aboutsummaryrefslogtreecommitdiff
path: root/include/EASTL/vector_map.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/EASTL/vector_map.h')
-rw-r--r--include/EASTL/vector_map.h906
1 files changed, 0 insertions, 906 deletions
diff --git a/include/EASTL/vector_map.h b/include/EASTL/vector_map.h
deleted file mode 100644
index 14dec48..0000000
--- a/include/EASTL/vector_map.h
+++ /dev/null
@@ -1,906 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-// Copyright (c) Electronic Arts Inc. All rights reserved.
-//////////////////////////////////////////////////////////////////////////////
-
-//////////////////////////////////////////////////////////////////////////////
-// This file implements vector_map. It acts much like std::map, except its
-// underlying representation is a random access container such as vector.
-// These containers are sometimes also known as "sorted vectors."
-// vector_maps have an advantage over conventional maps in that their memory
-// is contiguous and node-less. The result is that lookups are faster, more
-// cache friendly (which potentially more so benefits speed), and the container
-// uses less memory. The downside is that inserting new items into the container
-// is slower if they are inserted in random order instead of in sorted order.
-// This tradeoff is well-worth it for many cases. Note that vector_map allows
-// you to use a deque or other random access container which may perform
-// better for you than vector.
-//
-// Note that with vector_set, vector_multiset, vector_map, vector_multimap
-// that the modification of the container potentially invalidates all
-// existing iterators into the container, unlike what happens with conventional
-// sets and maps.
-//////////////////////////////////////////////////////////////////////////////
-
-
-
-#ifndef EASTL_VECTOR_MAP_H
-#define EASTL_VECTOR_MAP_H
-
-
-
-#include <EASTL/internal/config.h>
-#include <EASTL/allocator.h>
-#include <EASTL/functional.h>
-#include <EASTL/vector.h>
-#include <EASTL/utility.h>
-#include <EASTL/algorithm.h>
-#include <EASTL/initializer_list.h>
-#include <stddef.h>
-
-#if defined(EA_PRAGMA_ONCE_SUPPORTED)
- #pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
-#endif
-
-
-
-namespace eastl
-{
-
- /// EASTL_VECTOR_MAP_DEFAULT_NAME
- ///
- /// Defines a default container name in the absence of a user-provided name.
- ///
- #ifndef EASTL_VECTOR_MAP_DEFAULT_NAME
- #define EASTL_VECTOR_MAP_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " vector_map" // Unless the user overrides something, this is "EASTL vector_map".
- #endif
-
-
- /// EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR
- ///
- #ifndef EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR
- #define EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR allocator_type(EASTL_VECTOR_MAP_DEFAULT_NAME)
- #endif
-
-
-
- /// map_value_compare
- ///
- /// Our adapter for the comparison function in the template parameters.
- ///
- template <typename Key, typename Value, typename Compare>
- class map_value_compare : public binary_function<Value, Value, bool>
- {
- public:
- Compare c;
-
- map_value_compare(const Compare& x)
- : c(x) {}
-
- public:
- bool operator()(const Value& a, const Value& b) const
- { return c(a.first, b.first); }
-
- bool operator()(const Value& a, const Key& b) const
- { return c(a.first, b); }
-
- bool operator()(const Key& a, const Value& b) const
- { return c(a, b.first); }
-
- bool operator()(const Key& a, const Key& b) const
- { return c(a, b); }
-
- }; // map_value_compare
-
-
-
- /// vector_map
- ///
- /// Implements a map via a random access container such as a vector.
- ///
- /// Note that with vector_set, vector_multiset, vector_map, vector_multimap
- /// that the modification of the container potentially invalidates all
- /// existing iterators into the container, unlike what happens with conventional
- /// sets and maps.
- ///
- /// Note that the erase functions return iterator and not void. This allows for
- /// more efficient use of the container and is consistent with the C++ language
- /// defect report #130 (DR 130)
- ///
- /// Note that we set the value_type to be pair<Key, T> and not pair<const Key, T>.
- /// This means that the underlying container (e.g vector) is a container of pair<Key, T>.
- /// Our vector and deque implementations are optimized to assign values in-place and
- /// using a vector of pair<const Key, T> (note the const) would make it hard to use
- /// our existing vector implementation without a lot of headaches. As a result,
- /// at least for the time being we do away with the const. This means that the
- /// insertion type varies between map and vector_map in that the latter doesn't take
- /// const. This also means that a certain amount of automatic safety provided by
- /// the implementation is lost, as the compiler will let the wayward user modify
- /// a key and thus make the container no longer ordered behind its back.
- ///
- template <typename Key, typename T, typename Compare = eastl::less<Key>,
- typename Allocator = EASTLAllocatorType,
- typename RandomAccessContainer = eastl::vector<eastl::pair<Key, T>, Allocator> >
- class vector_map : public RandomAccessContainer
- {
- public:
- typedef RandomAccessContainer base_type;
- typedef vector_map<Key, T, Compare, Allocator, RandomAccessContainer> this_type;
- typedef Allocator allocator_type;
- typedef Key key_type;
- typedef T mapped_type;
- typedef eastl::pair<Key, T> value_type;
- typedef Compare key_compare;
- typedef map_value_compare<Key, value_type, Compare> value_compare;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
- typedef typename base_type::size_type size_type;
- typedef typename base_type::difference_type difference_type;
- typedef typename base_type::iterator iterator;
- typedef typename base_type::const_iterator const_iterator;
- typedef typename base_type::reverse_iterator reverse_iterator;
- typedef typename base_type::const_reverse_iterator const_reverse_iterator;
- typedef eastl::pair<iterator, bool> insert_return_type;
-
- using base_type::begin;
- using base_type::end;
- using base_type::get_allocator;
-
- protected:
- value_compare mValueCompare; // To do: Make this variable go away via the zero base size optimization.
-
- public:
- // We have an empty ctor and a ctor that takes an allocator instead of one for both
- // because this way our RandomAccessContainer wouldn't be required to have an constructor
- // that takes allocator_type.
- vector_map();
- explicit vector_map(const allocator_type& allocator);
- explicit vector_map(const key_compare& comp, const allocator_type& allocator = EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR);
- vector_map(const this_type& x);
- vector_map(this_type&& x);
- vector_map(this_type&& x, const allocator_type& allocator);
- vector_map(std::initializer_list<value_type> ilist, const key_compare& compare = key_compare(), const allocator_type& allocator = EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR);
-
- template <typename InputIterator>
- vector_map(InputIterator first, InputIterator last); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.
-
- template <typename InputIterator>
- vector_map(InputIterator first, InputIterator last, const key_compare& compare); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.
-
- this_type& operator=(const this_type& x);
- this_type& operator=(std::initializer_list<value_type> ilist);
- this_type& operator=(this_type&& x);
-
- void swap(this_type& x);
-
- const key_compare& key_comp() const;
- key_compare& key_comp();
-
- const value_compare& value_comp() const;
- value_compare& value_comp();
-
- // Inherited from base class:
- //
- // allocator_type& get_allocator();
- // void set_allocator(const allocator_type& allocator);
- //
- // iterator begin();
- // const_iterator begin() const;
- // const_iterator cbegin() const;
- //
- // iterator end();
- // const_iterator end() const;
- // const_iterator cend() const;
- //
- // reverse_iterator rbegin();
- // const_reverse_iterator rbegin() const;
- // const_reverse_iterator crbegin() const;
- //
- // reverse_iterator rend();
- // const_reverse_iterator rend() const;
- // const_reverse_iterator crend() const;
- //
- // size_type size() const;
- // bool empty() const;
- // void clear();
-
- template <class... Args>
- eastl::pair<iterator, bool> emplace(Args&&... args);
-
- template <class... Args>
- iterator emplace_hint(const_iterator position, Args&&... args);
-
- template <typename P, typename = eastl::enable_if_t<eastl::is_constructible_v<value_type, P&&>>>
- pair<iterator, bool> insert(P&& otherValue);
-
- eastl::pair<iterator, bool> insert(const value_type& value);
- pair<iterator, bool> insert(const key_type& otherValue);
- pair<iterator, bool> insert(key_type&& otherValue);
- iterator insert(const_iterator position, const value_type& value);
- iterator insert(const_iterator position, value_type&& value);
- void insert(std::initializer_list<value_type> ilist);
-
- template <typename InputIterator>
- void insert(InputIterator first, InputIterator last);
-
- iterator erase(const_iterator position);
- iterator erase(const_iterator first, const_iterator last);
- size_type erase(const key_type& k);
- reverse_iterator erase(const_reverse_iterator position);
- reverse_iterator erase(const_reverse_iterator first, const_reverse_iterator last);
-
- iterator find(const key_type& k);
- const_iterator find(const key_type& k) const;
-
- template <typename U, typename BinaryPredicate>
- iterator find_as(const U& u, BinaryPredicate predicate);
-
- template <typename U, typename BinaryPredicate>
- const_iterator find_as(const U& u, BinaryPredicate predicate) const;
-
- size_type count(const key_type& k) const;
-
- iterator lower_bound(const key_type& k);
- const_iterator lower_bound(const key_type& k) const;
-
- iterator upper_bound(const key_type& k);
- const_iterator upper_bound(const key_type& k) const;
-
- eastl::pair<iterator, iterator> equal_range(const key_type& k);
- eastl::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
-
- template <typename U, typename BinaryPredicate>
- eastl::pair<iterator, iterator> equal_range(const U& u, BinaryPredicate predicate);
-
- template <typename U, typename BinaryPredicate>
- eastl::pair<const_iterator, const_iterator> equal_range(const U& u, BinaryPredicate) const;
-
- // Note: vector_map operator[] returns a reference to the mapped_type, same as map does.
- // But there's an important difference: This reference can be invalidated by -any- changes
- // to the vector_map that cause it to change capacity. This is unlike map, with which
- // mapped_type references are invalidated only if that mapped_type element itself is removed
- // from the map. This is because vector is array-based and map is node-based. As a result
- // the following code that is safe for map is unsafe for vector_map for the case that
- // the vMap[100] doesn't already exist in the vector_map:
- // vMap[100] = vMap[0]
- mapped_type& operator[](const key_type& k);
- mapped_type& operator[](key_type&& k);
-
- // Functions which are disallowed due to being unsafe.
- void push_back(const value_type& value) = delete;
- reference push_back() = delete;
- void* push_back_uninitialized() = delete;
- template <class... Args>
- reference emplace_back(Args&&...) = delete;
-
- // NOTE(rparolin): It is undefined behaviour if user code fails to ensure the container
- // invariants are respected by performing an explicit call to 'sort' before any other
- // operations on the container are performed that do not clear the elements.
- //
- // 'push_back_unsorted' and 'emplace_back_unsorted' do not satisfy container invariants
- // for being sorted. We provide these overloads explicitly labelled as '_unsorted' as an
- // optimization opportunity when batch inserting elements so users can defer the cost of
- // sorting the container once when all elements are contained. This was done to clarify
- // the intent of code by leaving a trace that a manual call to sort is required.
- //
- template <typename... Args> decltype(auto) push_back_unsorted(Args&&... args)
- { return base_type::push_back(eastl::forward<Args>(args)...); }
- template <typename... Args> decltype(auto) emplace_back_unsorted(Args&&... args)
- { return base_type::emplace_back(eastl::forward<Args>(args)...); }
-
- }; // vector_map
-
-
-
-
-
- ///////////////////////////////////////////////////////////////////////
- // vector_map
- ///////////////////////////////////////////////////////////////////////
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map()
- : base_type(), mValueCompare(C())
- {
- get_allocator().set_name(EASTL_VECTOR_MAP_DEFAULT_NAME);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(const allocator_type& allocator)
- : base_type(allocator), mValueCompare(C())
- {
- // Empty
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(const key_compare& comp, const allocator_type& allocator)
- : base_type(allocator), mValueCompare(comp)
- {
- // Empty
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(const this_type& x)
- : base_type(x), mValueCompare(x.mValueCompare)
- {
- // Empty
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(this_type&& x)
- : base_type(eastl::move(x)), mValueCompare(x.mValueCompare)
- {
- // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one.
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(this_type&& x, const allocator_type& allocator)
- : base_type(eastl::move(x), allocator), mValueCompare(x.mValueCompare)
- {
- // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one.
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>::vector_map(std::initializer_list<value_type> ilist, const key_compare& compare, const allocator_type& allocator)
- : base_type(allocator), mValueCompare(compare)
- {
- insert(ilist.begin(), ilist.end());
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename InputIterator>
- inline vector_map<K, T, C, A, RAC>::vector_map(InputIterator first, InputIterator last)
- : base_type(EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR), mValueCompare(key_compare())
- {
- insert(first, last);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename InputIterator>
- inline vector_map<K, T, C, A, RAC>::vector_map(InputIterator first, InputIterator last, const key_compare& compare)
- : base_type(EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR), mValueCompare(compare)
- {
- insert(first, last);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>&
- vector_map<K, T, C, A, RAC>::operator=(const this_type& x)
- {
- base_type::operator=(x);
- mValueCompare = value_compare(x.mValueCompare);
- return *this;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>&
- vector_map<K, T, C, A, RAC>::operator=(this_type&& x)
- {
- base_type::operator=(eastl::move(x));
- eastl::swap(mValueCompare, x.mValueCompare);
- return *this;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline vector_map<K, T, C, A, RAC>&
- vector_map<K, T, C, A, RAC>::operator=(std::initializer_list<value_type> ilist)
- {
- base_type::clear();
- insert(ilist.begin(), ilist.end());
- return *this;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline void vector_map<K, T, C, A, RAC>::swap(this_type& x)
- {
- base_type::swap(x);
- eastl::swap(mValueCompare, x.mValueCompare);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline const typename vector_map<K, T, C, A, RAC>::key_compare&
- vector_map<K, T, C, A, RAC>::key_comp() const
- {
- return mValueCompare.c;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::key_compare&
- vector_map<K, T, C, A, RAC>::key_comp()
- {
- return mValueCompare.c;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline const typename vector_map<K, T, C, A, RAC>::value_compare&
- vector_map<K, T, C, A, RAC>::value_comp() const
- {
- return mValueCompare;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::value_compare&
- vector_map<K, T, C, A, RAC>::value_comp()
- {
- return mValueCompare;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <class... Args>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
- vector_map<K, T, C, A, RAC>::emplace(Args&&... args)
- {
- #if EASTL_USE_FORWARD_WORKAROUND
- auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code.
- #else
- value_type value(eastl::forward<Args>(args)...);
- #endif
- return insert(eastl::move(value));
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <class... Args>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::emplace_hint(const_iterator position, Args&&... args)
- {
- #if EASTL_USE_FORWARD_WORKAROUND
- auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code.
- #else
- value_type value(eastl::forward<Args>(args)...);
- #endif
-
- return insert(position, eastl::move(value));
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
- vector_map<K, T, C, A, RAC>::insert(const value_type& value)
- {
- const iterator itLB(lower_bound(value.first));
-
- if((itLB != end()) && !mValueCompare(value, *itLB))
- return eastl::pair<iterator, bool>(itLB, false);
-
- return eastl::pair<iterator, bool>(base_type::insert(itLB, value), true);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename P, typename>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
- vector_map<K, T, C, A, RAC>::insert(P&& otherValue)
- {
- value_type value(eastl::forward<P>(otherValue));
- const iterator itLB(lower_bound(value.first));
-
- if((itLB != end()) && !mValueCompare(value, *itLB))
- return eastl::pair<iterator, bool>(itLB, false);
-
- return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
- vector_map<K, T, C, A, RAC>::insert(const key_type& otherValue)
- {
- value_type value(eastl::pair_first_construct, otherValue);
- const iterator itLB(lower_bound(value.first));
-
- if((itLB != end()) && !mValueCompare(value, *itLB))
- return eastl::pair<iterator, bool>(itLB, false);
-
- return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
- }
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
- vector_map<K, T, C, A, RAC>::insert(key_type&& otherValue)
- {
- value_type value(eastl::pair_first_construct, eastl::move(otherValue));
- const iterator itLB(lower_bound(value.first));
-
- if((itLB != end()) && !mValueCompare(value, *itLB))
- return eastl::pair<iterator, bool>(itLB, false);
-
- return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::insert(const_iterator position, const value_type& value)
- {
- // We assume that the user knows what he is doing and has supplied us with
- // a position that is right where value should be inserted (put in front of).
- // We do a test to see if the position is correct. If so then we insert,
- // if not then we ignore the input position.
-
- if((position == end()) || mValueCompare(value, *position)) // If the element at position is greater than value...
- {
- if((position == begin()) || mValueCompare(*(position - 1), value)) // If the element before position is less than value...
- return base_type::insert(position, value);
- }
-
- // In this case we either have an incorrect position or value is already present.
- // We fall back to the regular insert function. An optimization would be to detect
- // that the element is already present, but that's only useful if the user supplied
- // a good position but a present element.
- const eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool> result = insert(value);
-
- return result.first;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::insert(const_iterator position, value_type&& value)
- {
- if((position == end()) || mValueCompare(value, *position)) // If the element at position is greater than value...
- {
- if((position == begin()) || mValueCompare(*(position - 1), value)) // If the element before position is less than value...
- return base_type::insert(position, eastl::move(value));
- }
-
- const eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool> result = insert(eastl::move(value));
-
- return result.first;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline void vector_map<K, T, C, A, RAC>::insert(std::initializer_list<value_type> ilist)
- {
- insert(ilist.begin(), ilist.end());
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename InputIterator>
- inline void vector_map<K, T, C, A, RAC>::insert(InputIterator first, InputIterator last)
- {
- // To consider: Improve the speed of this by getting the length of the
- // input range and resizing our container to that size
- // before doing the insertions. We can't use reserve
- // because we don't know if we are using a vector or not.
- // Alternatively, force the user to do the reservation.
- // To consider: When inserting values that come from a container
- // like this container, use the property that they are
- // known to be sorted and speed up the inserts here.
- for(; first != last; ++first)
- insert(*first);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::erase(const_iterator position)
- {
- // Note that we return iterator and not void. This allows for more efficient use of
- // the container and is consistent with the C++ language defect report #130 (DR 130)
- return base_type::erase(position);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::erase(const_iterator first, const_iterator last)
- {
- return base_type::erase(first, last);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::size_type
- vector_map<K, T, C, A, RAC>::erase(const key_type& k)
- {
- const iterator it(find(k));
-
- if(it != end()) // If it exists...
- {
- erase(it);
- return 1;
- }
- return 0;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::reverse_iterator
- vector_map<K, T, C, A, RAC>::erase(const_reverse_iterator position)
- {
- return reverse_iterator(base_type::erase((++position).base()));
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::reverse_iterator
- vector_map<K, T, C, A, RAC>::erase(const_reverse_iterator first, const_reverse_iterator last)
- {
- return reverse_iterator(base_type::erase((++last).base(), (++first).base()));
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::find(const key_type& k)
- {
- const eastl::pair<iterator, iterator> pairIts(equal_range(k));
- return (pairIts.first != pairIts.second) ? pairIts.first : end();
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::const_iterator
- vector_map<K, T, C, A, RAC>::find(const key_type& k) const
- {
- const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(k));
- return (pairIts.first != pairIts.second) ? pairIts.first : end();
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename U, typename BinaryPredicate>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate)
- {
- const eastl::pair<iterator, iterator> pairIts(equal_range(u, predicate));
- return (pairIts.first != pairIts.second) ? pairIts.first : end();
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename U, typename BinaryPredicate>
- inline typename vector_map<K, T, C, A, RAC>::const_iterator
- vector_map<K, T, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate) const
- {
- const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(u, predicate));
- return (pairIts.first != pairIts.second) ? pairIts.first : end();
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::size_type
- vector_map<K, T, C, A, RAC>::count(const key_type& k) const
- {
- const const_iterator it(find(k));
- return (it != end()) ? (size_type)1 : (size_type)0;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::lower_bound(const key_type& k)
- {
- return eastl::lower_bound(begin(), end(), k, mValueCompare);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::const_iterator
- vector_map<K, T, C, A, RAC>::lower_bound(const key_type& k) const
- {
- return eastl::lower_bound(begin(), end(), k, mValueCompare);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::iterator
- vector_map<K, T, C, A, RAC>::upper_bound(const key_type& k)
- {
- return eastl::upper_bound(begin(), end(), k, mValueCompare);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::const_iterator
- vector_map<K, T, C, A, RAC>::upper_bound(const key_type& k) const
- {
- return eastl::upper_bound(begin(), end(), k, mValueCompare);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, typename vector_map<K, T, C, A, RAC>::iterator>
- vector_map<K, T, C, A, RAC>::equal_range(const key_type& k)
- {
- // The resulting range will either be empty or have one element,
- // so instead of doing two tree searches (one for lower_bound and
- // one for upper_bound), we do just lower_bound and see if the
- // result is a range of size zero or one.
- const iterator itLower(lower_bound(k));
-
- if((itLower == end()) || mValueCompare(k, *itLower)) // If at the end or if (k is < itLower)...
- return eastl::pair<iterator, iterator>(itLower, itLower);
-
- iterator itUpper(itLower);
- return eastl::pair<iterator, iterator>(itLower, ++itUpper);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::const_iterator, typename vector_map<K, T, C, A, RAC>::const_iterator>
- vector_map<K, T, C, A, RAC>::equal_range(const key_type& k) const
- {
- // The resulting range will either be empty or have one element,
- // so instead of doing two tree searches (one for lower_bound and
- // one for upper_bound), we do just lower_bound and see if the
- // result is a range of size zero or one.
- const const_iterator itLower(lower_bound(k));
-
- if((itLower == end()) || mValueCompare(k, *itLower)) // If at the end or if (k is < itLower)...
- return eastl::pair<const_iterator, const_iterator>(itLower, itLower);
-
- const_iterator itUpper(itLower);
- return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper);
- }
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename U, typename BinaryPredicate>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, typename vector_map<K, T, C, A, RAC>::iterator>
- vector_map<K, T, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate)
- {
- // The resulting range will either be empty or have one element,
- // so instead of doing two tree searches (one for lower_bound and
- // one for upper_bound), we do just lower_bound and see if the
- // result is a range of size zero or one.
- map_value_compare<U, value_type, BinaryPredicate> predicate_cmp(predicate);
-
- const iterator itLower(eastl::lower_bound(begin(), end(), u, predicate_cmp));
-
- if((itLower == end()) || predicate_cmp(u, *itLower)) // If at the end or if (k is < itLower)...
- return eastl::pair<iterator, iterator>(itLower, itLower);
-
- iterator itUpper(itLower);
- return eastl::pair<iterator, iterator>(itLower, ++itUpper);
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- template <typename U, typename BinaryPredicate>
- inline eastl::pair<typename vector_map<K, T, C, A, RAC>::const_iterator, typename vector_map<K, T, C, A, RAC>::const_iterator>
- vector_map<K, T, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate) const
- {
- // The resulting range will either be empty or have one element,
- // so instead of doing two tree searches (one for lower_bound and
- // one for upper_bound), we do just lower_bound and see if the
- // result is a range of size zero or one.
- map_value_compare<U, value_type, BinaryPredicate> predicate_cmp(predicate);
-
- const const_iterator itLower(eastl::lower_bound(begin(), end(), u, predicate_cmp));
-
- if((itLower == end()) || predicate_cmp(u, *itLower)) // If at the end or if (k is < itLower)...
- return eastl::pair<const_iterator, const_iterator>(itLower, itLower);
-
- const_iterator itUpper(itLower);
- return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper);
- }
-
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::mapped_type&
- vector_map<K, T, C, A, RAC>::operator[](const key_type& k)
- {
- iterator itLB(lower_bound(k));
-
- if((itLB == end()) || key_comp()(k, (*itLB).first))
- itLB = insert(itLB, value_type(k, mapped_type()));
- return (*itLB).second;
- }
-
-
- template <typename K, typename T, typename C, typename A, typename RAC>
- inline typename vector_map<K, T, C, A, RAC>::mapped_type&
- vector_map<K, T, C, A, RAC>::operator[](key_type&& k)
- {
- iterator itLB(lower_bound(k));
-
- if((itLB == end()) || key_comp()(k, (*itLB).first))
- itLB = insert(itLB, value_type(eastl::move(k), mapped_type()));
- return (*itLB).second;
- }
-
-
-
- ///////////////////////////////////////////////////////////////////////////
- // global operators
- ///////////////////////////////////////////////////////////////////////////
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator==(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return (a.size() == b.size()) && eastl::equal(b.begin(), b.end(), a.begin());
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator<(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end(), a.value_comp());
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator!=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return !(a == b);
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator>(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return b < a;
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator<=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return !(b < a);
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline bool operator>=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- return !(a < b);
- }
-
-
- template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
- inline void swap(vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
- vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
- {
- a.swap(b);
- }
-
-
-} // namespace eastl
-
-
-#endif // Header include guard
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-