aboutsummaryrefslogtreecommitdiff
path: root/include/EASTL/vector_map.h
diff options
context:
space:
mode:
authorToni Uhlig <matzeton@googlemail.com>2021-04-08 16:43:58 +0200
committerToni Uhlig <matzeton@googlemail.com>2021-04-08 16:43:58 +0200
commite59cf7b09e7388d369e8d2bf73501cde79c28708 (patch)
tree6099307032bb86f4a969721f9ac447d3d1be67d4 /include/EASTL/vector_map.h
Squashed 'EASTL/' content from commit fad5471
git-subtree-dir: EASTL git-subtree-split: fad54717f8e4ebb13b20095da7efd07a53af0f10
Diffstat (limited to 'include/EASTL/vector_map.h')
-rw-r--r--include/EASTL/vector_map.h906
1 files changed, 906 insertions, 0 deletions
diff --git a/include/EASTL/vector_map.h b/include/EASTL/vector_map.h
new file mode 100644
index 0000000..14dec48
--- /dev/null
+++ b/include/EASTL/vector_map.h
@@ -0,0 +1,906 @@
+///////////////////////////////////////////////////////////////////////////////
+// Copyright (c) Electronic Arts Inc. All rights reserved.
+//////////////////////////////////////////////////////////////////////////////
+
+//////////////////////////////////////////////////////////////////////////////
+// This file implements vector_map. It acts much like std::map, except its
+// underlying representation is a random access container such as vector.
+// These containers are sometimes also known as "sorted vectors."
+// vector_maps have an advantage over conventional maps in that their memory
+// is contiguous and node-less. The result is that lookups are faster, more
+// cache friendly (which potentially more so benefits speed), and the container
+// uses less memory. The downside is that inserting new items into the container
+// is slower if they are inserted in random order instead of in sorted order.
+// This tradeoff is well-worth it for many cases. Note that vector_map allows
+// you to use a deque or other random access container which may perform
+// better for you than vector.
+//
+// Note that with vector_set, vector_multiset, vector_map, vector_multimap
+// that the modification of the container potentially invalidates all
+// existing iterators into the container, unlike what happens with conventional
+// sets and maps.
+//////////////////////////////////////////////////////////////////////////////
+
+
+
+#ifndef EASTL_VECTOR_MAP_H
+#define EASTL_VECTOR_MAP_H
+
+
+
+#include <EASTL/internal/config.h>
+#include <EASTL/allocator.h>
+#include <EASTL/functional.h>
+#include <EASTL/vector.h>
+#include <EASTL/utility.h>
+#include <EASTL/algorithm.h>
+#include <EASTL/initializer_list.h>
+#include <stddef.h>
+
+#if defined(EA_PRAGMA_ONCE_SUPPORTED)
+ #pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
+#endif
+
+
+
+namespace eastl
+{
+
+ /// EASTL_VECTOR_MAP_DEFAULT_NAME
+ ///
+ /// Defines a default container name in the absence of a user-provided name.
+ ///
+ #ifndef EASTL_VECTOR_MAP_DEFAULT_NAME
+ #define EASTL_VECTOR_MAP_DEFAULT_NAME EASTL_DEFAULT_NAME_PREFIX " vector_map" // Unless the user overrides something, this is "EASTL vector_map".
+ #endif
+
+
+ /// EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR
+ ///
+ #ifndef EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR
+ #define EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR allocator_type(EASTL_VECTOR_MAP_DEFAULT_NAME)
+ #endif
+
+
+
+ /// map_value_compare
+ ///
+ /// Our adapter for the comparison function in the template parameters.
+ ///
+ template <typename Key, typename Value, typename Compare>
+ class map_value_compare : public binary_function<Value, Value, bool>
+ {
+ public:
+ Compare c;
+
+ map_value_compare(const Compare& x)
+ : c(x) {}
+
+ public:
+ bool operator()(const Value& a, const Value& b) const
+ { return c(a.first, b.first); }
+
+ bool operator()(const Value& a, const Key& b) const
+ { return c(a.first, b); }
+
+ bool operator()(const Key& a, const Value& b) const
+ { return c(a, b.first); }
+
+ bool operator()(const Key& a, const Key& b) const
+ { return c(a, b); }
+
+ }; // map_value_compare
+
+
+
+ /// vector_map
+ ///
+ /// Implements a map via a random access container such as a vector.
+ ///
+ /// Note that with vector_set, vector_multiset, vector_map, vector_multimap
+ /// that the modification of the container potentially invalidates all
+ /// existing iterators into the container, unlike what happens with conventional
+ /// sets and maps.
+ ///
+ /// Note that the erase functions return iterator and not void. This allows for
+ /// more efficient use of the container and is consistent with the C++ language
+ /// defect report #130 (DR 130)
+ ///
+ /// Note that we set the value_type to be pair<Key, T> and not pair<const Key, T>.
+ /// This means that the underlying container (e.g vector) is a container of pair<Key, T>.
+ /// Our vector and deque implementations are optimized to assign values in-place and
+ /// using a vector of pair<const Key, T> (note the const) would make it hard to use
+ /// our existing vector implementation without a lot of headaches. As a result,
+ /// at least for the time being we do away with the const. This means that the
+ /// insertion type varies between map and vector_map in that the latter doesn't take
+ /// const. This also means that a certain amount of automatic safety provided by
+ /// the implementation is lost, as the compiler will let the wayward user modify
+ /// a key and thus make the container no longer ordered behind its back.
+ ///
+ template <typename Key, typename T, typename Compare = eastl::less<Key>,
+ typename Allocator = EASTLAllocatorType,
+ typename RandomAccessContainer = eastl::vector<eastl::pair<Key, T>, Allocator> >
+ class vector_map : public RandomAccessContainer
+ {
+ public:
+ typedef RandomAccessContainer base_type;
+ typedef vector_map<Key, T, Compare, Allocator, RandomAccessContainer> this_type;
+ typedef Allocator allocator_type;
+ typedef Key key_type;
+ typedef T mapped_type;
+ typedef eastl::pair<Key, T> value_type;
+ typedef Compare key_compare;
+ typedef map_value_compare<Key, value_type, Compare> value_compare;
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+ typedef typename base_type::size_type size_type;
+ typedef typename base_type::difference_type difference_type;
+ typedef typename base_type::iterator iterator;
+ typedef typename base_type::const_iterator const_iterator;
+ typedef typename base_type::reverse_iterator reverse_iterator;
+ typedef typename base_type::const_reverse_iterator const_reverse_iterator;
+ typedef eastl::pair<iterator, bool> insert_return_type;
+
+ using base_type::begin;
+ using base_type::end;
+ using base_type::get_allocator;
+
+ protected:
+ value_compare mValueCompare; // To do: Make this variable go away via the zero base size optimization.
+
+ public:
+ // We have an empty ctor and a ctor that takes an allocator instead of one for both
+ // because this way our RandomAccessContainer wouldn't be required to have an constructor
+ // that takes allocator_type.
+ vector_map();
+ explicit vector_map(const allocator_type& allocator);
+ explicit vector_map(const key_compare& comp, const allocator_type& allocator = EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR);
+ vector_map(const this_type& x);
+ vector_map(this_type&& x);
+ vector_map(this_type&& x, const allocator_type& allocator);
+ vector_map(std::initializer_list<value_type> ilist, const key_compare& compare = key_compare(), const allocator_type& allocator = EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR);
+
+ template <typename InputIterator>
+ vector_map(InputIterator first, InputIterator last); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.
+
+ template <typename InputIterator>
+ vector_map(InputIterator first, InputIterator last, const key_compare& compare); // allocator arg removed because VC7.1 fails on the default arg. To do: Make a second version of this function without a default arg.
+
+ this_type& operator=(const this_type& x);
+ this_type& operator=(std::initializer_list<value_type> ilist);
+ this_type& operator=(this_type&& x);
+
+ void swap(this_type& x);
+
+ const key_compare& key_comp() const;
+ key_compare& key_comp();
+
+ const value_compare& value_comp() const;
+ value_compare& value_comp();
+
+ // Inherited from base class:
+ //
+ // allocator_type& get_allocator();
+ // void set_allocator(const allocator_type& allocator);
+ //
+ // iterator begin();
+ // const_iterator begin() const;
+ // const_iterator cbegin() const;
+ //
+ // iterator end();
+ // const_iterator end() const;
+ // const_iterator cend() const;
+ //
+ // reverse_iterator rbegin();
+ // const_reverse_iterator rbegin() const;
+ // const_reverse_iterator crbegin() const;
+ //
+ // reverse_iterator rend();
+ // const_reverse_iterator rend() const;
+ // const_reverse_iterator crend() const;
+ //
+ // size_type size() const;
+ // bool empty() const;
+ // void clear();
+
+ template <class... Args>
+ eastl::pair<iterator, bool> emplace(Args&&... args);
+
+ template <class... Args>
+ iterator emplace_hint(const_iterator position, Args&&... args);
+
+ template <typename P, typename = eastl::enable_if_t<eastl::is_constructible_v<value_type, P&&>>>
+ pair<iterator, bool> insert(P&& otherValue);
+
+ eastl::pair<iterator, bool> insert(const value_type& value);
+ pair<iterator, bool> insert(const key_type& otherValue);
+ pair<iterator, bool> insert(key_type&& otherValue);
+ iterator insert(const_iterator position, const value_type& value);
+ iterator insert(const_iterator position, value_type&& value);
+ void insert(std::initializer_list<value_type> ilist);
+
+ template <typename InputIterator>
+ void insert(InputIterator first, InputIterator last);
+
+ iterator erase(const_iterator position);
+ iterator erase(const_iterator first, const_iterator last);
+ size_type erase(const key_type& k);
+ reverse_iterator erase(const_reverse_iterator position);
+ reverse_iterator erase(const_reverse_iterator first, const_reverse_iterator last);
+
+ iterator find(const key_type& k);
+ const_iterator find(const key_type& k) const;
+
+ template <typename U, typename BinaryPredicate>
+ iterator find_as(const U& u, BinaryPredicate predicate);
+
+ template <typename U, typename BinaryPredicate>
+ const_iterator find_as(const U& u, BinaryPredicate predicate) const;
+
+ size_type count(const key_type& k) const;
+
+ iterator lower_bound(const key_type& k);
+ const_iterator lower_bound(const key_type& k) const;
+
+ iterator upper_bound(const key_type& k);
+ const_iterator upper_bound(const key_type& k) const;
+
+ eastl::pair<iterator, iterator> equal_range(const key_type& k);
+ eastl::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
+
+ template <typename U, typename BinaryPredicate>
+ eastl::pair<iterator, iterator> equal_range(const U& u, BinaryPredicate predicate);
+
+ template <typename U, typename BinaryPredicate>
+ eastl::pair<const_iterator, const_iterator> equal_range(const U& u, BinaryPredicate) const;
+
+ // Note: vector_map operator[] returns a reference to the mapped_type, same as map does.
+ // But there's an important difference: This reference can be invalidated by -any- changes
+ // to the vector_map that cause it to change capacity. This is unlike map, with which
+ // mapped_type references are invalidated only if that mapped_type element itself is removed
+ // from the map. This is because vector is array-based and map is node-based. As a result
+ // the following code that is safe for map is unsafe for vector_map for the case that
+ // the vMap[100] doesn't already exist in the vector_map:
+ // vMap[100] = vMap[0]
+ mapped_type& operator[](const key_type& k);
+ mapped_type& operator[](key_type&& k);
+
+ // Functions which are disallowed due to being unsafe.
+ void push_back(const value_type& value) = delete;
+ reference push_back() = delete;
+ void* push_back_uninitialized() = delete;
+ template <class... Args>
+ reference emplace_back(Args&&...) = delete;
+
+ // NOTE(rparolin): It is undefined behaviour if user code fails to ensure the container
+ // invariants are respected by performing an explicit call to 'sort' before any other
+ // operations on the container are performed that do not clear the elements.
+ //
+ // 'push_back_unsorted' and 'emplace_back_unsorted' do not satisfy container invariants
+ // for being sorted. We provide these overloads explicitly labelled as '_unsorted' as an
+ // optimization opportunity when batch inserting elements so users can defer the cost of
+ // sorting the container once when all elements are contained. This was done to clarify
+ // the intent of code by leaving a trace that a manual call to sort is required.
+ //
+ template <typename... Args> decltype(auto) push_back_unsorted(Args&&... args)
+ { return base_type::push_back(eastl::forward<Args>(args)...); }
+ template <typename... Args> decltype(auto) emplace_back_unsorted(Args&&... args)
+ { return base_type::emplace_back(eastl::forward<Args>(args)...); }
+
+ }; // vector_map
+
+
+
+
+
+ ///////////////////////////////////////////////////////////////////////
+ // vector_map
+ ///////////////////////////////////////////////////////////////////////
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map()
+ : base_type(), mValueCompare(C())
+ {
+ get_allocator().set_name(EASTL_VECTOR_MAP_DEFAULT_NAME);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(const allocator_type& allocator)
+ : base_type(allocator), mValueCompare(C())
+ {
+ // Empty
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(const key_compare& comp, const allocator_type& allocator)
+ : base_type(allocator), mValueCompare(comp)
+ {
+ // Empty
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(const this_type& x)
+ : base_type(x), mValueCompare(x.mValueCompare)
+ {
+ // Empty
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(this_type&& x)
+ : base_type(eastl::move(x)), mValueCompare(x.mValueCompare)
+ {
+ // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one.
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(this_type&& x, const allocator_type& allocator)
+ : base_type(eastl::move(x), allocator), mValueCompare(x.mValueCompare)
+ {
+ // Empty. Note: x is left with empty contents but its original mValueCompare instead of the default one.
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>::vector_map(std::initializer_list<value_type> ilist, const key_compare& compare, const allocator_type& allocator)
+ : base_type(allocator), mValueCompare(compare)
+ {
+ insert(ilist.begin(), ilist.end());
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename InputIterator>
+ inline vector_map<K, T, C, A, RAC>::vector_map(InputIterator first, InputIterator last)
+ : base_type(EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR), mValueCompare(key_compare())
+ {
+ insert(first, last);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename InputIterator>
+ inline vector_map<K, T, C, A, RAC>::vector_map(InputIterator first, InputIterator last, const key_compare& compare)
+ : base_type(EASTL_VECTOR_MAP_DEFAULT_ALLOCATOR), mValueCompare(compare)
+ {
+ insert(first, last);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>&
+ vector_map<K, T, C, A, RAC>::operator=(const this_type& x)
+ {
+ base_type::operator=(x);
+ mValueCompare = value_compare(x.mValueCompare);
+ return *this;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>&
+ vector_map<K, T, C, A, RAC>::operator=(this_type&& x)
+ {
+ base_type::operator=(eastl::move(x));
+ eastl::swap(mValueCompare, x.mValueCompare);
+ return *this;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline vector_map<K, T, C, A, RAC>&
+ vector_map<K, T, C, A, RAC>::operator=(std::initializer_list<value_type> ilist)
+ {
+ base_type::clear();
+ insert(ilist.begin(), ilist.end());
+ return *this;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline void vector_map<K, T, C, A, RAC>::swap(this_type& x)
+ {
+ base_type::swap(x);
+ eastl::swap(mValueCompare, x.mValueCompare);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline const typename vector_map<K, T, C, A, RAC>::key_compare&
+ vector_map<K, T, C, A, RAC>::key_comp() const
+ {
+ return mValueCompare.c;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::key_compare&
+ vector_map<K, T, C, A, RAC>::key_comp()
+ {
+ return mValueCompare.c;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline const typename vector_map<K, T, C, A, RAC>::value_compare&
+ vector_map<K, T, C, A, RAC>::value_comp() const
+ {
+ return mValueCompare;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::value_compare&
+ vector_map<K, T, C, A, RAC>::value_comp()
+ {
+ return mValueCompare;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <class... Args>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
+ vector_map<K, T, C, A, RAC>::emplace(Args&&... args)
+ {
+ #if EASTL_USE_FORWARD_WORKAROUND
+ auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code.
+ #else
+ value_type value(eastl::forward<Args>(args)...);
+ #endif
+ return insert(eastl::move(value));
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <class... Args>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::emplace_hint(const_iterator position, Args&&... args)
+ {
+ #if EASTL_USE_FORWARD_WORKAROUND
+ auto value = value_type(eastl::forward<Args>(args)...); // Workaround for compiler bug in VS2013 which results in a compiler internal crash while compiling this code.
+ #else
+ value_type value(eastl::forward<Args>(args)...);
+ #endif
+
+ return insert(position, eastl::move(value));
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
+ vector_map<K, T, C, A, RAC>::insert(const value_type& value)
+ {
+ const iterator itLB(lower_bound(value.first));
+
+ if((itLB != end()) && !mValueCompare(value, *itLB))
+ return eastl::pair<iterator, bool>(itLB, false);
+
+ return eastl::pair<iterator, bool>(base_type::insert(itLB, value), true);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename P, typename>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
+ vector_map<K, T, C, A, RAC>::insert(P&& otherValue)
+ {
+ value_type value(eastl::forward<P>(otherValue));
+ const iterator itLB(lower_bound(value.first));
+
+ if((itLB != end()) && !mValueCompare(value, *itLB))
+ return eastl::pair<iterator, bool>(itLB, false);
+
+ return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
+ vector_map<K, T, C, A, RAC>::insert(const key_type& otherValue)
+ {
+ value_type value(eastl::pair_first_construct, otherValue);
+ const iterator itLB(lower_bound(value.first));
+
+ if((itLB != end()) && !mValueCompare(value, *itLB))
+ return eastl::pair<iterator, bool>(itLB, false);
+
+ return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
+ }
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool>
+ vector_map<K, T, C, A, RAC>::insert(key_type&& otherValue)
+ {
+ value_type value(eastl::pair_first_construct, eastl::move(otherValue));
+ const iterator itLB(lower_bound(value.first));
+
+ if((itLB != end()) && !mValueCompare(value, *itLB))
+ return eastl::pair<iterator, bool>(itLB, false);
+
+ return eastl::pair<iterator, bool>(base_type::insert(itLB, eastl::move(value)), true);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::insert(const_iterator position, const value_type& value)
+ {
+ // We assume that the user knows what he is doing and has supplied us with
+ // a position that is right where value should be inserted (put in front of).
+ // We do a test to see if the position is correct. If so then we insert,
+ // if not then we ignore the input position.
+
+ if((position == end()) || mValueCompare(value, *position)) // If the element at position is greater than value...
+ {
+ if((position == begin()) || mValueCompare(*(position - 1), value)) // If the element before position is less than value...
+ return base_type::insert(position, value);
+ }
+
+ // In this case we either have an incorrect position or value is already present.
+ // We fall back to the regular insert function. An optimization would be to detect
+ // that the element is already present, but that's only useful if the user supplied
+ // a good position but a present element.
+ const eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool> result = insert(value);
+
+ return result.first;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::insert(const_iterator position, value_type&& value)
+ {
+ if((position == end()) || mValueCompare(value, *position)) // If the element at position is greater than value...
+ {
+ if((position == begin()) || mValueCompare(*(position - 1), value)) // If the element before position is less than value...
+ return base_type::insert(position, eastl::move(value));
+ }
+
+ const eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, bool> result = insert(eastl::move(value));
+
+ return result.first;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline void vector_map<K, T, C, A, RAC>::insert(std::initializer_list<value_type> ilist)
+ {
+ insert(ilist.begin(), ilist.end());
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename InputIterator>
+ inline void vector_map<K, T, C, A, RAC>::insert(InputIterator first, InputIterator last)
+ {
+ // To consider: Improve the speed of this by getting the length of the
+ // input range and resizing our container to that size
+ // before doing the insertions. We can't use reserve
+ // because we don't know if we are using a vector or not.
+ // Alternatively, force the user to do the reservation.
+ // To consider: When inserting values that come from a container
+ // like this container, use the property that they are
+ // known to be sorted and speed up the inserts here.
+ for(; first != last; ++first)
+ insert(*first);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::erase(const_iterator position)
+ {
+ // Note that we return iterator and not void. This allows for more efficient use of
+ // the container and is consistent with the C++ language defect report #130 (DR 130)
+ return base_type::erase(position);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::erase(const_iterator first, const_iterator last)
+ {
+ return base_type::erase(first, last);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::size_type
+ vector_map<K, T, C, A, RAC>::erase(const key_type& k)
+ {
+ const iterator it(find(k));
+
+ if(it != end()) // If it exists...
+ {
+ erase(it);
+ return 1;
+ }
+ return 0;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::reverse_iterator
+ vector_map<K, T, C, A, RAC>::erase(const_reverse_iterator position)
+ {
+ return reverse_iterator(base_type::erase((++position).base()));
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::reverse_iterator
+ vector_map<K, T, C, A, RAC>::erase(const_reverse_iterator first, const_reverse_iterator last)
+ {
+ return reverse_iterator(base_type::erase((++last).base(), (++first).base()));
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::find(const key_type& k)
+ {
+ const eastl::pair<iterator, iterator> pairIts(equal_range(k));
+ return (pairIts.first != pairIts.second) ? pairIts.first : end();
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::const_iterator
+ vector_map<K, T, C, A, RAC>::find(const key_type& k) const
+ {
+ const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(k));
+ return (pairIts.first != pairIts.second) ? pairIts.first : end();
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename U, typename BinaryPredicate>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate)
+ {
+ const eastl::pair<iterator, iterator> pairIts(equal_range(u, predicate));
+ return (pairIts.first != pairIts.second) ? pairIts.first : end();
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename U, typename BinaryPredicate>
+ inline typename vector_map<K, T, C, A, RAC>::const_iterator
+ vector_map<K, T, C, A, RAC>::find_as(const U& u, BinaryPredicate predicate) const
+ {
+ const eastl::pair<const_iterator, const_iterator> pairIts(equal_range(u, predicate));
+ return (pairIts.first != pairIts.second) ? pairIts.first : end();
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::size_type
+ vector_map<K, T, C, A, RAC>::count(const key_type& k) const
+ {
+ const const_iterator it(find(k));
+ return (it != end()) ? (size_type)1 : (size_type)0;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::lower_bound(const key_type& k)
+ {
+ return eastl::lower_bound(begin(), end(), k, mValueCompare);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::const_iterator
+ vector_map<K, T, C, A, RAC>::lower_bound(const key_type& k) const
+ {
+ return eastl::lower_bound(begin(), end(), k, mValueCompare);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::iterator
+ vector_map<K, T, C, A, RAC>::upper_bound(const key_type& k)
+ {
+ return eastl::upper_bound(begin(), end(), k, mValueCompare);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::const_iterator
+ vector_map<K, T, C, A, RAC>::upper_bound(const key_type& k) const
+ {
+ return eastl::upper_bound(begin(), end(), k, mValueCompare);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, typename vector_map<K, T, C, A, RAC>::iterator>
+ vector_map<K, T, C, A, RAC>::equal_range(const key_type& k)
+ {
+ // The resulting range will either be empty or have one element,
+ // so instead of doing two tree searches (one for lower_bound and
+ // one for upper_bound), we do just lower_bound and see if the
+ // result is a range of size zero or one.
+ const iterator itLower(lower_bound(k));
+
+ if((itLower == end()) || mValueCompare(k, *itLower)) // If at the end or if (k is < itLower)...
+ return eastl::pair<iterator, iterator>(itLower, itLower);
+
+ iterator itUpper(itLower);
+ return eastl::pair<iterator, iterator>(itLower, ++itUpper);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::const_iterator, typename vector_map<K, T, C, A, RAC>::const_iterator>
+ vector_map<K, T, C, A, RAC>::equal_range(const key_type& k) const
+ {
+ // The resulting range will either be empty or have one element,
+ // so instead of doing two tree searches (one for lower_bound and
+ // one for upper_bound), we do just lower_bound and see if the
+ // result is a range of size zero or one.
+ const const_iterator itLower(lower_bound(k));
+
+ if((itLower == end()) || mValueCompare(k, *itLower)) // If at the end or if (k is < itLower)...
+ return eastl::pair<const_iterator, const_iterator>(itLower, itLower);
+
+ const_iterator itUpper(itLower);
+ return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper);
+ }
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename U, typename BinaryPredicate>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::iterator, typename vector_map<K, T, C, A, RAC>::iterator>
+ vector_map<K, T, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate)
+ {
+ // The resulting range will either be empty or have one element,
+ // so instead of doing two tree searches (one for lower_bound and
+ // one for upper_bound), we do just lower_bound and see if the
+ // result is a range of size zero or one.
+ map_value_compare<U, value_type, BinaryPredicate> predicate_cmp(predicate);
+
+ const iterator itLower(eastl::lower_bound(begin(), end(), u, predicate_cmp));
+
+ if((itLower == end()) || predicate_cmp(u, *itLower)) // If at the end or if (k is < itLower)...
+ return eastl::pair<iterator, iterator>(itLower, itLower);
+
+ iterator itUpper(itLower);
+ return eastl::pair<iterator, iterator>(itLower, ++itUpper);
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ template <typename U, typename BinaryPredicate>
+ inline eastl::pair<typename vector_map<K, T, C, A, RAC>::const_iterator, typename vector_map<K, T, C, A, RAC>::const_iterator>
+ vector_map<K, T, C, A, RAC>::equal_range(const U& u, BinaryPredicate predicate) const
+ {
+ // The resulting range will either be empty or have one element,
+ // so instead of doing two tree searches (one for lower_bound and
+ // one for upper_bound), we do just lower_bound and see if the
+ // result is a range of size zero or one.
+ map_value_compare<U, value_type, BinaryPredicate> predicate_cmp(predicate);
+
+ const const_iterator itLower(eastl::lower_bound(begin(), end(), u, predicate_cmp));
+
+ if((itLower == end()) || predicate_cmp(u, *itLower)) // If at the end or if (k is < itLower)...
+ return eastl::pair<const_iterator, const_iterator>(itLower, itLower);
+
+ const_iterator itUpper(itLower);
+ return eastl::pair<const_iterator, const_iterator>(itLower, ++itUpper);
+ }
+
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::mapped_type&
+ vector_map<K, T, C, A, RAC>::operator[](const key_type& k)
+ {
+ iterator itLB(lower_bound(k));
+
+ if((itLB == end()) || key_comp()(k, (*itLB).first))
+ itLB = insert(itLB, value_type(k, mapped_type()));
+ return (*itLB).second;
+ }
+
+
+ template <typename K, typename T, typename C, typename A, typename RAC>
+ inline typename vector_map<K, T, C, A, RAC>::mapped_type&
+ vector_map<K, T, C, A, RAC>::operator[](key_type&& k)
+ {
+ iterator itLB(lower_bound(k));
+
+ if((itLB == end()) || key_comp()(k, (*itLB).first))
+ itLB = insert(itLB, value_type(eastl::move(k), mapped_type()));
+ return (*itLB).second;
+ }
+
+
+
+ ///////////////////////////////////////////////////////////////////////////
+ // global operators
+ ///////////////////////////////////////////////////////////////////////////
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator==(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return (a.size() == b.size()) && eastl::equal(b.begin(), b.end(), a.begin());
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator<(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return eastl::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end(), a.value_comp());
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator!=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return !(a == b);
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator>(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return b < a;
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator<=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return !(b < a);
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline bool operator>=(const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ const vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ return !(a < b);
+ }
+
+
+ template <typename Key, typename T, typename Compare, typename Allocator, typename RandomAccessContainer>
+ inline void swap(vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& a,
+ vector_map<Key, T, Compare, Allocator, RandomAccessContainer>& b)
+ {
+ a.swap(b);
+ }
+
+
+} // namespace eastl
+
+
+#endif // Header include guard
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+