efficient implementation fo this function would be:
// return eastl::distance(mBegin, mEnd);
//
// The calculation of distance here takes advantage of the fact that random
// access iterators' distances can be calculated by simple pointer calculation.
// Thus the code below boils down to a few subtractions when using a vector,
// string, or array as the Container type.
//
const difference_type dBegin = eastl::distance(const_cast<Container&>(c).begin(), mBegin); // const_cast here solves a little compiler
const difference_type dEnd = eastl::distance(const_cast<Container&>(c).begin(), mEnd); // argument matching problem.
if(dEnd >= dBegin)
return dEnd - dBegin;
return c.size() - (dBegin - dEnd);
}
*/
namespace Internal
{
///////////////////////////////////////////////////////////////
// has_overflow_allocator
//
// returns true_type when the specified container type is an
// eastl::fixed_* container and therefore has an overflow
// allocator type.
//
template <typename T, typename = void>
struct has_overflow_allocator : false_type {};
template <typename T>
struct has_overflow_allocator<T, void_t<decltype(declval<T>().get_overflow_allocator())>> : true_type {};
///////////////////////////////////////////////////////////////
// GetFixedContainerCtorAllocator
//
// eastl::fixed_* containers are only constructible via their
// overflow allocator type. This helper select the appropriate
// allocator from the specified container.
//
template <typename Container, bool UseOverflowAllocator = has_overflow_allocator<Container>()()>
struct GetFixedContainerCtorAllocator
{
auto& operator()(Container& c) { return c.get_overflow_allocator(); }
};
template <typename Container>
struct GetFixedContainerCtorAllocator<Container, false>
{
auto& operator()(Container& c) { return c.get_allocator(); }
};
} // namespace Internal
///////////////////////////////////////////////////////////////
// ContainerTemporary
//
// Helper type which prevents utilizing excessive stack space
// when creating temporaries when swapping/copying the underlying
// ring_buffer container type.
//
template <typename Container, bool UseHeapTemporary = (sizeof(Container) >= EASTL_MAX_STACK_USAGE)>
struct ContainerTemporary
{
Container mContainer;
ContainerTemporary(Container& parentContainer)
: mContainer(Internal::GetFixedContainerCtorAllocator<Container>{}(parentContainer))
{
}
Container& get() { return mContainer; }
};
template <typename Container>
struct ContainerTemporary<Container, true>
{
typename Container::allocator_type* mAllocator;
Container* mContainer;
ContainerTemporary(Container& parentContainer)
: mAllocator(&parentContainer.get_allocator())
, mContainer(new (mAllocator->allocate(sizeof(Container))) Container)
{
}
~ContainerTemporary()
{
mContainer->~Container();
mAllocator->deallocate(mContainer, sizeof(Container));
}
Container& get() { return *mContainer; }
};
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::resize(size_type n)
{
// Note that if n > size(), we just move the end position out to
// the begin + n, with the data being the old end and the new end
// being stale values from the past. This is by design, as the concept
// of arbitrarily resizing a ring buffer like this is currently deemed
// to be vague in what it intends to do. We can only assume that the
// user knows what he is doing and will deal with the stale values.
EASTL_ASSERT(c.size() >= 1);
const size_type cap = (c.size() - 1);
mSize = n;
if(n > cap) // If we need to grow in capacity...
{
// Given that a growing operation will always result in memory allocation,
// we currently implement this function via the usage of a temp container.
// This makes for a simple implementation, but in some cases it is less
// efficient. In particular, if the container is a node-based container like
// a (linked) list, this function would be faster if we simply added nodes
// to ourself. We would do this by inserting the nodes to be after end()
// and adjusting the begin() position if it was after end().
// To do: This code needs to be amended to deal with possible exceptions
// that could occur during the resize call below.
ContainerTemporary<Container> cTemp(c);
cTemp.get().resize(n + 1);
eastl::copy(begin(), end(), cTemp.get().begin());
eastl::swap(c, cTemp.get());
mBegin = c.begin();
mEnd = mBegin;
eastl::advance(mEnd, n); // We can do a simple advance algorithm on this because we know that mEnd will not wrap around.
}
else // We could do a check here for n != size(), but that would be costly and people don't usually resize things to their same size.
{
mEnd = mBegin;
// eastl::advance(mEnd, n); // We *cannot* use this because there may be wraparound involved.
// To consider: Possibly we should implement some more detailed logic to optimize the code here.
// We'd need to do different behaviour dending on whether the container iterator type is a
// random access iterator or otherwise.
while(n--)
{
if(EASTL_UNLIKELY(++mEnd == c.end()))
mEnd = c.begin();
}
}
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::size_type
ring_buffer<T, Container, Allocator>::capacity() const EA_NOEXCEPT
{
EASTL_ASSERT(c.size() >= 1); // This is required because even an empty ring_buffer has one unused termination element, somewhat like a \0 at the end of a C string.
return (c.size() - 1); // Need to subtract one because the position at mEnd is unused.
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::set_capacity(size_type n)
{
const size_type capacity = (c.size() - 1);
if(n != capacity) // If we need to change capacity...
{
ContainerTemporary<Container> cTemp(c);
cTemp.get().resize(n + 1);
iterator itCopyBegin = begin();
if(n < mSize) // If we are shrinking the capacity, to less than our size...
{
eastl::advance(itCopyBegin, mSize - n);
mSize = n;
}
eastl::copy(itCopyBegin, end(), cTemp.get().begin()); // The begin-end range may in fact be larger than n, in which case values will be overwritten.
eastl::swap(c, cTemp.get());
mBegin = c.begin();
mEnd = mBegin;
eastl::advance(mEnd, mSize); // We can do a simple advance algorithm on this because we know that mEnd will not wrap around.
}
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::reserve(size_type n)
{
// We follow the pattern of vector and only do something if n > capacity.
EASTL_ASSERT(c.size() >= 1);
if(n > (c.size() - 1)) // If we need to grow in capacity... // (c.size() - 1) == capacity(); we are attempting to reduce function calls.
{
ContainerTemporary<Container> cTemp(c);
cTemp.get().resize(n + 1);
eastl::copy(begin(), end(), cTemp.get().begin());
eastl::swap(c, cTemp.get());
mBegin = c.begin();
mEnd = mBegin;
eastl::advance(mEnd, mSize); // We can do a simple advance algorithm on this because we know that mEnd will not wrap around.
}
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reference
ring_buffer<T, Container, Allocator>::front()
{
return *mBegin;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reference
ring_buffer<T, Container, Allocator>::front() const
{
return *mBegin;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reference
ring_buffer<T, Container, Allocator>::back()
{
// return *(end() - 1); // Can't use this because not all iterators support operator-.
iterator temp(end()); // To do: Find a way to construct this temporary in the return statement.
return *(--temp); // We can do it by making all our containers' iterators support operator-.
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reference
ring_buffer<T, Container, Allocator>::back() const
{
// return *(end() - 1); // Can't use this because not all iterators support operator-.
const_iterator temp(end()); // To do: Find a way to construct this temporary in the return statement.
return *(--temp); // We can do it by making all our containers' iterators support operator-.
}
/// A push_back operation on a ring buffer assigns the new value to end.
/// If there is no more space in the buffer, this will result in begin
/// being overwritten and the begin position being moved foward one position.
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::push_back(const value_type& value)
{
*mEnd = value;
if(++mEnd == c.end())
mEnd = c.begin();
if(mEnd == mBegin)
{
if(++mBegin == c.end())
mBegin = c.begin();
}
else
++mSize;
}
/// A push_back operation on a ring buffer assigns the new value to end.
/// If there is no more space in the buffer, this will result in begin
/// being overwritten and the begin position being moved foward one position.
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reference
ring_buffer<T, Container, Allocator>::push_back()
{
// We don't do the following assignment, as the value at mEnd is already constructed;
// it is merely possibly not default-constructed. However, the spirit of push_back
// is that the user intends to do an assignment or data modification after the
// push_back call. The user can always execute *back() = value_type() if he wants.
//*mEnd = value_type();
if(++mEnd == c.end())
mEnd = c.begin();
if(mEnd == mBegin)
{
if(++mBegin == c.end())
mBegin = c.begin();
}
else
++mSize;
return back();
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::pop_back()
{
EASTL_ASSERT(mEnd != mBegin); // We assume that size() > 0 and thus that there is something to pop.
if(EASTL_UNLIKELY(mEnd == c.begin()))
mEnd = c.end();
--mEnd;
--mSize;
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::push_front(const value_type& value)
{
if(EASTL_UNLIKELY(mBegin == c.begin()))
mBegin = c.end();
if(--mBegin == mEnd)
{
if(EASTL_UNLIKELY(mEnd == c.begin()))
mEnd = c.end();
--mEnd;
}
else
++mSize;
*mBegin = value;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reference
ring_buffer<T, Container, Allocator>::push_front()
{
if(EASTL_UNLIKELY(mBegin == c.begin()))
mBegin = c.end();
if(--mBegin == mEnd)
{
if(EASTL_UNLIKELY(mEnd == c.begin()))
mEnd = c.end();
--mEnd;
}
else
++mSize;
// See comments above in push_back for why we don't execute this:
// *mBegin = value_type();
return *mBegin; // Same as return front();
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::pop_front()
{
EASTL_ASSERT(mBegin != mEnd); // We assume that mEnd > mBegin and thus that there is something to pop.
if(++mBegin == c.end())
mBegin = c.begin();
--mSize;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reference
ring_buffer<T, Container, Allocator>::operator[](size_type n)
{
// return *(begin() + n); // Can't use this because not all iterators support operator+.
// This should compile to code that is nearly as efficient as that above.
// The primary difference is the possible generation of a temporary in this case.
iterator temp(begin());
eastl::advance(temp, n);
return *(temp.mContainerIterator);
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::const_reference
ring_buffer<T, Container, Allocator>::operator[](size_type n) const
{
// return *(begin() + n); // Can't use this because not all iterators support operator+.
// This should compile to code that is nearly as efficient as that above.
// The primary difference is the possible generation of a temporary in this case.
const_iterator temp(begin());
eastl::advance(temp, n);
return *(temp.mContainerIterator);
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::iterator
ring_buffer<T, Container, Allocator>::insert(const_iterator position, const value_type& value)
{
// To consider: It would be faster if we could tell that position was in the first
// half of the container and instead of moving things after the position back,
// we could move things before the position forward.
iterator afterEnd(end());
iterator beforeEnd(afterEnd);
++afterEnd;
if(afterEnd.mContainerIterator == mBegin) // If we are at full capacity...
--beforeEnd;
else
push_back();
iterator itPosition(position.mpContainer, position.mContainerIterator); // We merely copy from const_iterator to iterator.
eastl::copy_backward(itPosition, beforeEnd, end());
*itPosition = value;
return itPosition;
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::insert(const_iterator position, size_type n, const value_type& value)
{
// To do: This can be improved with a smarter version. However,
// this is a little tricky because we need to deal with the case
// whereby n is greater than the size of the container itself.
while(n--)
insert(position, value);
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::insert(const_iterator position, std::initializer_list<value_type> ilist)
{
insert(position, ilist.begin(), ilist.end());
}
template <typename T, typename Container, typename Allocator>
template <typename InputIterator>
void ring_buffer<T, Container, Allocator>::insert(const_iterator position, InputIterator first, InputIterator last)
{
// To do: This can possibly be improved with a smarter version.
// However, this can be tricky if distance(first, last) is greater
// than the size of the container itself.
for(; first != last; ++first, ++position)
insert(position, *first);
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::iterator
ring_buffer<T, Container, Allocator>::erase(const_iterator position)
{
iterator itPosition(position.mpContainer, position.mContainerIterator); // We merely copy from const_iterator to iterator.
iterator iNext(itPosition);
eastl::copy(++iNext, end(), itPosition);
pop_back();
return itPosition;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::iterator
ring_buffer<T, Container, Allocator>::erase(const_iterator first, const_iterator last)
{
iterator itFirst(first.mpContainer, first.mContainerIterator); // We merely copy from const_iterator to iterator.
iterator itLast(last.mpContainer, last.mContainerIterator);
typename iterator::difference_type d = eastl::distance(itFirst, itLast);
eastl::copy(itLast, end(), itFirst);
while(d--) // To do: improve this implementation.
pop_back();
return itFirst;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reverse_iterator
ring_buffer<T, Container, Allocator>::erase(const_reverse_iterator position)
{
return reverse_iterator(erase((++position).base()));
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::reverse_iterator
ring_buffer<T, Container, Allocator>::erase(const_reverse_iterator first, const_reverse_iterator last)
{
// Version which erases in order from first to last.
// difference_type i(first.base() - last.base());
// while(i--)
// first = erase(first);
// return first;
// Version which erases in order from last to first, but is slightly more efficient:
return reverse_iterator(erase((++last).base(), (++first).base()));
}
template <typename T, typename Container, typename Allocator>
void ring_buffer<T, Container, Allocator>::clear()
{
// Don't clear the container; we use its valid data for our elements.
mBegin = c.begin();
mEnd = c.begin();
mSize = 0;
}
template <typename T, typename Container, typename Allocator>
typename ring_buffer<T, Container, Allocator>::container_type&
ring_buffer<T, Container, Allocator>::get_container()
{
return c;
}
template <typename T, typename Container, typename Allocator>
const typename ring_buffer<T, Container, Allocator>::container_type&
ring_buffer<T, Container, Allocator>::get_container() const
{
return c;
}
template <typename T, typename Container, typename Allocator>
inline bool ring_buffer<T, Container, Allocator>::validate() const
{
if(!c.validate()) // This requires that the container implement the validate function. That pretty much
return false; // means that the container is an EASTL container and not a std STL container.
if(c.empty()) // c must always have a size of at least 1, as even an empty ring_buffer has an unused terminating element.
return false;
if(size() > capacity())
return false;
if((validate_iterator(begin()) & (isf_valid | isf_current)) != (isf_valid | isf_current))
return false;
if((validate_iterator(end()) & (isf_valid | isf_current)) != (isf_valid | isf_current))
return false;
// Verify that the size calculation is consistent.
size_type n = 0;
for(const_iterator i(begin()), iEnd(end()); i != iEnd; ++i)
++n;
if(n != mSize)
return false;
return true;
}
template <typename T, typename Container, typename Allocator>
inline int ring_buffer<T, Container, Allocator>::validate_iterator(const_iterator i) const
{
// To do: Replace this with a more efficient implementation if possible.
for(const_iterator temp = begin(), tempEnd = end(); temp != tempEnd; ++temp)
{
if(temp == i)
return (isf_valid | isf_current | isf_can_dereference);
}
if(i == end())
return (isf_valid | isf_current);
return isf_none;
}
///////////////////////////////////////////////////////////////////////
// global operators
///////////////////////////////////////////////////////////////////////
template <typename T, typename Container, typename Allocator>
inline bool operator==(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
return (a.size() == b.size()) && (a.c == b.c);
}
template <typename T, typename Container, typename Allocator>
inline bool operator<(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
const typename ring_buffer<T, Container, Allocator>::size_type sizeA = a.size();
const typename ring_buffer<T, Container, Allocator>::size_type sizeB = b.size();
if(sizeA == sizeB)
return (a.c < b.c);
return sizeA < sizeB;
}
template <typename T, typename Container, typename Allocator>
inline bool operator!=(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
return !(a == b);
}
template <typename T, typename Container, typename Allocator>
inline bool operator>(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
return (b < a);
}
template <typename T, typename Container, typename Allocator>
inline bool operator<=(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
return !(b < a);
}
template <typename T, typename Container, typename Allocator>
inline bool operator>=(const ring_buffer<T, Container, Allocator>& a, const ring_buffer<T, Container, Allocator>& b)
{
return !(a < b);
}
template <typename T, typename Container, typename Allocator>
inline void swap(ring_buffer<T, Container, Allocator>& a, ring_buffer<T, Container, Allocator>& b)
{
a.swap(b);
}
} // namespace eastl
#endif // Header include guard
|