aboutsummaryrefslogtreecommitdiff
path: root/src/lib/third_party/include/binaryfusefilter.h
blob: 4209484bc3cec17278dfa10aedf259508efa1e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/* https://github.com/FastFilter/xor_singleheader */
#ifndef BINARYFUSEFILTER_H
#define BINARYFUSEFILTER_H
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef XOR_MAX_ITERATIONS
#define XOR_MAX_ITERATIONS                                                     \
  100 // probability of success should always be > 0.5 so 100 iterations is
      // highly unlikely
#endif

/**
 * We start with a few utilities.
 ***/
static inline uint64_t binary_fuse_murmur64(uint64_t h) {
  h ^= h >> 33;
  h *= UINT64_C(0xff51afd7ed558ccd);
  h ^= h >> 33;
  h *= UINT64_C(0xc4ceb9fe1a85ec53);
  h ^= h >> 33;
  return h;
}
static inline uint64_t binary_fuse_mix_split(uint64_t key, uint64_t seed) {
  return binary_fuse_murmur64(key + seed);
}
static inline uint64_t binary_fuse_rotl64(uint64_t n, unsigned int c) {
#ifdef _WIN32
    return(_rotr64(n, c));
#else
  return (n << (c & 63)) | (n >> ((-c) & 63));
#endif
}
static inline uint32_t binary_fuse_reduce(uint32_t hash, uint32_t n) {
  // http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
  return (uint32_t)(((uint64_t)hash * n) >> 32);
}
static inline uint64_t binary_fuse8_fingerprint(uint64_t hash) {
  return hash ^ (hash >> 32);
}

/**
 * We need a decent random number generator.
 **/

// returns random number, modifies the seed
static inline uint64_t binary_fuse_rng_splitmix64(uint64_t *seed) {
  uint64_t z = (*seed += UINT64_C(0x9E3779B97F4A7C15));
  z = (z ^ (z >> 30)) * UINT64_C(0xBF58476D1CE4E5B9);
  z = (z ^ (z >> 27)) * UINT64_C(0x94D049BB133111EB);
  return z ^ (z >> 31);
}

typedef struct binary_fuse8_s {
  uint64_t Seed;
  uint32_t SegmentLength;
  uint32_t SegmentLengthMask;
  uint32_t SegmentCount;
  uint32_t SegmentCountLength;
  uint32_t ArrayLength;
  uint8_t *Fingerprints;
} binary_fuse8_t;

// #ifdefs adapted from:
//  https://stackoverflow.com/a/50958815
#ifdef __SIZEOF_INT128__  // compilers supporting __uint128, e.g., gcc, clang
static inline uint64_t binary_fuse_mulhi(uint64_t a, uint64_t b) {
  return ((__uint128_t)a * b) >> 64;
}
#elif defined(_M_X64) || defined(_MARM64)   // MSVC
static inline uint64_t binary_fuse_mulhi(uint64_t a, uint64_t b) {
  return __umulh(a, b);
}
#elif defined(_M_IA64)  // also MSVC
static inline uint64_t binary_fuse_mulhi(uint64_t a, uint64_t b) {
  unsigned __int64 hi;
  (void) _umul128(a, b, &hi);
  return hi;
}
#else  // portable implementation using uint64_t
static inline uint64_t binary_fuse_mulhi(uint64_t a, uint64_t b) {
  // Adapted from:
  //  https://stackoverflow.com/a/51587262

  /*
        This is implementing schoolbook multiplication:

                a1 a0
        X       b1 b0
        -------------
                   00  LOW PART
        -------------
                00
             10 10     MIDDLE PART
        +       01
        -------------
             01
        + 11 11        HIGH PART
        -------------
  */

  const uint64_t a0 = (uint32_t) a;
  const uint64_t a1 = a >> 32;
  const uint64_t b0 = (uint32_t) b;
  const uint64_t b1 = b >> 32;
  const uint64_t p11 = a1 * b1;
  const uint64_t p01 = a0 * b1;
  const uint64_t p10 = a1 * b0;
  const uint64_t p00 = a0 * b0;

  // 64-bit product + two 32-bit values
  const uint64_t middle = p10 + (p00 >> 32) + (uint32_t) p01;

  /*
    Proof that 64-bit products can accumulate two more 32-bit values
    without overflowing:

    Max 32-bit value is 2^32 - 1.
    PSum = (2^32-1) * (2^32-1) + (2^32-1) + (2^32-1)
         = 2^64 - 2^32 - 2^32 + 1 + 2^32 - 1 + 2^32 - 1
         = 2^64 - 1
    Therefore the high half below cannot overflow regardless of input.
  */

  // high half
  return p11 + (middle >> 32) + (p01 >> 32);

  // low half (which we don't care about, but here it is)
  // (middle << 32) | (uint32_t) p00;
}
#endif

typedef struct binary_hashes_s {
  uint32_t h0;
  uint32_t h1;
  uint32_t h2;
} binary_hashes_t;

static inline binary_hashes_t binary_fuse8_hash_batch(uint64_t hash,
                                        const binary_fuse8_t *filter) {
  uint64_t hi = binary_fuse_mulhi(hash, filter->SegmentCountLength);
  binary_hashes_t ans;
  ans.h0 = (uint32_t)hi;
  ans.h1 = ans.h0 + filter->SegmentLength;
  ans.h2 = ans.h1 + filter->SegmentLength;
  ans.h1 ^= (uint32_t)(hash >> 18) & filter->SegmentLengthMask;
  ans.h2 ^= (uint32_t)(hash)&filter->SegmentLengthMask;
  return ans;
}

static inline uint32_t binary_fuse8_hash(int index, uint64_t hash,
                                        const binary_fuse8_t *filter) {
    uint64_t h = binary_fuse_mulhi(hash, filter->SegmentCountLength);
    h += (uint64_t)index * filter->SegmentLength;
    // keep the lower 36 bits
    uint64_t hh = hash & ((1ULL << 36) - 1);
    // index 0: right shift by 36; index 1: right shift by 18; index 2: no shift
    h ^= (size_t)((hh >> (36 - 18 * index)) & filter->SegmentLengthMask);
    return h;
}

// Report if the key is in the set, with false positive rate.
static inline bool binary_fuse8_contain(uint64_t key,
                                        const binary_fuse8_t *filter) {
  uint64_t hash = binary_fuse_mix_split(key, filter->Seed);
  uint8_t f = binary_fuse8_fingerprint(hash);
  binary_hashes_t hashes = binary_fuse8_hash_batch(hash, filter);
  f ^= filter->Fingerprints[hashes.h0] ^ filter->Fingerprints[hashes.h1] ^
       filter->Fingerprints[hashes.h2];
  return f == 0;
}

static inline uint32_t binary_fuse_calculate_segment_length(uint32_t arity,
                                                             uint32_t size) {
  // These parameters are very sensitive. Replacing 'floor' by 'round' can
  // substantially affect the construction time.
  if (arity == 3) {
    return ((uint32_t)1) << (int)(floor(log((double)(size)) / log(3.33) + 2.25));
  } else if (arity == 4) {
    return ((uint32_t)1) << (int)(floor(log((double)(size)) / log(2.91) - 0.5));
  } else {
    return 65536;
  }
}

static inline double binary_fuse_max(double a, double b) {
  if (a < b) {
    return b;
  }
  return a;
}

static inline double binary_fuse_calculate_size_factor(uint32_t arity,
                                                        uint32_t size) {
  if (arity == 3) {
    return binary_fuse_max(1.125, 0.875 + 0.25 * log(1000000.0) / log((double)size));
  } else if (arity == 4) {
    return binary_fuse_max(1.075, 0.77 + 0.305 * log(600000.0) / log((double)size));
  } else {
    return 2.0;
  }
}

// allocate enough capacity for a set containing up to 'size' elements
// caller is responsible to call binary_fuse8_free(filter)
// size should be at least 2.
static inline bool binary_fuse8_allocate(uint32_t size,
                                         binary_fuse8_t *filter) {
  uint32_t arity = 3;
  filter->SegmentLength = size == 0 ? 4 : binary_fuse_calculate_segment_length(arity, size);
  if (filter->SegmentLength > 262144) {
    filter->SegmentLength = 262144;
  }
  filter->SegmentLengthMask = filter->SegmentLength - 1;
  double sizeFactor = size <= 1 ? 0 : binary_fuse_calculate_size_factor(arity, size);
  uint32_t capacity = size <= 1 ? 0 : (uint32_t)(round((double)size * sizeFactor));
  uint32_t initSegmentCount =
      (capacity + filter->SegmentLength - 1) / filter->SegmentLength -
      (arity - 1);
  filter->ArrayLength = (initSegmentCount + arity - 1) * filter->SegmentLength;
  filter->SegmentCount =
      (filter->ArrayLength + filter->SegmentLength - 1) / filter->SegmentLength;
  if (filter->SegmentCount <= arity - 1) {
    filter->SegmentCount = 1;
  } else {
    filter->SegmentCount = filter->SegmentCount - (arity - 1);
  }
  filter->ArrayLength =
      (filter->SegmentCount + arity - 1) * filter->SegmentLength;
  filter->SegmentCountLength = filter->SegmentCount * filter->SegmentLength;
  filter->Fingerprints = (uint8_t*)ndpi_malloc(filter->ArrayLength);
  return filter->Fingerprints != NULL;
}

// report memory usage
static inline size_t binary_fuse8_size_in_bytes(const binary_fuse8_t *filter) {
  return filter->ArrayLength * sizeof(uint8_t) + sizeof(binary_fuse8_t);
}

// release memory
static inline void binary_fuse8_free(binary_fuse8_t *filter) {
  ndpi_free(filter->Fingerprints);
  filter->Fingerprints = NULL;
  filter->Seed = 0;
  filter->SegmentLength = 0;
  filter->SegmentLengthMask = 0;
  filter->SegmentCount = 0;
  filter->SegmentCountLength = 0;
  filter->ArrayLength = 0;
}

static inline uint8_t binary_fuse_mod3(uint8_t x) {
    return x > 2 ? x - 3 : x;
}

// Construct the filter, returns true on success, false on failure.
// The algorithm fails when there is insufficient memory.
// The caller is responsable for calling binary_fuse8_allocate(size,filter)
// before. For best performance, the caller should ensure that there are not too
// many duplicated keys.
static inline bool binary_fuse8_populate(const uint64_t *keys, uint32_t size,
                           binary_fuse8_t *filter) {
  uint64_t rng_counter = 0x726b2b9d438b9d4d;
  filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
  uint64_t *reverseOrder = (uint64_t *)ndpi_calloc((size + 1), sizeof(uint64_t));
  uint32_t capacity = filter->ArrayLength;
  uint32_t *alone = (uint32_t *)ndpi_malloc(capacity * sizeof(uint32_t));
  uint8_t *t2count = (uint8_t *)ndpi_calloc(capacity, sizeof(uint8_t));
  uint8_t *reverseH = (uint8_t *)ndpi_malloc(size * sizeof(uint8_t));
  uint64_t *t2hash = (uint64_t *)ndpi_calloc(capacity, sizeof(uint64_t));

  uint32_t blockBits = 1;
  while (((uint32_t)1 << blockBits) < filter->SegmentCount) {
    blockBits += 1;
  }
  uint32_t block = ((uint32_t)1 << blockBits);
  uint32_t *startPos = (uint32_t *)ndpi_malloc((1 << blockBits) * sizeof(uint32_t));
  uint32_t h012[5];

  if ((alone == NULL) || (t2count == NULL) || (reverseH == NULL) ||
      (t2hash == NULL) || (reverseOrder == NULL) || (startPos == NULL)) {
    ndpi_free(alone);
    ndpi_free(t2count);
    ndpi_free(reverseH);
    ndpi_free(t2hash);
    ndpi_free(reverseOrder);
    ndpi_free(startPos);
    return false;
  }
  reverseOrder[size] = 1;
  int loop;
  for (loop = 0; true; ++loop) {
    if (loop + 1 > XOR_MAX_ITERATIONS) {
      // The probability of this happening is lower than the
      // the cosmic-ray probability (i.e., a cosmic ray corrupts your system),
      // but if it happens, we just fill the fingerprint with ones which
      // will flag all possible keys as 'possible', ensuring a correct result.
      memset(filter->Fingerprints, ~0, filter->ArrayLength);
      ndpi_free(alone);
      ndpi_free(t2count);
      ndpi_free(reverseH);
      ndpi_free(t2hash);
      ndpi_free(reverseOrder);
      ndpi_free(startPos);
      return true;
    }

    uint32_t i;
    for (i = 0; i < block; i++) {
      // important : i * size would overflow as a 32-bit number in some
      // cases.
      startPos[i] = ((uint64_t)i * size) >> blockBits;
    }

    uint64_t maskblock = block - 1;
    for (i = 0; i < size; i++) {
      uint64_t hash = binary_fuse_murmur64(keys[i] + filter->Seed);
      uint64_t segment_index = hash >> (64 - blockBits);
      while (reverseOrder[startPos[segment_index]] != 0) {
        segment_index++;
        segment_index &= maskblock;
      }
      reverseOrder[startPos[segment_index]] = hash;
      startPos[segment_index]++;
    }
    int error = 0;
    uint32_t duplicates = 0;
    for ( i = 0; i < size; i++) {
      uint64_t hash = reverseOrder[i];
      uint32_t h0 = binary_fuse8_hash(0, hash, filter);
      t2count[h0] += 4;
      t2hash[h0] ^= hash;
      uint32_t h1= binary_fuse8_hash(1, hash, filter);
      t2count[h1] += 4;
      t2count[h1] ^= 1;
      t2hash[h1] ^= hash;
      uint32_t h2 = binary_fuse8_hash(2, hash, filter);
      t2count[h2] += 4;
      t2hash[h2] ^= hash;
      t2count[h2] ^= 2;
      if ((t2hash[h0] & t2hash[h1] & t2hash[h2]) == 0) {
        if   (((t2hash[h0] == 0) && (t2count[h0] == 8))
          ||  ((t2hash[h1] == 0) && (t2count[h1] == 8))
          ||  ((t2hash[h2] == 0) && (t2count[h2] == 8))) {
					duplicates += 1;
 					t2count[h0] -= 4;
 					t2hash[h0] ^= hash;
 					t2count[h1] -= 4;
 					t2count[h1] ^= 1;
 					t2hash[h1] ^= hash;
 					t2count[h2] -= 4;
 					t2count[h2] ^= 2;
 					t2hash[h2] ^= hash;
        }
      }
      error = (t2count[h0] < 4) ? 1 : error;
      error = (t2count[h1] < 4) ? 1 : error;
      error = (t2count[h2] < 4) ? 1 : error;
    }
    if(error) {
      memset(reverseOrder, 0, sizeof(uint64_t) * size);
      memset(t2count, 0, sizeof(uint8_t) * capacity);
      memset(t2hash, 0, sizeof(uint64_t) * capacity);
      filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
      continue;
    }

    // End of key addition
    uint32_t Qsize = 0;
    // Add sets with one key to the queue.
    for (i = 0; i < capacity; i++) {
      alone[Qsize] = i;
      Qsize += ((t2count[i] >> 2) == 1) ? 1 : 0;
    }
    uint32_t stacksize = 0;
    while (Qsize > 0) {
      Qsize--;
      uint32_t index = alone[Qsize];
      if ((t2count[index] >> 2) == 1) {
        uint64_t hash = t2hash[index];

        //h012[0] = binary_fuse8_hash(0, hash, filter);
        h012[1] = binary_fuse8_hash(1, hash, filter);
        h012[2] = binary_fuse8_hash(2, hash, filter);
        h012[3] = binary_fuse8_hash(0, hash, filter); // == h012[0];
        h012[4] = h012[1];
        uint8_t found = t2count[index] & 3;
        reverseH[stacksize] = found;
        reverseOrder[stacksize] = hash;
        stacksize++;
        uint32_t other_index1 = h012[found + 1];
        alone[Qsize] = other_index1;
        Qsize += ((t2count[other_index1] >> 2) == 2 ? 1 : 0);

        t2count[other_index1] -= 4;
        t2count[other_index1] ^= binary_fuse_mod3(found + 1);
        t2hash[other_index1] ^= hash;

        uint32_t other_index2 = h012[found + 2];
        alone[Qsize] = other_index2;
        Qsize += ((t2count[other_index2] >> 2) == 2 ? 1 : 0);
        t2count[other_index2] -= 4;
        t2count[other_index2] ^= binary_fuse_mod3(found + 2);
        t2hash[other_index2] ^= hash;
      }
    }
    if (stacksize + duplicates == size) {
      // success
      size = stacksize;
      break;
    }
    memset(reverseOrder, 0, sizeof(uint64_t) * size);
    memset(t2count, 0, sizeof(uint8_t) * capacity);
    memset(t2hash, 0, sizeof(uint64_t) * capacity);
    filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
  }

  uint32_t i;
  for (i = size - 1; i < size; i--) {
    // the hash of the key we insert next
    uint64_t hash = reverseOrder[i];
    uint8_t xor2 = binary_fuse8_fingerprint(hash);
    uint8_t found = reverseH[i];
    h012[0] = binary_fuse8_hash(0, hash, filter);
    h012[1] = binary_fuse8_hash(1, hash, filter);
    h012[2] = binary_fuse8_hash(2, hash, filter);
    h012[3] = h012[0];
    h012[4] = h012[1];
    filter->Fingerprints[h012[found]] = xor2 ^
                                        filter->Fingerprints[h012[found + 1]] ^
                                        filter->Fingerprints[h012[found + 2]];
  }
  ndpi_free(alone);
  ndpi_free(t2count);
  ndpi_free(reverseH);
  ndpi_free(t2hash);
  ndpi_free(reverseOrder);
  ndpi_free(startPos);
  return true;
}

//////////////////
// fuse16
//////////////////

typedef struct binary_fuse16_s {
  uint64_t Seed;
  uint32_t SegmentLength;
  uint32_t SegmentLengthMask;
  uint32_t SegmentCount;
  uint32_t SegmentCountLength;
  uint32_t ArrayLength;
  uint16_t *Fingerprints;
} binary_fuse16_t;

static inline uint64_t binary_fuse16_fingerprint(uint64_t hash) {
  return hash ^ (hash >> 32);
}

static inline binary_hashes_t binary_fuse16_hash_batch(uint64_t hash,
                                        const binary_fuse16_t *filter) {
  uint64_t hi = binary_fuse_mulhi(hash, filter->SegmentCountLength);
  binary_hashes_t ans;
  ans.h0 = (uint32_t)hi;
  ans.h1 = ans.h0 + filter->SegmentLength;
  ans.h2 = ans.h1 + filter->SegmentLength;
  ans.h1 ^= (uint32_t)(hash >> 18) & filter->SegmentLengthMask;
  ans.h2 ^= (uint32_t)(hash)&filter->SegmentLengthMask;
  return ans;
}
static inline uint32_t binary_fuse16_hash(int index, uint64_t hash,
                                        const binary_fuse16_t *filter) {
    uint64_t h = binary_fuse_mulhi(hash, filter->SegmentCountLength);
    h += (uint64_t)index * filter->SegmentLength;
    // keep the lower 36 bits
    uint64_t hh = hash & ((1ULL << 36) - 1);
    // index 0: right shift by 36; index 1: right shift by 18; index 2: no shift
    h ^= (size_t)((hh >> (36 - 18 * index)) & filter->SegmentLengthMask);
    return h;
}

// Report if the key is in the set, with false positive rate.
static inline bool binary_fuse16_contain(uint64_t key,
                                        const binary_fuse16_t *filter) {
  uint64_t hash = binary_fuse_mix_split(key, filter->Seed);
  uint16_t f = binary_fuse16_fingerprint(hash);
  binary_hashes_t hashes = binary_fuse16_hash_batch(hash, filter);
  f ^= filter->Fingerprints[hashes.h0] ^ filter->Fingerprints[hashes.h1] ^
       filter->Fingerprints[hashes.h2];
  return f == 0;
}


// allocate enough capacity for a set containing up to 'size' elements
// caller is responsible to call binary_fuse16_free(filter)
// size should be at least 2.
static inline bool binary_fuse16_allocate(uint32_t size,
                                         binary_fuse16_t *filter) {
  uint32_t arity = 3;
  filter->SegmentLength = size == 0 ? 4 : binary_fuse_calculate_segment_length(arity, size);
  if (filter->SegmentLength > 262144) {
    filter->SegmentLength = 262144;
  }
  filter->SegmentLengthMask = filter->SegmentLength - 1;
  double sizeFactor = size <= 1 ? 0 : binary_fuse_calculate_size_factor(arity, size);
  uint32_t capacity = (uint32_t)(round((double)size * sizeFactor));
  uint32_t initSegmentCount =
      (capacity + filter->SegmentLength - 1) / filter->SegmentLength -
      (arity - 1);
  filter->ArrayLength = (initSegmentCount + arity - 1) * filter->SegmentLength;
  filter->SegmentCount =
      (filter->ArrayLength + filter->SegmentLength - 1) / filter->SegmentLength;
  if (filter->SegmentCount <= arity - 1) {
    filter->SegmentCount = 1;
  } else {
    filter->SegmentCount = filter->SegmentCount - (arity - 1);
  }
  filter->ArrayLength =
      (filter->SegmentCount + arity - 1) * filter->SegmentLength;
  filter->SegmentCountLength = filter->SegmentCount * filter->SegmentLength;
  filter->Fingerprints = (uint16_t*)ndpi_calloc(filter->ArrayLength, sizeof(uint16_t));
  return filter->Fingerprints != NULL;
}

// report memory usage
static inline size_t binary_fuse16_size_in_bytes(const binary_fuse16_t *filter) {
  return filter->ArrayLength * sizeof(uint16_t) + sizeof(binary_fuse16_t);
}

// release memory
static inline void binary_fuse16_free(binary_fuse16_t *filter) {
  ndpi_free(filter->Fingerprints);
  filter->Fingerprints = NULL;
  filter->Seed = 0;
  filter->SegmentLength = 0;
  filter->SegmentLengthMask = 0;
  filter->SegmentCount = 0;
  filter->SegmentCountLength = 0;
  filter->ArrayLength = 0;
}


// Construct the filter, returns true on success, false on failure.
// The algorithm fails when there is insufficient memory.
// The caller is responsable for calling binary_fuse8_allocate(size,filter)
// before. For best performance, the caller should ensure that there are not too
// many duplicated keys.
static inline bool binary_fuse16_populate(const uint64_t *keys, uint32_t size,
                           binary_fuse16_t *filter) {
  uint64_t rng_counter = 0x726b2b9d438b9d4d;
  filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
  uint64_t *reverseOrder = (uint64_t *)ndpi_calloc((size + 1), sizeof(uint64_t));
  uint32_t capacity = filter->ArrayLength;
  uint32_t *alone = (uint32_t *)ndpi_malloc(capacity * sizeof(uint32_t));
  uint8_t *t2count = (uint8_t *)ndpi_calloc(capacity, sizeof(uint8_t));
  uint8_t *reverseH = (uint8_t *)ndpi_malloc(size * sizeof(uint8_t));
  uint64_t *t2hash = (uint64_t *)ndpi_calloc(capacity, sizeof(uint64_t));

  uint32_t blockBits = 1;
  while (((uint32_t)1 << blockBits) < filter->SegmentCount) {
    blockBits += 1;
  }
  uint32_t block = ((uint32_t)1 << blockBits);
  uint32_t *startPos = (uint32_t *)ndpi_malloc((1 << blockBits) * sizeof(uint32_t));
  uint32_t h012[5];

  if ((alone == NULL) || (t2count == NULL) || (reverseH == NULL) ||
      (t2hash == NULL) || (reverseOrder == NULL) || (startPos == NULL)) {
    ndpi_free(alone);
    ndpi_free(t2count);
    ndpi_free(reverseH);
    ndpi_free(t2hash);
    ndpi_free(reverseOrder);
    ndpi_free(startPos);
    return false;
  }
  reverseOrder[size] = 1;
  int loop;
  for (loop = 0; true; ++loop) {
    if (loop + 1 > XOR_MAX_ITERATIONS) {
      // The probability of this happening is lower than the
      // the cosmic-ray probability (i.e., a cosmic ray corrupts your system),
      // but if it happens, we just fill the fingerprint with ones which
      // will flag all possible keys as 'possible', ensuring a correct result.
      memset(filter->Fingerprints, ~0, filter->ArrayLength * sizeof(uint16_t));
      ndpi_free(alone);
      ndpi_free(t2count);
      ndpi_free(reverseH);
      ndpi_free(t2hash);
      ndpi_free(reverseOrder);
      ndpi_free(startPos);
      return true;
    }

    uint32_t i;
    for (i = 0; i < block; i++) {
      // important : i * size would overflow as a 32-bit number in some
      // cases.
      startPos[i] = ((uint64_t)i * size) >> blockBits;
    }

    uint64_t maskblock = block - 1;
    for (i = 0; i < size; i++) {
      uint64_t hash = binary_fuse_murmur64(keys[i] + filter->Seed);
      uint64_t segment_index = hash >> (64 - blockBits);
      while (reverseOrder[startPos[segment_index]] != 0) {
        segment_index++;
        segment_index &= maskblock;
      }
      reverseOrder[startPos[segment_index]] = hash;
      startPos[segment_index]++;
    }
    int error = 0;
    uint32_t duplicates = 0;
    for (i = 0; i < size; i++) {
      uint64_t hash = reverseOrder[i];
      uint32_t h0 = binary_fuse16_hash(0, hash, filter);
      t2count[h0] += 4;
      t2hash[h0] ^= hash;
      uint32_t h1= binary_fuse16_hash(1, hash, filter);
      t2count[h1] += 4;
      t2count[h1] ^= 1;
      t2hash[h1] ^= hash;
      uint32_t h2 = binary_fuse16_hash(2, hash, filter);
      t2count[h2] += 4;
      t2hash[h2] ^= hash;
      t2count[h2] ^= 2;
      if ((t2hash[h0] & t2hash[h1] & t2hash[h2]) == 0) {
        if   (((t2hash[h0] == 0) && (t2count[h0] == 8))
          ||  ((t2hash[h1] == 0) && (t2count[h1] == 8))
          ||  ((t2hash[h2] == 0) && (t2count[h2] == 8))) {
					duplicates += 1;
 					t2count[h0] -= 4;
 					t2hash[h0] ^= hash;
 					t2count[h1] -= 4;
 					t2count[h1] ^= 1;
 					t2hash[h1] ^= hash;
 					t2count[h2] -= 4;
 					t2count[h2] ^= 2;
 					t2hash[h2] ^= hash;
        }
      }
      error = (t2count[h0] < 4) ? 1 : error;
      error = (t2count[h1] < 4) ? 1 : error;
      error = (t2count[h2] < 4) ? 1 : error;
    }
    if(error) {
      memset(reverseOrder, 0, sizeof(uint64_t) * size);
      memset(t2count, 0, sizeof(uint8_t) * capacity);
      memset(t2hash, 0, sizeof(uint64_t) * capacity);
      filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
      continue;
    }

    // End of key addition
    uint32_t Qsize = 0;
    // Add sets with one key to the queue.
    for (i = 0; i < capacity; i++) {
      alone[Qsize] = i;
      Qsize += ((t2count[i] >> 2) == 1) ? 1 : 0;
    }
    uint32_t stacksize = 0;
    while (Qsize > 0) {
      Qsize--;
      uint32_t index = alone[Qsize];
      if ((t2count[index] >> 2) == 1) {
        uint64_t hash = t2hash[index];

        //h012[0] = binary_fuse16_hash(0, hash, filter);
        h012[1] = binary_fuse16_hash(1, hash, filter);
        h012[2] = binary_fuse16_hash(2, hash, filter);
        h012[3] = binary_fuse16_hash(0, hash, filter); // == h012[0];
        h012[4] = h012[1];
        uint8_t found = t2count[index] & 3;
        reverseH[stacksize] = found;
        reverseOrder[stacksize] = hash;
        stacksize++;
        uint32_t other_index1 = h012[found + 1];
        alone[Qsize] = other_index1;
        Qsize += ((t2count[other_index1] >> 2) == 2 ? 1 : 0);

        t2count[other_index1] -= 4;
        t2count[other_index1] ^= binary_fuse_mod3(found + 1);
        t2hash[other_index1] ^= hash;

        uint32_t other_index2 = h012[found + 2];
        alone[Qsize] = other_index2;
        Qsize += ((t2count[other_index2] >> 2) == 2 ? 1 : 0);
        t2count[other_index2] -= 4;
        t2count[other_index2] ^= binary_fuse_mod3(found + 2);
        t2hash[other_index2] ^= hash;
      }
    }
    if (stacksize + duplicates == size) {
      // success
      size = stacksize;
      break;
    }
    memset(reverseOrder, 0, sizeof(uint64_t) * size);
    memset(t2count, 0, sizeof(uint8_t) * capacity);
    memset(t2hash, 0, sizeof(uint64_t) * capacity);
    filter->Seed = binary_fuse_rng_splitmix64(&rng_counter);
  }

  uint32_t i;
  for ( i = size - 1; i < size; i--) {
    // the hash of the key we insert next
    uint64_t hash = reverseOrder[i];
    uint16_t xor2 = binary_fuse16_fingerprint(hash);
    uint8_t found = reverseH[i];
    h012[0] = binary_fuse16_hash(0, hash, filter);
    h012[1] = binary_fuse16_hash(1, hash, filter);
    h012[2] = binary_fuse16_hash(2, hash, filter);
    h012[3] = h012[0];
    h012[4] = h012[1];
    filter->Fingerprints[h012[found]] = xor2 ^
                                        filter->Fingerprints[h012[found + 1]] ^
                                        filter->Fingerprints[h012[found + 2]];
  }
  ndpi_free(alone);
  ndpi_free(t2count);
  ndpi_free(reverseH);
  ndpi_free(t2hash);
  ndpi_free(reverseOrder);
  ndpi_free(startPos);
  return true;
}




#endif