diff options
Diffstat (limited to 'EASTL/include/EASTL/vector_set.h')
-rw-r--r-- | EASTL/include/EASTL/vector_set.h | 793 |
1 files changed, 793 insertions, 0 deletions
diff --git a/EASTL/include/EASTL/vector_set.h b/EASTL/include/EASTL/vector_set.h new file mode 100644 index 0000000..c03ec55 --- /dev/null +++ b/EASTL/include/EASTL/vector_set.h @@ -0,0 +1,793 @@ +/////////////////////////////////////////////////////////////////////////////// +// Copyright (c) Electronic Arts Inc. All rights reserved. +////////////////////////////////////////////////////////////////////////////// + +////////////////////////////////////////////////////////////////////////////// +// This file implements vector_set. It acts much like std::set, except its +// underlying representation is a random access container such as vector. +// These containers are sometimes also known as "sorted vectors." +// vector_sets have an advantage over conventional sets in that their memory +// is contiguous and node-less. The result is that lookups are faster, more +// cache friendly (which potentially more so benefits speed), and the container +// uses less memory. The downside is that inserting new items into the container +// is slower if they are inserted in random order instead of in sorted order. +// This tradeoff is well-worth it for many cases. Note that vector_set allows +// you to use a deque or other random access container which may perform +// better for you than vector. +// +// Note that with vector_set, vector_multiset, vector_map, vector_multimap +// that the modification of the container potentially invalidates all +// existing iterators into the container, unlike what happens with conventional +// sets and maps. +////////////////////////////////////////////////////////////////////////////// + + +#ifndef EASTL_VECTOR_SET_H +#define EASTL_VECTOR_SET_H + + + +#include <EASTL/internal/config.h> +#include <EASTL/allocator.h> +#include <EASTL/functional.h> +#include <EASTL/vector.h> +#include <EASTL/utility.h> +#include <EASTL/algorithm.h> +#include <EASTL/initializer_list.h> +#include <stddef.h> + +#if defined(EA_PRAGMA_ONCE_SUPPORTED) + #pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result. +#endif + + + +namespace eastl +{ + + /// EASTL_VECTOR_SET_DEFAULT_NAME + /// + /// Defines a default container name in the absence of a user-provided name. + /// + #ifndef EASTL_VECTOR_SET_DEFAULT_NAME + #define EASTL_VECTOR_SET_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " vector_set" // Unless the user overrides something, this is "EASTL vector_set". + #endif + + + /// EASTL_VECTOR_SET_DEFAULT_ALLOCATOR + /// + #ifndef EASTL_VECTOR_SET_DEFAULT_ALLOCATOR + #define EASTL_VECTOR_SET_DEFAULT_ALLOCATOR allocator_type(EASTL_VECTOR_SET_DEFAULT_NAME) + #endif + + + + /// vector_set + /// + /// Implements a set via a random access container such as a vector. + /// This container is also known as a sorted_vector. We choose to call it + /// vector_set, as that is a more consistent universally applicable name + /// for it in this library. + /// + /// Note that with vector_set, vector_multiset, vector_map, vector_multimap + /// that the modification of the container potentially invalidates all + /// existing iterators into the container, unlike what happens with conventional + /// sets and maps. + /// + /// To consider: std::set has the limitation that values in the set cannot + /// be modified, with the idea that modifying them would change their sort + /// order. We have the opportunity to make it so that values can be modified + /// via changing iterators to be non-const, with the downside being that + /// the container can get screwed up if the user screws up. Alternatively, + /// we can do what std STL does and require the user to make their stored + /// classes use 'mutable' as needed. See the C++ standard defect report + /// #103 (DR 103) for a discussion of this. + /// + /// Note that the erase functions return iterator and not void. This allows for + /// more efficient use of the container and is consistent with the C++ language + /// defect report #130 (DR 130) + /// + template <typename Key, typename Compare = eastl::less<Key>, typename Allocator = EASTLAllocatorType, + typename RandomAccessContainer = eastl::vector<Key, Allocator> > + class vector_set : public RandomAccessContainer + { + public: + typedef RandomAccessContainer base_type; + typedef vector_set<Key, Compare, Allocator, RandomAccessContainer> this_type; + typedef Allocator allocator_type; + typedef Key key_type; + typedef Key value_type; + typedef Compare key_compare; + typedef Compare value_compare; + typedef value_type* pointer; + typedef const value_type* const_pointer; + typedef value_type& reference; + typedef const value_type& const_reference; + typedef typename base_type::size_type size_type; + typedef typename base_type::difference_type difference_type; + typedef typename base_type::iterator iterator; // **Currently typedefing from iterator instead of const_iterator due to const issues **: Note that we typedef from const_iterator. This is by design, as sets are sorted and values cannot be modified. To consider: allow values to be modified and thus risk changing their sort values. + typedef typename base_type::const_iterator const_iterator; + typedef typename base_type::reverse_iterator reverse_iterator; // See notes directly above regarding const_iterator. + typedef typename base_type::const_reverse_iterator const_reverse_iterator; + typedef eastl::pair<iterator, bool> insert_return_type; + + using base_type::begin; + using base_type::end; + using base_type::get_allocator; + + protected: + value_compare mCompare; // To consider: Declare this instead as: 'key_compare mKeyCompare' + + public: + // We have an empty ctor and a ctor that takes an allocator instead of one for both + // because this way our RandomAccessContainer wouldn't be required to have an constructor + // that takes allocator_type. + vector_set(); + explicit vector_set(const allocator_type& allocator); + explicit vector_set(const key_compare& compare, const allocator_type& allocator = EASTL_VECTOR_SET_DEFAULT_ALLOCATOR); + vector_set(const this_type& x); + vector_set(this_type&& x); + vector_set(this_type&& x, const allocator_type& allocator); + vector_set(std::initializer_list<value_type> ilist, const key_compare& compare = key_compare(), const allocator_type& allocator = EASTL_VECTOR_SET_DEFAULT_ALLOCATOR); + + template <typename InputIterator> + vector_set(InputIterator first, InputIterator last); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg. + + template <typename InputIterator> + vector_set(InputIterator first, InputIterator last, const key_compare& compare); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg. + + this_type& operator=(const this_type& x); + this_type& operator=(std::initializer_list<value_type> ilist); + this_type& operator=(this_type&& x); + + void swap(this_type& x); + + const key_compare& key_comp() const; + key_compare& key_comp(); + + const value_compare& value_comp() const; + value_compare& value_comp(); + + // Inherited from base class: + // + // allocator_type& get_allocator(); + // void set_allocator(const allocator_type& allocator); + // + // iterator begin(); + // const_iterator begin() const; + // const_iterator cbegin() const; + // + // iterator end(); + // const_iterator end() const; + // const_iterator cend() const; + // + // reverse_iterator rbegin(); + // const_reverse_iterator rbegin() const; + // const_reverse_iterator crbegin() const; + // + // reverse_iterator rend(); + // const_reverse_iterator rend() const; + // const_reverse_iterator crend() const; + // + // size_type size() const; + // bool empty() const; + // void clear(); + + template <class... Args> + eastl::pair<iterator, bool> emplace(Args&&... args); + + template <class... Args> + iterator emplace_hint(const_iterator position, Args&&... args); + + eastl::pair<iterator, bool> insert(const value_type& value); + template <typename P> + pair<iterator, bool> insert(P&& otherValue); + + iterator insert(const_iterator position, const value_type& value); + iterator insert(const_iterator position, value_type&& value); + + void insert(std::initializer_list<value_type> ilist); + + template <typename InputIterator> + void insert(InputIterator first, InputIterator last); + + iterator erase(const_iterator position); + iterator erase(const_iterator first, const_iterator last); + size_type erase(const key_type& k); + + reverse_iterator erase(const_reverse_iterator position); + reverse_iterator erase(const_reverse_iterator first, const_reverse_iterator last); + + iterator find(const key_type& k); + const_iterator find(const key_type& k) const; + + template <typename U, typename BinaryPredicate> + iterator find_as(const U& u, BinaryPredicate predicate); + + template <typename U, typename BinaryPredicate> + const_iterator find_as(const U& u, BinaryPredicate predicate) const; + + size_type count(const key_type& k) const; + + iterator lower_bound(const key_type& k); + const_iterator lower_bound(const key_type& k) const; + + iterator upper_bound(const key_type& k); + const_iterator upper_bound(const key_type& k) const; + + eastl::pair<iterator, iterator> equal_range(const key_type& k); + eastl::pair<const_iterator, const_iterator> equal_range(const key_type& k) const; + + template <typename U, typename BinaryPredicate> + eastl::pair<iterator, iterator> equal_range(const U& u, BinaryPredicate predicate); + + template <typename U, typename BinaryPredicate> + eastl::pair<const_iterator, const_iterator> equal_range(const U& u, BinaryPredicate) const; + + // Functions which are disallowed due to being unsafe. + void push_back(const value_type& value) = delete; + reference push_back() = delete; + void* push_back_uninitialized() = delete; + template <class... Args> + reference emplace_back(Args&&...) = delete; + + // NOTE(rparolin): It is undefined behaviour if user code fails to ensure the container + // invariants are respected by performing an explicit call to 'sort' before any other + // operations on the container are performed that do not clear the elements. + // + // 'push_back_unsorted' and 'emplace_back_unsorted' do not satisfy container invariants + // for being sorted. We provide these overloads explicitly labelled as '_unsorted' as an + // optimization opportunity when batch inserting elements so users can defer the cost of + // sorting the container once when all elements are contained. This was done to clarify + // the intent of code by leaving a trace that a manual call to sort is required. + // + template <typename... Args> decltype(auto) push_back_unsorted(Args&&... args) + { return base_type::push_back(eastl::forward<Args>(args)...); } + template <typename... Args> decltype(auto) emplace_back_unsorted(Args&&... args) + { return base_type::emplace_back(eastl::forward<Args>(args)...); } + + }; // vector_set + + + + + + /////////////////////////////////////////////////////////////////////// + // vector_set + /////////////////////////////////////////////////////////////////////// + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set() + : base_type(), mCompare(C()) + { + get_allocator().set_name(EASTL_VECTOR_SET_DEFAULT_NAME); + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(const allocator_type& allocator) + : base_type(allocator), mCompare(C()) + { + // Empty + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(const key_compare& compare, const allocator_type& allocator) + : base_type(allocator), mCompare(compare) + { + // Empty + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(const this_type& x) + : base_type(x), mCompare(x.mCompare) + { + // Empty + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(this_type&& x) + : base_type(eastl::move(x)), mCompare(x.mCompare) + { + // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one. + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(this_type&& x, const allocator_type& allocator) + : base_type(eastl::move(x), allocator), mCompare(x.mCompare) + { + // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one. + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>::vector_set(std::initializer_list<value_type> ilist, const key_compare& compare, const allocator_type& allocator) + : base_type(allocator), mCompare(compare) + { + insert(ilist.begin(), ilist.end()); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename InputIterator> + inline vector_set<K, C, A, RAC>::vector_set(InputIterator first, InputIterator last) + : base_type(EASTL_VECTOR_SET_DEFAULT_ALLOCATOR), mCompare(key_compare()) + { + insert(first, last); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename InputIterator> + inline vector_set<K, C, A, RAC>::vector_set(InputIterator first, InputIterator last, const key_compare& compare) + : base_type(EASTL_VECTOR_SET_DEFAULT_ALLOCATOR), mCompare(compare) + { + insert(first, last); + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>& + vector_set<K, C, A, RAC>::operator=(const this_type& x) + { + base_type::operator=(x); + mCompare = value_compare(x.mCompare); + return *this; + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>& + vector_set<K, C, A, RAC>::operator=(this_type&& x) + { + base_type::operator=(eastl::move(x)); + eastl::swap(mCompare, x.mCompare); + return *this; + } + + + template <typename K, typename C, typename A, typename RAC> + inline vector_set<K, C, A, RAC>& + vector_set<K, C, A, RAC>::operator=(std::initializer_list<value_type> ilist) + { + base_type::clear(); + insert(ilist.begin(), ilist.end()); + return *this; + } + + + template <typename K, typename C, typename A, typename RAC> + inline void vector_set<K, C, A, RAC>::swap(this_type& x) + { + base_type::swap(x); + eastl::swap(mCompare, x.mCompare); + } + + + template <typename K, typename C, typename A, typename RAC> + inline const typename vector_set<K, C, A, RAC>::key_compare& + vector_set<K, C, A, RAC>::key_comp() const + { + return mCompare; + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::key_compare& + vector_set<K, C, A, RAC>::key_comp() + { + return mCompare; + } + + + template <typename K, typename C, typename A, typename RAC> + inline const typename vector_set<K, C, A, RAC>::value_compare& + vector_set<K, C, A, RAC>::value_comp() const + { + return mCompare; + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::value_compare& + vector_set<K, C, A, RAC>::value_comp() + { + return mCompare; + } + + + template <typename K, typename C, typename A, typename RAC> + template <class... Args> + inline eastl::pair<typename vector_set<K, C, A, RAC>::iterator, bool> + vector_set<K, C, A, RAC>::emplace(Args&&... args) + { + #if EASTL_USE_FORWARD_WORKAROUND + auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code. + #else + value_type value(eastl::forward<Args>(args)...); + #endif + + return insert(eastl::move(value)); + } + + template <typename K, typename C, typename A, typename RAC> + template <class... Args> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::emplace_hint(const_iterator position, Args&&... args) + { + #if EASTL_USE_FORWARD_WORKAROUND + auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code. + #else + value_type value(eastl::forward<Args>(args)...); + #endif + + return insert(position, eastl::move(value)); + } + + + template <typename K, typename C, typename A, typename RAC> + inline eastl::pair<typename vector_set<K, C, A, RAC>::iterator, bool> + vector_set<K, C, A, RAC>::insert(const value_type& value) + { + const iterator itLB(lower_bound(value)); + + if((itLB != end()) && !mCompare(value, *itLB)) + return eastl::pair<iterator, bool>(itLB, false); + return eastl::pair<iterator, bool>(base_type::insert(itLB, value), true); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename P> + inline eastl::pair<typename vector_set<K, C, A, RAC>::iterator, bool> + vector_set<K, C, A, RAC>::insert(P&& otherValue) + { + value_type value(eastl::forward<P>(otherValue)); + const iterator itLB(lower_bound(value)); + + if((itLB != end()) && !mCompare(value, *itLB)) + return eastl::pair<iterator, bool>(itLB, false); + return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::insert(const_iterator position, const value_type& value) + { + // We assume that the user knows what he is doing and has supplied us with + // a position that is right where value should be inserted (put in front of). + // We do a test to see if the position is correct. If so then we insert, + // if not then we ignore the input position. + + if((position == end()) || mCompare(value, *position)) // If the element at position is greater than value... + { + if((position == begin()) || mCompare(*(position - 1), value)) // If the element before position is less than value... + return base_type::insert(position, value); + } + + // In this case we either have an incorrect position or value is already present. + // We fall back to the regular insert function. An optimization would be to detect + // that the element is already present, but that's only useful if the user supplied + // a good position but a present element. + const eastl::pair<iterator, bool> result = insert(value); + + return result.first; + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::insert(const_iterator position, value_type&& value) + { + // See the other version of this function for documentation. + if((position == end()) || mCompare(value, *position)) // If the element at position is greater than value... + { + if((position == begin()) || mCompare(*(position - 1), value)) // If the element before position is less than value... + return base_type::insert(position, eastl::move(value)); + } + + const eastl::pair<iterator, bool> result = insert(eastl::move(value)); + + return result.first; + } + + + template <typename K, typename C, typename A, typename RAC> + inline void vector_set<K, C, A, RAC>::insert(std::initializer_list<value_type> ilist) + { + insert(ilist.begin(), ilist.end()); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename InputIterator> + inline void vector_set<K, C, A, RAC>::insert(InputIterator first, InputIterator last) + { + // To consider: Improve the speed of this by getting the length of the + // input range and resizing our container to that size + // before doing the insertions. We can't use reserve + // because we don't know if we are using a vector or not. + // Alternatively, force the user to do the reservation. + // To consider: When inserting values that come from a container + // like this container, use the property that they are + // known to be sorted and speed up the inserts here. + for(; first != last; ++first) + insert(*first); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::erase(const_iterator position) + { + // Note that we return iterator and not void. This allows for more efficient use of + // the container and is consistent with the C++ language defect report #130 (DR 130) + return base_type::erase(position); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::erase(const_iterator first, const_iterator last) + { + return base_type::erase(first, last); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::size_type + vector_set<K, C, A, RAC>::erase(const key_type& k) + { + const iterator it(find(k)); + + if(it != end()) // If it exists... + { + erase(it); + return 1; + } + return 0; + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::reverse_iterator + vector_set<K, C, A, RAC>::erase(const_reverse_iterator position) + { + return reverse_iterator(base_type::erase((++position).base())); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::reverse_iterator + vector_set<K, C, A, RAC>::erase(const_reverse_iterator first, const_reverse_iterator last) + { + return reverse_iterator(base_type::erase((++last).base(), (++first).base())); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::find(const key_type& k) + { + const eastl::pair<iterator, iterator> pairIts(equal_range(k)); + return (pairIts.first != pairIts.second) ? pairIts.first : end(); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::const_iterator + vector_set<K, C, A, RAC>::find(const key_type& k) const + { + const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(k)); + return (pairIts.first != pairIts.second) ? pairIts.first : end(); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename U, typename BinaryPredicate> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate) + { + const eastl::pair<iterator, iterator> pairIts(equal_range(u, predicate)); + return (pairIts.first != pairIts.second) ? pairIts.first : end(); + } + + + template <typename K, typename C, typename A, typename RAC> + template <typename U, typename BinaryPredicate> + inline typename vector_set<K, C, A, RAC>::const_iterator + vector_set<K, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate) const + { + const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(u, predicate)); + return (pairIts.first != pairIts.second) ? pairIts.first : end(); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::size_type + vector_set<K, C, A, RAC>::count(const key_type& k) const + { + const const_iterator it(find(k)); + return (it != end()) ? (size_type)1 : (size_type)0; + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::lower_bound(const key_type& k) + { + return eastl::lower_bound(begin(), end(), k, mCompare); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::const_iterator + vector_set<K, C, A, RAC>::lower_bound(const key_type& k) const + { + return eastl::lower_bound(begin(), end(), k, mCompare); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::iterator + vector_set<K, C, A, RAC>::upper_bound(const key_type& k) + { + return eastl::upper_bound(begin(), end(), k, mCompare); + } + + + template <typename K, typename C, typename A, typename RAC> + inline typename vector_set<K, C, A, RAC>::const_iterator + vector_set<K, C, A, RAC>::upper_bound(const key_type& k) const + { + return eastl::upper_bound(begin(), end(), k, mCompare); + } + + + template <typename K, typename C, typename A, typename RAC> + inline eastl::pair<typename vector_set<K, C, A, RAC>::iterator, typename vector_set<K, C, A, RAC>::iterator> + vector_set<K, C, A, RAC>::equal_range(const key_type& k) + { + // The resulting range will either be empty or have one element, + // so instead of doing two tree searches (one for lower_bound and + // one for upper_bound), we do just lower_bound and see if the + // result is a range of size zero or one. + const iterator itLower(lower_bound(k)); + + if((itLower == end()) || mCompare(k, *itLower)) // If at the end or if (k is < itLower)... + return eastl::pair<iterator, iterator>(itLower, itLower); + + iterator itUpper(itLower); + return eastl::pair<iterator, iterator>(itLower, ++itUpper); + } + + + template <typename K, typename C, typename A, typename RAC> + inline eastl::pair<typename vector_set<K, C, A, RAC>::const_iterator, typename vector_set<K, C, A, RAC>::const_iterator> + vector_set<K, C, A, RAC>::equal_range(const key_type& k) const + { + // The resulting range will either be empty or have one element, + // so instead of doing two tree searches (one for lower_bound and + // one for upper_bound), we do just lower_bound and see if the + // result is a range of size zero or one. + const const_iterator itLower(lower_bound(k)); + + if((itLower == end()) || mCompare(k, *itLower)) // If at the end or if (k is < itLower)... + return eastl::pair<const_iterator, const_iterator>(itLower, itLower); + + const_iterator itUpper(itLower); + return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper); + } + + + template <typename K, typename C, typename A, typename RAC> + template<typename U, typename BinaryPredicate> + inline eastl::pair<typename vector_set<K, C, A, RAC>::iterator, typename vector_set<K, C, A, RAC>::iterator> + vector_set<K, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate) + { + // The resulting range will either be empty or have one element, + // so instead of doing two tree searches (one for lower_bound and + // one for upper_bound), we do just lower_bound and see if the + // result is a range of size zero or one. + const iterator itLower(eastl::lower_bound(begin(), end(), u, predicate)); + + if((itLower == end()) || predicate(u, *itLower)) // If at the end or if (k is < itLower)... + return eastl::pair<iterator, iterator>(itLower, itLower); + + iterator itUpper(itLower); + return eastl::pair<iterator, iterator>(itLower, ++itUpper); + } + + template <typename K, typename C, typename A, typename RAC> + template<typename U, typename BinaryPredicate> + inline eastl::pair<typename vector_set<K, C, A, RAC>::const_iterator, typename vector_set<K, C, A, RAC>::const_iterator> + vector_set<K, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate) const + { + // The resulting range will either be empty or have one element, + // so instead of doing two tree searches (one for lower_bound and + // one for upper_bound), we do just lower_bound and see if the + // result is a range of size zero or one. + const const_iterator itLower(eastl::lower_bound(begin(), end(), u, predicate)); + + if((itLower == end()) || predicate(u, *itLower)) // If at the end or if (k is < itLower)... + return eastl::pair<const_iterator, const_iterator>(itLower, itLower); + + const_iterator itUpper(itLower); + return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper); + } + + + + /////////////////////////////////////////////////////////////////////////// + // global operators + /////////////////////////////////////////////////////////////////////////// + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator==(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return (a.size() == b.size()) && eastl::equal(b.begin(), b.end(), a.begin()); + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator<(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end(), a.value_comp()); + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator!=(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return !(a == b); + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator>(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return b < a; + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator<=(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return !(b < a); + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline bool operator>=(const vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + const vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + return !(a < b); + } + + + template <typename Key, typename Compare, typename Allocator, typename RandomAccessContainer> + inline void swap(vector_set<Key, Compare, Allocator, RandomAccessContainer>& a, + vector_set<Key, Compare, Allocator, RandomAccessContainer>& b) + { + a.swap(b); + } + + +} // namespace eastl + + +#endif // Header include guard + + + + |