aboutsummaryrefslogtreecommitdiff
path: root/src/lib/ndpi_analyze.c
blob: c6132e429453b6177bf0a79703686abc32a07210 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
/*
 * ndpi_analyze.c
 *
 * Copyright (C) 2019-23 - ntop.org and contributors
 *
 * This file is part of nDPI, an open source deep packet inspection
 * library.
 *
 * nDPI is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * nDPI is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with nDPI.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <stdint.h>
#include <inttypes.h>
#include <math.h>
#include <float.h> /* FLT_EPSILON */
#include "ndpi_api.h"
#include "ndpi_config.h"
#include "third_party/include/hll.h"
#include "third_party/include/kdtree.h"
#include "third_party/include/ball.h"
#include "ndpi_replace_printf.h"

/* ********************************************************************************* */

void ndpi_init_data_analysis(struct ndpi_analyze_struct *ret, u_int16_t _max_series_len) {
  u_int32_t len;

  memset(ret, 0, sizeof(*ret));

  if(_max_series_len > MAX_SERIES_LEN) _max_series_len = MAX_SERIES_LEN;
  ret->num_values_array_len = _max_series_len;

  if(ret->num_values_array_len > 0) {
    len = sizeof(u_int64_t) * ret->num_values_array_len;
    if((ret->values = ndpi_malloc(len)) != NULL)
      memset(ret->values, 0, len);
    else
      ret->num_values_array_len = 0;
  }
}

/* ********************************************************************************* */

struct ndpi_analyze_struct* ndpi_alloc_data_analysis(u_int16_t _max_series_len) {
  struct ndpi_analyze_struct *ret = ndpi_malloc(sizeof(struct ndpi_analyze_struct));

  if(ret != NULL)
    ndpi_init_data_analysis(ret, _max_series_len);

  return(ret);
}

/* ********************************************************************************* */

struct ndpi_analyze_struct* ndpi_alloc_data_analysis_from_series(const u_int32_t *values, u_int16_t num_values) {
  u_int16_t i;
  struct ndpi_analyze_struct *ret = ndpi_alloc_data_analysis(num_values);

  if(ret == NULL) return(NULL);

  for(i=0; i<num_values; i++)
    ndpi_data_add_value(ret, (const u_int64_t)values[i]);

  return(ret);
}

/* ********************************************************************************* */

void ndpi_free_data_analysis(struct ndpi_analyze_struct *d, u_int8_t free_pointer) {
  if(d && d->values) ndpi_free(d->values);
  if(free_pointer) ndpi_free(d);
}

/* ********************************************************************************* */

void ndpi_reset_data_analysis(struct ndpi_analyze_struct *d) {
  u_int64_t *values_bkp;
  u_int32_t num_values_array_len_bpk;

  if(!d)
    return;

  values_bkp = d->values;
  num_values_array_len_bpk = d->num_values_array_len;

  memset(d, 0, sizeof(struct ndpi_analyze_struct));

  d->values = values_bkp;
  d->num_values_array_len = num_values_array_len_bpk;

  if(d->values)
    memset(d->values, 0, sizeof(u_int64_t)*d->num_values_array_len);
}

/* ********************************************************************************* */

/*
  Add a new point to analyze
 */
void ndpi_data_add_value(struct ndpi_analyze_struct *s, const u_int64_t value) {
  if(!s)
    return;

  if(s->sum_total == 0)
    s->min_val = s->max_val = value;
  else {
    if(value < s->min_val) s->min_val = value;
    if(value > s->max_val) s->max_val = value;
  }

  s->sum_total += value, s->num_data_entries++;

  if(s->num_values_array_len) {
    s->values[s->next_value_insert_index] = value;

    if(++s->next_value_insert_index == s->num_values_array_len)
      s->next_value_insert_index = 0;
  }

  /*
    Optimized stddev calculation

    https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/a/calculating-standard-deviation-step-by-step
    https://math.stackexchange.com/questions/683297/how-to-calculate-standard-deviation-without-detailed-historical-data
    http://mathcentral.uregina.ca/QQ/database/QQ.09.02/carlos1.html
  */
  s->stddev.sum_square_total += (u_int64_t)value * (u_int64_t)value;
}

/* ********************************************************************************* */

/* Compute the average on all values */
float ndpi_data_average(struct ndpi_analyze_struct *s) {
  if((!s) || (s->num_data_entries == 0))
    return(0);

  return((float)s->sum_total / (float)s->num_data_entries);
}

/* ********************************************************************************* */

u_int64_t ndpi_data_last(struct ndpi_analyze_struct *s) {
  if((!s) || (s->num_data_entries == 0) || (s->num_values_array_len == 0))
    return(0);

  if(s->next_value_insert_index == 0)
    return(s->values[s->num_values_array_len-1]);
  else
    return(s->values[s->next_value_insert_index-1]);
}

/* Return min/max on all values */
u_int64_t ndpi_data_min(struct ndpi_analyze_struct *s) { return(s ? s->min_val : 0); }
u_int64_t ndpi_data_max(struct ndpi_analyze_struct *s) { return(s ? s->max_val : 0); }

/* ********************************************************************************* */

/* Compute the variance on all values */
float ndpi_data_variance(struct ndpi_analyze_struct *s) {
  if(!s)
    return(0);
  float v = s->num_data_entries ?
    ((float)s->stddev.sum_square_total - ((float)s->sum_total * (float)s->sum_total / (float)s->num_data_entries)) / (float)s->num_data_entries : 0.0;

  return((v < 0  /* rounding problem */) ? 0 : v);
}

/* ********************************************************************************* */

/*
  See the link below for "Population and sample standard deviation review"
  https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/variance-standard-deviation-sample/a/population-and-sample-standard-deviation-review

  In nDPI we use an approximate stddev calculation to avoid storing all data in memory
*/
/* Compute the standard deviation on all values */
float ndpi_data_stddev(struct ndpi_analyze_struct *s) {
  return(sqrt(ndpi_data_variance(s)));
}

/* ********************************************************************************* */

/*
   Compute the mean on all values
   NOTE: In statistics, there is no difference between the mean and average
*/
float ndpi_data_mean(struct ndpi_analyze_struct *s) {
  return(ndpi_data_average(s));
}

/* ********************************************************************************* */

/* Compute the average only on the sliding window */
float ndpi_data_window_average(struct ndpi_analyze_struct *s) {
  if(s && s->num_values_array_len) {
    float   sum = 0.0;
    u_int16_t i, n = ndpi_min(s->num_data_entries, s->num_values_array_len);

    if(n == 0)
      return(0);

    for(i=0; i<n; i++)
      sum += s->values[i];

    return((float)sum / (float)n);
  } else
    return(0);
}

/* ********************************************************************************* */

/* Compute the variance only on the sliding window */
float ndpi_data_window_variance(struct ndpi_analyze_struct *s) {
  if(s && s->num_values_array_len) {
    float   sum = 0.0, avg = ndpi_data_window_average(s);
    u_int16_t i, n = ndpi_min(s->num_data_entries, s->num_values_array_len);

    if(n == 0)
      return(0);

    for(i=0; i<n; i++)
      sum += pow(s->values[i]-avg, 2);

    return((float)sum / (float)n);
  } else
    return(0);
}

/* ********************************************************************************* */

/* Compute the variance only on the sliding window */
float ndpi_data_window_stddev(struct ndpi_analyze_struct *s) {
  return(sqrt(ndpi_data_window_variance(s)));
}

/* ********************************************************************************* */

/*
  Compute entropy on the last sliding window values
*/
float ndpi_data_entropy(struct ndpi_analyze_struct *s) {
  if(s && s->num_values_array_len) {
    int i;
    float sum = 0.0, total = 0.0;

    for(i=0; i<s->num_values_array_len; i++)
      total += s->values[i];

    if(fpclassify(total) == FP_ZERO)
      return(0);

    for (i=0; i<s->num_values_array_len; i++) {
      float tmp = (float)s->values[i] / (float)total;

      if(tmp > FLT_EPSILON)
	sum -= tmp * logf(tmp);
    }

    return(sum / logf(2.0));
  } else
    return(0);
}

/* ********************************************************************************* */

void ndpi_data_print_window_values(struct ndpi_analyze_struct *s) {
  if(s && s->num_values_array_len) {
    u_int16_t i, n = ndpi_min(s->num_data_entries, s->num_values_array_len);

    for(i=0; i<n; i++)
      printf("[%u: %" PRIu64 "]", i, s->values[i]);

    printf("\n");
  }
}

/* ********************************************************************************* */

/*
  Upload / download ration

  -1  Download
  0   Mixed
  1   Upload
 */
float ndpi_data_ratio(u_int32_t sent, u_int32_t rcvd) {
  float s = (float)((int64_t)sent +  (int64_t)rcvd);
  float d = (float)((int64_t)sent -  (int64_t)rcvd);

  return((s == 0) ? 0 : (d/s));
}

/* ********************************************************************************* */

const char* ndpi_data_ratio2str(float ratio) {
  if(ratio < -0.2) return("Download");
  else if(ratio > 0.2) return("Upload");
  else return("Mixed");
}

/* ********************************************************************************* */
/* ********************************************************************************* */

int ndpi_hll_init(struct ndpi_hll *hll, u_int8_t bits) {
  return(hll_init(hll, bits));
}

void ndpi_hll_destroy(struct ndpi_hll *hll) {
  hll_destroy(hll);
}

void ndpi_hll_reset(struct ndpi_hll *hll) {
  hll_reset(hll);
}

int ndpi_hll_add(struct ndpi_hll *hll, const char *data, size_t data_len) {
  return(hll_add(hll, (const void *)data, data_len));
}

/* 1 = rank changed, 0 = no changes in rank */
int ndpi_hll_add_number(struct ndpi_hll *hll, u_int32_t value) {
  return(hll_add(hll, (const void *)&value, sizeof(value)));
}

double ndpi_hll_count(struct ndpi_hll *hll) {
  return(hll_count(hll));
}

/* ********************************************************************************* */
/* ********************************************************************************* */

int ndpi_init_bin(struct ndpi_bin *b, enum ndpi_bin_family f, u_int16_t num_bins) {
  if(!b)
    return(-1);

  b->num_bins = num_bins, b->family = f, b->is_empty = 1;

  switch(f) {
  case ndpi_bin_family8:
    if((b->u.bins8 = (u_int8_t*)ndpi_calloc(num_bins, sizeof(u_int8_t))) == NULL)
      return(-1);
    break;

  case ndpi_bin_family16:
    if((b->u.bins16 = (u_int16_t*)ndpi_calloc(num_bins, sizeof(u_int16_t))) == NULL)
      return(-1);
    break;

  case ndpi_bin_family32:
    if((b->u.bins32 = (u_int32_t*)ndpi_calloc(num_bins, sizeof(u_int32_t))) == NULL)
      return(-1);
    break;

  case ndpi_bin_family64:
    if((b->u.bins64 = (u_int64_t*)ndpi_calloc(num_bins, sizeof(u_int64_t))) == NULL)
      return(-1);
    break;
  }

  return(0);
}

/* ********************************************************************************* */

void ndpi_free_bin(struct ndpi_bin *b) {
  if(!b || !b->u.bins8)
    return;

  switch(b->family) {
  case ndpi_bin_family8:
    ndpi_free(b->u.bins8);
    break;
  case ndpi_bin_family16:
    ndpi_free(b->u.bins16);
    break;
  case ndpi_bin_family32:
    ndpi_free(b->u.bins32);
    break;
  case ndpi_bin_family64:
    ndpi_free(b->u.bins64);
    break;
  }
}

/* ********************************************************************************* */

struct ndpi_bin* ndpi_clone_bin(struct ndpi_bin *b) {
  struct ndpi_bin *out;

  if(!b || !b->u.bins8) return(NULL);

  out = (struct ndpi_bin*)ndpi_malloc(sizeof(struct ndpi_bin));
  if(!out) return(NULL);

  out->num_bins = b->num_bins, out->family = b->family, out->is_empty = b->is_empty;

  switch(out->family) {
  case ndpi_bin_family8:
    if((out->u.bins8 = (u_int8_t*)ndpi_calloc(out->num_bins, sizeof(u_int8_t))) == NULL) {
      ndpi_free(out);
      return(NULL);
    } else
      memcpy(out->u.bins8, b->u.bins8, out->num_bins*sizeof(u_int8_t));
    break;

  case ndpi_bin_family16:
    if((out->u.bins16 = (u_int16_t*)ndpi_calloc(out->num_bins, sizeof(u_int16_t))) == NULL) {
      ndpi_free(out);
      return(NULL);
    } else
      memcpy(out->u.bins16, b->u.bins16, out->num_bins*sizeof(u_int16_t));
    break;

  case ndpi_bin_family32:
    if((out->u.bins32 = (u_int32_t*)ndpi_calloc(out->num_bins, sizeof(u_int32_t))) == NULL) {
      ndpi_free(out);
      return(NULL);
    } else
      memcpy(out->u.bins32, b->u.bins32, out->num_bins*sizeof(u_int32_t));
    break;

  case ndpi_bin_family64:
    if((out->u.bins64 = (u_int64_t*)ndpi_calloc(out->num_bins, sizeof(u_int64_t))) == NULL) {
      ndpi_free(out);
      return(NULL);
    } else
      memcpy(out->u.bins64, b->u.bins64, out->num_bins*sizeof(u_int64_t));
    break;
  }

  return(out);
}

/* ********************************************************************************* */

void ndpi_set_bin(struct ndpi_bin *b, u_int16_t slot_id, u_int64_t val) {
  if(!b || !b->u.bins8 || b->num_bins == 0)
    return;

  if(slot_id >= b->num_bins) slot_id = b->num_bins - 1;

  switch(b->family) {
  case ndpi_bin_family8:
    b->u.bins8[slot_id] = (u_int8_t)val;
    break;
  case ndpi_bin_family16:
    b->u.bins16[slot_id] = (u_int16_t)val;
    break;
  case ndpi_bin_family32:
    b->u.bins32[slot_id] = (u_int32_t)val;
    break;
  case ndpi_bin_family64:
    b->u.bins64[slot_id] = (u_int64_t)val;
    break;
  }
}

/* ********************************************************************************* */

void ndpi_inc_bin(struct ndpi_bin *b, u_int16_t slot_id, u_int64_t val) {
  if(!b || !b->u.bins8 || b->num_bins == 0)
    return;

  b->is_empty = 0;

  if(slot_id >= b->num_bins) slot_id = b->num_bins - 1;

  switch(b->family) {
  case ndpi_bin_family8:
    b->u.bins8[slot_id] += (u_int8_t)val;
    break;
  case ndpi_bin_family16:
    b->u.bins16[slot_id] += (u_int16_t)val;
    break;
  case ndpi_bin_family32:
    b->u.bins32[slot_id] += (u_int32_t)val;
    break;
  case ndpi_bin_family64:
    b->u.bins64[slot_id] += (u_int64_t)val;
    break;
  }
}

/* ********************************************************************************* */

u_int64_t ndpi_get_bin_value(struct ndpi_bin *b, u_int16_t slot_id) {
  if(!b || !b->u.bins8 || b->num_bins == 0)
    return(0);

  if(slot_id >= b->num_bins) slot_id = b->num_bins - 1;

  switch(b->family) {
  case ndpi_bin_family8:
    return(b->u.bins8[slot_id]);
  case ndpi_bin_family16:
    return(b->u.bins16[slot_id]);
  case ndpi_bin_family32:
    return(b->u.bins32[slot_id]);
  case ndpi_bin_family64:
    return(b->u.bins64[slot_id]);
  }

  return(0);
}

/* ********************************************************************************* */

void ndpi_reset_bin(struct ndpi_bin *b) {
  if(!b || !b->u.bins8)
    return;

  b->is_empty = 1;

  switch(b->family) {
  case ndpi_bin_family8:
    memset(b->u.bins8, 0, sizeof(u_int8_t)*b->num_bins);
    break;
  case ndpi_bin_family16:
    memset(b->u.bins16, 0, sizeof(u_int16_t)*b->num_bins);
    break;
  case ndpi_bin_family32:
    memset(b->u.bins32, 0, sizeof(u_int32_t)*b->num_bins);
    break;
  case ndpi_bin_family64:
    memset(b->u.bins64, 0, sizeof(u_int64_t)*b->num_bins);
    break;
  }
}
/* ********************************************************************************* */

/*
  Each bin slot is transformed in a % with respect to the value total
 */
void ndpi_normalize_bin(struct ndpi_bin *b) {
  u_int16_t i;
  u_int32_t tot = 0;

  if(!b || b->is_empty) return;

  switch(b->family) {
  case ndpi_bin_family8:
    for(i=0; i<b->num_bins; i++) tot += b->u.bins8[i];

    if(tot > 0) {
      for(i=0; i<b->num_bins; i++)
	b->u.bins8[i] = (b->u.bins8[i]*100) / tot;
    }
    break;

  case ndpi_bin_family16:
    for(i=0; i<b->num_bins; i++) tot += b->u.bins16[i];

    if(tot > 0) {
      for(i=0; i<b->num_bins; i++)
	b->u.bins16[i] = (b->u.bins16[i]*100) / tot;
    }
    break;

  case ndpi_bin_family32:
    for(i=0; i<b->num_bins; i++) tot += b->u.bins32[i];

    if(tot > 0) {
      for(i=0; i<b->num_bins; i++)
	b->u.bins32[i] = (b->u.bins32[i]*100) / tot;
    }
    break;

  case ndpi_bin_family64:
    for(i=0; i<b->num_bins; i++) tot += b->u.bins64[i];

    if(tot > 0) {
      for(i=0; i<b->num_bins; i++)
	b->u.bins64[i] = (b->u.bins64[i]*100) / tot;
    }
    break;
  }
}

/* ********************************************************************************* */

char* ndpi_print_bin(struct ndpi_bin *b, u_int8_t normalize_first, char *out_buf, u_int out_buf_len) {
  u_int16_t i;
  u_int len = 0;

  if(!b || !b->u.bins8 || !out_buf) return(out_buf); else out_buf[0] = '\0';

  if(normalize_first)
    ndpi_normalize_bin(b);

  switch(b->family) {
  case ndpi_bin_family8:
    for(i=0; i<b->num_bins; i++) {
      int rc = ndpi_snprintf(&out_buf[len], out_buf_len-len, "%s%u", (i > 0) ? "," : "", b->u.bins8[i]);

      if(rc < 0 || (u_int)rc >= out_buf_len-len) break;
      len += rc;
    }
    break;

  case ndpi_bin_family16:
    for(i=0; i<b->num_bins; i++) {
      int rc = ndpi_snprintf(&out_buf[len], out_buf_len-len, "%s%u", (i > 0) ? "," : "", b->u.bins16[i]);

      if(rc < 0 || (u_int)rc >= out_buf_len-len) break;
      len += rc;
    }
    break;

  case ndpi_bin_family32:
    for(i=0; i<b->num_bins; i++) {
      int rc = ndpi_snprintf(&out_buf[len], out_buf_len-len, "%s%u", (i > 0) ? "," : "", b->u.bins32[i]);

      if(rc < 0 || (u_int)rc >= out_buf_len-len) break;
      len += rc;
    }
    break;

  case ndpi_bin_family64:
    for(i=0; i<b->num_bins; i++) {
      int rc = ndpi_snprintf(&out_buf[len], out_buf_len-len, "%s%llu", (i > 0) ? "," : "", (unsigned long long)b->u.bins64[i]);

      if(rc < 0 || (u_int)rc >= out_buf_len-len) break;
      len += rc;
    }
    break;
  }

  return(out_buf);
}

/* ********************************************************************************* */

// #define COSINE_SIMILARITY

/*
   Determines how similar are two bins

   Cosine Similiarity
   0 = Very differet
   ... (gray zone)
   1 = Alike

   See https://en.wikipedia.org/wiki/Cosine_similarity for more details

   ---
   Euclidean similarity

   0 = alike
   ...
   the higher the more different

   if similarity_max_threshold != 0, we assume that bins arent similar
*/
float ndpi_bin_similarity(struct ndpi_bin *b1, struct ndpi_bin *b2,
			  u_int8_t normalize_first, float similarity_max_threshold) {
  u_int16_t i;
  float threshold = similarity_max_threshold*similarity_max_threshold;

  if(!b1 || !b2)
    return(-1);

  if(
     // (b1->family != b2->family) ||
     (b1->num_bins != b2->num_bins))
    return(-1);

  if(normalize_first)
    ndpi_normalize_bin(b1), ndpi_normalize_bin(b2);

#ifdef COSINE_SIMILARITY
  {
    u_int32_t sumxx = 0, sumxy = 0, sumyy = 0;

    for(i=0; i<b1->num_bins; i++) {
      u_int32_t a = ndpi_get_bin_value(b1, i);
      u_int32_t b = ndpi_get_bin_value(b2, i);

      sumxx += a*a, sumyy += b*b, sumxy += a*b;
    }

    if((sumxx == 0) || (sumyy == 0))
      return(0);
    else
      return((float)sumxy / sqrt((float)(sumxx * sumyy)));
  }
#else
  {
    double sum = 0;

    for(i=0; i<b1->num_bins; i++) {
      u_int32_t a = ndpi_get_bin_value(b1, i);
      u_int32_t b = ndpi_get_bin_value(b2, i);
      u_int32_t diff = (a > b) ? (a - b) : (b - a);

      if(a != b) sum += pow(diff, 2);

      if(threshold && (sum > threshold))
	return(-2); /* Sorry they are not similar */

      // printf("%u/%u) [a: %u][b: %u][sum: %u]\n", i, b1->num_bins, a, b, sum);
    }

    /* The lower the more similar */
    return(sqrt(sum));
  }
#endif
}

/* ********************************************************************************* */

//#define DEBUG_CLUSTER_BINS
#define MAX_NUM_CLUSTERS  128

/*
  Clusters bins into 'num_clusters'
  - (in) bins: a vection 'num_bins' long of bins to cluster
  - (in) 'num_clusters': number of desired clusters 0...(num_clusters-1)
  - (out) 'cluster_ids': a vector 'num_bins' long containing the id's of each clustered bin
  - (out) 'centroids': an optional 'num_clusters' long vector of (centroid) bins
  See
  - https://en.wikipedia.org/wiki/K-means_clustering
 */
int ndpi_cluster_bins(struct ndpi_bin *bins, u_int16_t num_bins,
		      u_int8_t num_clusters, u_int16_t *cluster_ids,
		      struct ndpi_bin *centroids) {
  u_int16_t i, j, max_iterations = 25, num_iterations, num_moves;
  u_int8_t alloc_centroids = 0;
  char out_buf[256];
  float *bin_score;
  u_int16_t num_cluster_elems[MAX_NUM_CLUSTERS] = { 0 };

  (void)out_buf;
  srand(time(NULL));

  if(!bins || num_bins == 0 || !cluster_ids || num_clusters == 0)
    return(-1);

  if(num_clusters > num_bins)         num_clusters = num_bins;
  if(num_clusters > MAX_NUM_CLUSTERS) num_clusters = MAX_NUM_CLUSTERS;

#ifdef DEBUG_CLUSTER_BINS
  printf("Distributing %u bins over %u clusters\n", num_bins, num_clusters);
#endif

  if((bin_score = (float*)ndpi_calloc(num_bins, sizeof(float))) == NULL)
    return(-2);

  if(centroids == NULL) {
    alloc_centroids = 1;

    if((centroids = (struct ndpi_bin*)ndpi_malloc(sizeof(struct ndpi_bin)*num_clusters)) == NULL) {
      ndpi_free(bin_score);
      return(-2);
    } else {
      for(i=0; i<num_clusters; i++)
	ndpi_init_bin(&centroids[i], ndpi_bin_family32 /* Use 32 bit to avoid overlaps */, bins[0].num_bins);
    }
  }

  /* Reset the id's */
  memset(cluster_ids, 0, sizeof(u_int16_t) * num_bins);

  /* Randomly pick a cluster id */
  for(i=0; i<num_bins; i++) {
    u_int cluster_id = rand() % num_clusters;

    cluster_ids[i] = cluster_id;

#ifdef DEBUG_CLUSTER_BINS
    printf("Initializing cluster %u for bin %u: %s\n",
	   cluster_id, i,
	   ndpi_print_bin(&bins[i], 0, out_buf, sizeof(out_buf)));
#endif

    num_cluster_elems[cluster_id]++;
  }

  num_iterations = 0;

  /* Now let's try to find a better arrangement */
  while(num_iterations++ < max_iterations) {

    /* Compute the centroids for each cluster */
    memset(bin_score, 0, num_bins*sizeof(float));

#ifdef DEBUG_CLUSTER_BINS
    printf("\nIteration %u\n", num_iterations);

    for(j=0; j<num_clusters; j++)
      printf("Cluster %u: %u bins\n", j, num_cluster_elems[j]);
#endif

    for(i=0; i<num_clusters; i++)
      ndpi_reset_bin(&centroids[i]);

    for(i=0; i<num_bins; i++) {
      for(j=0; j<bins[i].num_bins; j++) {
	ndpi_inc_bin(&centroids[cluster_ids[i]], j, ndpi_get_bin_value(&bins[i], j));
      }
    }

    for(i=0; i<num_clusters; i++) {
      ndpi_normalize_bin(&centroids[i]);

#ifdef DEBUG_CLUSTER_BINS
      printf("Centroid [%u] %s\n", i,
	     ndpi_print_bin(&centroids[i], 0, out_buf, sizeof(out_buf)));
#endif
    }

    /* Now let's check if there are bins to move across clusters */
    num_moves = 0;

    for(i=0; i<num_bins; i++) {
      u_int16_t j;
      float best_similarity, current_similarity = 0;
      u_int8_t cluster_id = 0;

#ifdef DEBUG_CLUSTER_BINS
      printf("Analysing bin %u [cluster: %u]\n",
	     i, cluster_ids[i]);
#endif

#ifdef COSINE_SIMILARITY
      best_similarity = -1;
#else
      best_similarity = 99999999999.0f;
#endif

      for(j=0; j<num_clusters; j++) {
	float similarity;

	if(centroids[j].is_empty) continue;

	similarity = ndpi_bin_similarity(&bins[i], &centroids[j], 0, 0);

	if(j == cluster_ids[i])
	  current_similarity = similarity;

#ifdef DEBUG_CLUSTER_BINS
	printf("Bin %u / centroid %u [similarity: %f]\n", i, j, similarity);
#endif

#ifdef COSINE_SIMILARITY
	if(similarity > best_similarity) {
	  cluster_id = j, best_similarity = similarity;
	}
#else
	if(similarity < best_similarity) {
	  cluster_id = j, best_similarity = similarity;
	}
#endif
      }

      if((best_similarity == current_similarity) && (num_cluster_elems[cluster_ids[i]] > 1)) {
	/*
          In case of identical similarity let's leave things as they are
          this unless this is a cluster with only one element
	*/
	cluster_id = cluster_ids[i];
      }

      bin_score[i] = best_similarity;

      if(cluster_ids[i] != cluster_id) {
#ifdef DEBUG_CLUSTER_BINS
	printf("Moved bin %u from cluster %u -> %u [similarity: %f]\n",
	       i, cluster_ids[i], cluster_id, best_similarity);
#endif

	num_cluster_elems[cluster_ids[i]]--;
	num_cluster_elems[cluster_id]++;

	cluster_ids[i] = cluster_id;
	num_moves++;
      }
    }

    if(num_moves == 0)
      break;

#ifdef DEBUG_CLUSTER_BINS
    for(j=0; j<num_clusters; j++)
      printf("Cluster %u: %u bins\n", j, num_cluster_elems[j]);
#endif

#if 0
    for(j=0; j<num_clusters; j++) {
      if(num_cluster_elems[j] == 0) {
	u_int16_t candidate;
	float score;

	if(verbose)
	  printf("\nCluster %u is empty: need to rebalance\n", j);

#ifdef COSINE_SIMILARITY
	score = 99999999999;

	for(i=0; i<num_bins; i++) {
	  if((cluster_ids[i] != j) && (bin_score[i] < score) && (num_cluster_elems[cluster_ids[i]] > 1))
	    score = bin_score[i], candidate = i;
	}
#else
	score = 0;

	for(i=0; i<num_bins; i++) {
	  if((cluster_ids[i] != j) && (bin_score[i] > score) && (num_cluster_elems[cluster_ids[i]] > 1))
	    score = bin_score[i], candidate = i;
	}
#endif

	if(verbose)
	  printf("Rebalance: moving bin %u from cluster %u -> %u [similarity: %f]\n",
		 candidate, cluster_ids[candidate], j, score);

	num_cluster_elems[cluster_ids[candidate]]--;
	num_cluster_elems[j]++;
	cluster_ids[candidate] = j;
      }
    }
#endif
  } /* while(...) */

  if(alloc_centroids) {
    for(i=0; i<num_clusters; i++)
      ndpi_free_bin(&centroids[i]);

    ndpi_free(centroids);
  }

  ndpi_free(bin_score);

  return(0);
}

/* ********************************************************************************* */

/*
   RSI (Relative Strength Index)

   RSI = 100 − [ 100/ (1 + (Average gain/Average loss)) ]

   https://www.investopedia.com/terms/r/rsi.asp
*/

int ndpi_alloc_rsi(struct ndpi_rsi_struct *s, u_int16_t num_learning_values) {
  if(!s || num_learning_values == 0)
    return(-1);

  memset(s, 0, sizeof(struct ndpi_rsi_struct));

  s->empty  = 1, s->num_values = num_learning_values;
  s->gains  = (u_int32_t*)ndpi_calloc(num_learning_values, sizeof(u_int32_t));
  s->losses = (u_int32_t*)ndpi_calloc(num_learning_values, sizeof(u_int32_t));

  if(s->gains && s->losses) {
    s->last_value = 0;
    return(0);
  } else {
    if(s->gains)  ndpi_free(s->gains);
    if(s->losses) ndpi_free(s->losses);
    return(-1);
  }
}

/* ************************************* */

void ndpi_free_rsi(struct ndpi_rsi_struct *s) {
  ndpi_free(s->gains), ndpi_free(s->losses);
}

/* ************************************* */

// #define DEBUG_RSI

/*
  This function adds a new value and returns the computed RSI, or -1
  if there are too few points (< num_learning_values)

  RSI < 30 (too many losses)
  RSI > 70 (too many gains)
*/
float ndpi_rsi_add_value(struct ndpi_rsi_struct *s, const u_int32_t value) {
  float relative_strength;

  if(!s->empty) {
    u_int32_t val;

    s->total_gains -= s->gains[s->next_index], s->total_losses -= s->losses[s->next_index];

    if(value > s->last_value) {
      val = value - s->last_value;
      s->gains[s->next_index] = val, s->losses[s->next_index] = 0;
      s->total_gains += val;
#ifdef DEBUG_RSI
      printf("Gain: %u\n", val);
#endif
    } else {
      val = s->last_value - value;
      s->losses[s->next_index] = val, s->gains[s->next_index] = 0;
      s->total_losses += val;
#ifdef DEBUG_RSI
      printf("Loss: %u\n", val);
#endif
    }

#ifdef DEBUG_RSI
    printf("[value: %u][total_gains: %u][total_losses: %u][cur_idx: %u]\n", value, s->total_gains, s->total_losses, s->next_index);
#endif
  }

  s->last_value = value, s->next_index = (s->next_index + 1) % s->num_values, s->empty = 0;
  if(s->next_index == 0) s->rsi_ready = 1; /* We have completed one round */

  if(!s->rsi_ready)
    return(-1); /* Too early */
  else if(s->total_losses == 0) /* Avoid division by zero (**) */
    return(100.);
  else {
    relative_strength = (float)s->total_gains / (float)s->total_losses; /* (**) */
#ifdef DEBUG_RSI
    printf("RSI: %f\n", relative_strength);
#endif
    return(100. - (100. / (1. + relative_strength)));
  }
}

/* *********************************************************** */

/* https://www.johndcook.com/blog/cpp_phi_inverse/ */

static double ndpi_rational_approximation(double t) {
  // Abramowitz and Stegun formula 26.2.23.
  // The absolute value of the error should be less than 4.5 e-4.
  double c[] = { 2.515517, 0.802853, 0.010328 };
  double d[] = { 1.432788, 0.189269, 0.001308 };

  return(t - ((c[2]*t + c[1])*t + c[0]) / (((d[2]*t + d[1])*t + d[0])*t + 1.0));
}

static double ndpi_normal_cdf_inverse(double p) {
  if(p <= 0.0 || p >= 1.0)
    return(0); /* Invalid argument: valid range 0 < X < 1 */

  if(p < 0.5) {
    // F^-1(p) = - G^-1(p)
    return -ndpi_rational_approximation( sqrt(-2.0*log(p)) );
  } else {
    // F^-1(p) = G^-1(1-p)
    return ndpi_rational_approximation( sqrt(-2.0*log(1-p)) );
  }
}

double ndpi_avg_inline(u_int64_t *v, u_int num) {
  double avg = 0;
  u_int i;

  for(i=0; i<num; i++)
    avg += v[i];

  return(avg / (u_int32_t)num);
}

/* *********************************************************** */
/* *********************************************************** */

/*
  Initializes Holt-Winters with Confidence Interval

   Input
   hw:          Datastructure to initialize and that needs tobe freed with ndpi_hw_free()
   num_periods  Number of observations of a season, or in ML-parlance the number of points that are required to make the forecast
   additive     If set to 1 will use the Holt-Winters additive seasonal (should be the default), otherwise the multiplicative seasonal.
   alpha        Level: specifies the coefficient for the level smoothing. Range 0..1. The higher α, the faster the method forgets old values
   beta         Trend: specifies the coefficient for the trend smoothing. Range 0..1.
   gamma        Seasonal: specifies the coefficient for the seasonal smoothing. Range 0..1. With gamma = 0, seasonal correction is not used.

   significance Significance level for the forecats sed for computing lower and upper bands. Range 0..1. Typical values 0.05 or less.
                See https://en.wikipedia.org/wiki/Statistical_significance

   NOTE (See https://otexts.com/fpp2/holt-winters.html)
   The additive method is preferred when the seasonal variations are roughly constant through the series,
   while the multiplicative method is preferred when the seasonal variations are changing proportional to the level of the series.

   For learning more about timeseries forecasting see
   https://www.real-statistics.com/time-series-analysis/basic-time-series-forecasting/
 */

int ndpi_hw_init(struct ndpi_hw_struct *hw,
		 u_int16_t num_periods, u_int8_t additive_seeasonal,
		 double alpha, double beta, double gamma, float significance) {
  memset(hw, 0, sizeof(struct ndpi_hw_struct));

  if(num_periods == 65535) /* To avoid overflow */
    return(-1);

  hw->params.num_season_periods = num_periods + 1;
  hw->params.alpha      = alpha;
  hw->params.beta       = beta;
  hw->params.gamma      = gamma;
  hw->params.use_hw_additive_seasonal = additive_seeasonal;

  if((significance < 0) || (significance > 1)) significance = 0.05;
  hw->params.ro         = ndpi_normal_cdf_inverse(1 - (significance / 2.));

  if((hw->y = (u_int64_t*)ndpi_calloc(hw->params.num_season_periods, sizeof(u_int64_t))) == NULL)
    return(-1);

  if((hw->s = (double*)ndpi_calloc(hw->params.num_season_periods, sizeof(double))) == NULL) {
    ndpi_free(hw->y);
    hw->y = NULL;
    return(-1);
  }

  return(0);
}

/* *********************************************************** */

/* Frees the memory allocated by ndpi_hw_init() */
void ndpi_hw_free(struct ndpi_hw_struct *hw) {
  if(hw->y) ndpi_free(hw->y);
  if(hw->s) ndpi_free(hw->s);
}

/* *********************************************************** */

/*
   Returns the forecast and the band (forecast +/- band are the upper and lower values)

   Input
   hw:          Datastructure previously initialized
   value        The value to add to the measurement

   Output
   forecast         The forecasted value
   confidence_band  The value +/- on which the value should fall is not an anomaly

   Return code
   0                Too early: we're still in the learning phase. Output values are zero.
   1                Normal processing: forecast and confidence_band are meaningful
*/
int ndpi_hw_add_value(struct ndpi_hw_struct *hw, const u_int64_t _value, double *forecast,  double *confidence_band) {
  if(hw->num_values < hw->params.num_season_periods) {
    hw->y[hw->num_values++] = _value;

    *forecast = 0;
    *confidence_band = 0;

    return(0); /* Too early still training... */
  } else {
    u_int idx     = hw->num_values % hw->params.num_season_periods;
    double prev_u, prev_v, prev_s, value  = (double)_value;
    double sq, error, sq_error;
    u_int observations;

    if(hw->num_values == hw->params.num_season_periods) {
      double avg = ndpi_avg_inline(hw->y, hw->params.num_season_periods);
      u_int i;

      if(avg == 0) avg = 1; /* Avoid divisions by zero */

      for(i=0; i<hw->params.num_season_periods; i++)
	hw->s[i] = hw->y[i] / avg;

      i = hw->params.num_season_periods-1;
      if(hw->s[i] == 0)
	hw->u = 0;
      else
	hw->u = _value / hw->s[i];

      hw->v = 0;
      ndpi_free(hw->y);
      hw->y = NULL;
    }

    idx     = hw->num_values % hw->params.num_season_periods;
    prev_u = hw->u, prev_v = hw->v, prev_s = hw->s[idx];

    if(prev_s != 0)
      hw->u = ((hw->params.alpha * value) / prev_s)  + ( 1 - hw->params.alpha) * (hw->u + hw->v);
    else
      hw->u = 0; /* Avoid divisions by zero */

    hw->v = (hw->params.beta   * (hw->u - prev_u)) + ((1 - hw->params.beta ) * hw->v);

    if(hw->u != 0)
      hw->s[idx] = (hw->params.gamma  * (value / hw->u))  + ((1 - hw->params.gamma) * prev_s);
    else
      hw->s[idx] = 0;  /* Avoid divisions by zero */

    if(hw->params.use_hw_additive_seasonal)
      *forecast = (prev_u + prev_v) + prev_s;
    else
      *forecast = (prev_u + prev_v) * prev_s;

    error                 = value - *forecast;
    sq_error              =  error * error;
    hw->sum_square_error += sq_error, hw->prev_error.sum_square_error += sq_error;
    observations = (hw->num_values < MAX_SQUARE_ERROR_ITERATIONS) ? hw->num_values : ((hw->num_values % MAX_SQUARE_ERROR_ITERATIONS) + MAX_SQUARE_ERROR_ITERATIONS + 1);
    sq = sqrt(hw->sum_square_error / observations);
    *confidence_band      = hw->params.ro * sq;

#ifdef HW_DEBUG
    printf("[num_values: %u][u: %.3f][v: %.3f][s: %.3f][error: %.3f][forecast: %.3f][sqe: %.3f][sq: %.3f][confidence_band: %.3f]\n",
	   hw->num_values, hw->u, hw->v, hw->s[idx], error,
	   *forecast, hw->sum_square_error,
	   sq, *confidence_band);
#endif

    hw->num_values++, idx = (idx + 1) % hw->params.num_season_periods;

    if(++hw->prev_error.num_values_rollup == MAX_SQUARE_ERROR_ITERATIONS) {
      hw->sum_square_error = hw->prev_error.sum_square_error;
      hw->prev_error.num_values_rollup = 0, hw->prev_error.sum_square_error = 0;
    }

    return(1); /* We're in business: forecast is meaningful now */
  }
}

/* *********************************************************** */

void ndpi_hw_reset(struct ndpi_hw_struct *hw) {
  hw->prev_error.sum_square_error = 0, hw->prev_error.num_values_rollup = 0;
  hw->num_values = 0;
  hw->u = hw->v = hw->sum_square_error = 0;

  if(hw->y)
    memset(hw->y, 0, (hw->params.num_season_periods * sizeof(u_int64_t)));
  if(hw->s)
    memset(hw->s, 0, (hw->params.num_season_periods * sizeof(double)));
}

/* ********************************************************************************* */
/* ********************************************************************************* */

/*
  Jitter calculator

  Used to determine how noisy is a signal
*/

int ndpi_jitter_init(struct ndpi_jitter_struct *s, u_int16_t num_learning_values) {
  if(!s)
    return(-1);

  memset(s, 0, sizeof(struct ndpi_jitter_struct));

  if(num_learning_values < 2) num_learning_values = 2;

  s->empty = 1, s->num_values = num_learning_values;
  s->observations = (float*)ndpi_calloc(num_learning_values, sizeof(float));

  if(s->observations) {
    s->last_value = 0;
    return(0);
  } else
    return(-1);
}

/* ************************************* */

void ndpi_jitter_free(struct ndpi_jitter_struct *s) {
  ndpi_free(s->observations);
}

/* ************************************* */

/*
  This function adds a new value and returns the computed Jitter
*/
float ndpi_jitter_add_value(struct ndpi_jitter_struct *s, const float value) {
  float val = fabsf(value - s->last_value);

  if(s->empty && (s->next_index == 0))
    ; /* Skip the first value as we are unable to calculate the difference */
  else {
    s->jitter_total -= s->observations[s->next_index];
    s->observations[s->next_index] = val;
    s->jitter_total += val;
  }

  s->last_value = value, s->next_index = (s->next_index + 1) % s->num_values;
  if(s->next_index == 0) s->jitter_ready = 1; /* We have completed one round */

#ifdef DEBUG_JITTER
  printf("[JITTER] [value: %.3f][diff: %.3f][jitter_total: %.3f] -> %.3f\n",
	 value, val, s->jitter_total,
	 s->jitter_ready ? (s->jitter_total / s->num_values) : -1);
#endif

  if(!s->jitter_ready)
    return(-1); /* Too early */
  else
    return(s->jitter_total / s->num_values);
}


/* *********************************************************** */
/* *********************************************************** */

/*
  Single Exponential Smoothing
*/

int ndpi_ses_init(struct ndpi_ses_struct *ses, double alpha, float significance) {
  if(!ses)
    return(-1);

  memset(ses, 0, sizeof(struct ndpi_ses_struct));

  ses->params.alpha = alpha;

  if((significance < 0) || (significance > 1)) significance = 0.05;
  ses->params.ro         = ndpi_normal_cdf_inverse(1 - (significance / 2.));

  return(0);
}

/* *********************************************************** */

/*
   Returns the forecast and the band (forecast +/- band are the upper and lower values)

   Input
   ses:         Datastructure previously initialized
   value        The value to add to the measurement

   Output
   forecast         The forecasted value
   confidence_band  The value +/- on which the value should fall is not an anomaly

   Return code
   0                Too early: we're still in the learning phase. Output values are zero.
   1                Normal processing: forecast and confidence_band are meaningful
*/
int ndpi_ses_add_value(struct ndpi_ses_struct *ses, const double _value, double *forecast, double *confidence_band) {
  double value = (double)_value, error, sq_error;
  int rc;

  if(ses->num_values == 0)
    *forecast = value;
  else
    *forecast = (ses->params.alpha * (ses->last_value - ses->last_forecast)) + ses->last_forecast;

  error  = value - *forecast;
  sq_error =  error * error;
  ses->sum_square_error += sq_error, ses->prev_error.sum_square_error += sq_error;

  if(ses->num_values > 0) {
    u_int observations = (ses->num_values < MAX_SQUARE_ERROR_ITERATIONS) ? (ses->num_values + 1) : ((ses->num_values % MAX_SQUARE_ERROR_ITERATIONS) + MAX_SQUARE_ERROR_ITERATIONS + 1);
    double sq = sqrt(ses->sum_square_error / observations);

    *confidence_band = ses->params.ro * sq;
    rc = 1;
  } else
    *confidence_band = 0, rc = 0;

  ses->num_values++, ses->last_value = value, ses->last_forecast = *forecast;

  if(++ses->prev_error.num_values_rollup == MAX_SQUARE_ERROR_ITERATIONS) {
    ses->sum_square_error = ses->prev_error.sum_square_error;
    ses->prev_error.num_values_rollup = 0, ses->prev_error.sum_square_error = 0;
  }

#ifdef SES_DEBUG
  printf("[num_values: %u][[error: %.3f][forecast: %.3f][sqe: %.3f][sq: %.3f][confidence_band: %.3f]\n",
	   ses->num_values, error, *forecast, ses->sum_square_error, sq_error, *confidence_band);
#endif

  return(rc);
}

/* *********************************************************** */

void ndpi_ses_reset(struct ndpi_ses_struct *ses) {
  ses->prev_error.sum_square_error = 0, ses->prev_error.num_values_rollup = 0;
  ses->num_values = 0;
  ses->sum_square_error = ses->last_forecast = ses->last_value = 0;
}

/* *********************************************************** */

/*
  Computes the best alpha value using the specified values used for training
*/
void ndpi_ses_fitting(double *values, u_int32_t num_values, float *ret_alpha) {
  u_int i;
  float alpha, best_alpha;
  double sse, lowest_sse;

  if(!values || num_values == 0) {
    *ret_alpha = 0;
    return;
  }

  lowest_sse = 0, best_alpha = 0;

  for(alpha=0.1; alpha<0.99; alpha += 0.05) {
    struct ndpi_ses_struct ses;

    ndpi_ses_init(&ses, alpha, 0.05);

#ifdef SES_DEBUG
    printf("\nDouble Exponential Smoothing [alpha: %.2f]\n", alpha);
#endif

    sse = 0;

    for(i=0; i<num_values; i++) {
      double prediction, confidence_band;
      double diff;

      if(ndpi_ses_add_value(&ses, values[i], &prediction, &confidence_band) != 0) {
	diff = fabs(prediction-values[i]);

#ifdef SES_DEBUG
	printf("%2u)\t%12.3f\t%.3f\t%.3f\n", i, values[i], prediction, diff);
#endif

	sse += diff*diff;
      }
    }

    if(lowest_sse == 0)
      lowest_sse = sse, best_alpha = alpha; /* first run */
    else {
      if(sse <= lowest_sse)
	lowest_sse = sse, best_alpha = alpha;
    }

#ifdef SES_DEBUG
    printf("[alpha: %.2f] - SSE: %.2f [BEST: alpha: %.2f/SSE: %.2f]\n", alpha, sse,
	   best_alpha, lowest_sse);
#endif
  } /* for (alpha) */

#ifdef SES_DEBUG
  printf("BEST [alpha: %.2f][SSE: %.2f]\n", best_alpha, lowest_sse);
#endif

  *ret_alpha = best_alpha;
}

/* *********************************************************** */
/* *********************************************************** */

/*
  Double Exponential Smoothing
*/

int ndpi_des_init(struct ndpi_des_struct *des, double alpha, double beta, float significance) {
  if(!des)
    return(-1);

  memset(des, 0, sizeof(struct ndpi_des_struct));

  des->params.alpha = alpha;
  des->params.beta = beta;

  if((significance < 0) || (significance > 1)) significance = 0.05;
  des->params.ro         = ndpi_normal_cdf_inverse(1 - (significance / 2.));

  return(0);
}

/* *********************************************************** */

void ndpi_des_reset(struct ndpi_des_struct *des) {
  des->prev_error.sum_square_error = 0, des->prev_error.num_values_rollup = 0;
  des->num_values = 0;
  des->sum_square_error = des->last_forecast = des->last_trend = des->last_value = 0;
}

/* *********************************************************** */

/*
   Returns the forecast and the band (forecast +/- band are the upper and lower values)

   Input
   des:         Datastructure previously initialized
   value        The value to add to the measurement

   Output
   forecast         The forecasted value
   confidence_band  The value +/- on which the value should fall is not an anomaly

   Return code
   0                Too early: we're still in the learning phase. Output values are zero.
   1                Normal processing: forecast and confidence_band are meaningful
*/
int ndpi_des_add_value(struct ndpi_des_struct *des, const double _value, double *forecast, double *confidence_band) {
  double value = (double)_value, error, sq_error;
  int rc;

  if(des->num_values == 0)
    *forecast = value, des->last_trend = 0;
  else {
    *forecast = (des->params.alpha * value) + ((1 - des->params.alpha) * (des->last_forecast + des->last_trend));
    des->last_trend = (des->params.beta * (*forecast - des->last_forecast)) + ((1 - des->params.beta) * des->last_trend);
  }

  error  = value - *forecast;
  sq_error =  error * error;
  des->sum_square_error += sq_error, des->prev_error.sum_square_error += sq_error;

  if(des->num_values > 0) {
    u_int observations = (des->num_values < MAX_SQUARE_ERROR_ITERATIONS) ? (des->num_values + 1) : ((des->num_values % MAX_SQUARE_ERROR_ITERATIONS) + MAX_SQUARE_ERROR_ITERATIONS + 1);
    double sq = sqrt(des->sum_square_error / observations);

    *confidence_band = des->params.ro * sq;
    rc = 1;
  } else
    *confidence_band = 0, rc = 0;

  des->num_values++, des->last_value = value, des->last_forecast = *forecast;

  if(++des->prev_error.num_values_rollup == MAX_SQUARE_ERROR_ITERATIONS) {
    des->sum_square_error = des->prev_error.sum_square_error;
    des->prev_error.num_values_rollup = 0, des->prev_error.sum_square_error = 0;
  }

#ifdef DES_DEBUG
  printf("[num_values: %u][[error: %.3f][forecast: %.3f][trend: %.3f[sqe: %.3f][sq: %.3f][confidence_band: %.3f]\n",
	 des->num_values, error, *forecast, des->last_trend, des->sum_square_error, sq, *confidence_band);
#endif

  return(rc);
}

/* *********************************************************** */

/*
  Computes the best alpha and beta values using the specified values used for training
*/
void ndpi_des_fitting(double *values, u_int32_t num_values, float *ret_alpha, float *ret_beta) {
  u_int i;
  float alpha, best_alpha, best_beta, beta = 0;
  double sse, lowest_sse;

  if(!values || num_values == 0) {
    *ret_alpha = 0;
    *ret_beta = 0;
    return;
  }

  lowest_sse = 0, best_alpha = 0, best_beta = 0;

  for(beta=0.1; beta<0.99; beta += 0.05) {
    for(alpha=0.1; alpha<0.99; alpha += 0.05) {
      struct ndpi_des_struct des;

      ndpi_des_init(&des, alpha, beta, 0.05);

#ifdef DES_DEBUG
      printf("\nDouble Exponential Smoothing [alpha: %.2f][beta: %.2f]\n", alpha, beta);
#endif

      sse = 0;

      for(i=0; i<num_values; i++) {
	double prediction, confidence_band;
	double diff;

	if(ndpi_des_add_value(&des, values[i], &prediction, &confidence_band) != 0) {
	  diff = fabs(prediction-values[i]);

#ifdef DES_DEBUG
	  printf("%2u)\t%12.3f\t%.3f\t%.3f\n", i, values[i], prediction, diff);
#endif

	  sse += diff*diff;
	}
      }

      if(lowest_sse == 0)
	lowest_sse = sse, best_alpha = alpha, best_beta = beta; /* first run */
      else {
	if(sse <= lowest_sse)
	  lowest_sse = sse, best_alpha = alpha, best_beta = beta;
      }

#ifdef DES_DEBUG
      printf("[alpha: %.2f][beta: %.2f] - SSE: %.2f [BEST: alpha: %.2f/beta: %.2f/SSE: %.2f]\n", alpha, beta, sse,
	     best_alpha, best_beta, lowest_sse);
#endif
    } /* for (alpha) */
  } /* for (beta) */

#ifdef DES_DEBUG
  printf("BEST [alpha: %.2f][beta: %.2f][SSE: %.2f]\n", best_alpha, best_beta, lowest_sse);
#endif

  *ret_alpha = best_alpha, *ret_beta = best_beta;
}

/* *********************************************************** */

/* Z-Score = (Value - Mean) / StdDev */
u_int ndpi_find_outliers(u_int32_t *values, bool *outliers, u_int32_t num_values) {
  u_int i, ret = 0;
  float mean, stddev, low_threshold = -2.5, high_threshold = 2.5;
  struct ndpi_analyze_struct a;

  if(!values || !outliers || num_values == 0)
    return(ret);

  ndpi_init_data_analysis(&a, 3 /* this is the window so we do not need to store values and 3 is enough */);

  /* Add values */
  for(i=0; i<num_values; i++)
    ndpi_data_add_value(&a, values[i]);

  mean    = ndpi_data_mean(&a);
  stddev  = ndpi_data_stddev(&a);

  if(fpclassify(stddev) == FP_ZERO) {
    ndpi_free_data_analysis(&a, 0);
    return(ret);
  }

  /* Process values */
  for(i=0; i<num_values; i++) {
    float z_score = (((float)values[i]) - mean) / stddev;
    bool is_outlier = ((z_score < low_threshold) || (z_score > high_threshold)) ? true : false;

    if(is_outlier) ret++;
    outliers[i] = is_outlier;
  }

  ndpi_free_data_analysis(&a, 0);

  return(ret);
}

/* *********************************************************** */

/* Check if the specified value is an outlier with respect to the past values */
bool ndpi_is_outlier(u_int32_t *past_values, u_int32_t num_past_values,
		     u_int32_t value_to_check, float threshold,
		     float *lower, float *upper) {
  struct ndpi_analyze_struct *data = ndpi_alloc_data_analysis_from_series(past_values, num_past_values);
  float mean, stddev, v;

  if(!data) return(false);

  mean   = ndpi_data_mean(data);
  stddev = ndpi_data_stddev(data);

  /* The mimimum threshold is 1 (i.e. the value of the stddev) */
  if(threshold < 1.) threshold = 1.;

  v = threshold * stddev;
  *lower = mean - v, *upper = mean + v;

  ndpi_free_data_analysis(data, 1 /* free memory */);

  return(((value_to_check < *lower) || (value_to_check > *upper)) ? true : false);
}

/* ********************************************************************************* */

/*
  Simple Linear regression [https://en.wikipedia.org/wiki/Simple_linear_regression]
  https://www.tutorialspoint.com/c-program-to-compute-linear-regression
*/
int ndpi_predict_linear(u_int32_t *values, u_int32_t num_values,
			u_int32_t predict_periods, u_int32_t *prediction) {
  u_int i;
  float m, c, d;
  float sumx = 0, sumx_square = 0, sumy = 0, sumxy = 0;

  for(i = 0; i < num_values; i++) {
    float y = values[i];
    float x = i + 1;

    sumx   = sumx+x;
    sumx_square = sumx_square + (x * x);
    sumy   = sumy + y;
    sumxy  = sumxy + (x * y);
  }

  d = (num_values * sumx_square) - (sumx * sumx);

  if(d == 0) return(-1);

  m = ((num_values * sumxy) - (sumx * sumy))  / d; /* beta  */
  c = ((sumy * sumx_square) - (sumx * sumxy)) / d; /* alpha */

  *prediction = c + (m * (predict_periods + num_values - 1));

  return(0);
}

/* ********************************************************************************* */

double ndpi_pearson_correlation(u_int32_t *values_a, u_int32_t *values_b, u_int16_t num_values) {
  double sum_a = 0, sum_b = 0, sum_squared_diff_a = 0, sum_squared_diff_b = 0, sum_product_diff = 0;
  u_int16_t i;
  double mean_a, mean_b, variance_a, variance_b, covariance;

  if(num_values == 0) return(0.0);

  for(i = 0; i < num_values; i++)
    sum_a += values_a[i], sum_b += values_b[i];

  mean_a = sum_a / num_values, mean_b = sum_b / num_values;

  for(i = 0; i < num_values; i++)
    sum_squared_diff_a += pow(values_a[i] - mean_a, 2),
      sum_squared_diff_b += pow(values_b[i] - mean_b, 2),
      sum_product_diff += (values_a[i] - mean_a) * (values_b[i] - mean_b);

  variance_a = sum_squared_diff_a / (double)num_values, variance_b = sum_squared_diff_b / (double)num_values;
  covariance = sum_product_diff / (double)num_values;

  if(variance_a == 0.0 || variance_b == 0.0)
    return(0.0);

  return(covariance / sqrt(variance_a * variance_b));
}

/* ********************************************************************************* */
/* ********************************************************************************* */

static const u_int16_t crc16_ccitt_table[256] = {
	0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
	0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
	0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
	0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
	0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
	0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
	0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
	0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
	0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
	0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
	0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
	0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
	0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
	0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
	0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
	0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
	0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
	0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
	0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
	0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
	0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
	0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
	0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
	0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
	0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
	0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
	0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
	0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
	0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
	0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
	0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
	0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
};

static const u_int16_t crc16_ccitt_false_table[256] = {
  0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
  0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
  0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
  0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
  0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
  0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
  0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
  0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
  0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
  0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
  0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
  0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
  0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
  0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
  0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
  0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
  0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
  0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
  0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
  0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
  0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
  0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
  0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
  0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
  0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
  0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
  0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
  0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
  0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
  0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
  0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
  0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

static inline u_int16_t __crc16(u_int16_t crc, const void *data, size_t n_bytes) {
  u_int8_t* b = (u_int8_t*)data;
  while (n_bytes--) {
    crc = (crc << 8) ^ crc16_ccitt_false_table[(crc >> 8) ^ *b++];
  }
  return crc;
}

u_int16_t ndpi_crc16_ccit(const void* data, size_t n_bytes) {
  u_int16_t crc = 0;
  u_int8_t* b = (u_int8_t*)data;
  while (n_bytes--) {
    crc = (crc >> 8) ^ crc16_ccitt_table[(crc ^ *b++) & 0xFF];
  }
  return crc;
}

u_int16_t ndpi_crc16_ccit_false(const void *data, size_t n_bytes) {
  return __crc16(0xFFFF, data, n_bytes);
}

u_int16_t ndpi_crc16_xmodem(const void *data, size_t n_bytes) {
  return __crc16(0, data, n_bytes);
}

u_int16_t ndpi_crc16_x25(const void* data, size_t n_bytes) {
  u_int16_t crc = 0xFFFF;
  u_int8_t* b = (u_int8_t*)data;
  while (n_bytes--) {
    crc = (crc >> 8) ^ crc16_ccitt_table[(crc ^ *b++) & 0xFF];
  }
  return (crc ^ 0xFFFF);
}

/* ********************************************************************************* */

static const u_int32_t crc32_ieee_table[256] =
{
  0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
  0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
  0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
  0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
  0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
  0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
  0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
  0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
  0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
  0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
  0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
  0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
  0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
  0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
  0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
  0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
  0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
  0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
  0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
  0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
  0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
  0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
  0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
  0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
  0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
  0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
  0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
  0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
  0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
  0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
  0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
  0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
  0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
  0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
  0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
  0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
  0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
  0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
  0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
  0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
  0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
  0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
  0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
  0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
  0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
  0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
  0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
  0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
  0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
  0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
  0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
  0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
  0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
  0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
  0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
  0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
  0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
  0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
  0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
  0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
  0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
  0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
  0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
  0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};

u_int32_t ndpi_crc32(const void *data, size_t length, u_int32_t crc)
{
  const u_int8_t *p = (const u_int8_t*)data;
  crc = ~crc;

  while (length--)
  {
    crc = crc32_ieee_table[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
  }

  return ~crc;
}

/* ********************************************************************************* */

/*
  Count-Min Sketch: Memory Usage

  https://florian.github.io/count-min-sketch/
  https://medium.com/@nehasingh18.9/count-min-sketch-for-beginners-f1e441bbe7a4
  https://sites.google.com/site/countminsketch/code

  [Depth: 8][Total memory: 1040]
  [Depth: 16][Total memory: 2064]
  [Depth: 32][Total memory: 4112]
  [Depth: 64][Total memory: 8208]
  [Depth: 256][Total memory: 32784]
  [Depth: 512][Total memory: 65552]
  [Depth: 1024][Total memory: 131088]
  [Depth: 2048][Total memory: 262160]
  [Depth: 4096][Total memory: 524304]
  [Depth: 8192][Total memory: 1048592]
*/

#define NDPI_COUNT_MIN_SKETCH_NUM_BUCKETS  1024

// #define DEBUG

struct ndpi_cm_sketch *ndpi_cm_sketch_init(u_int16_t num_hashes) {
#ifdef DEBUG
  u_int32_t tot_mem;
#endif
  u_int32_t len;
  struct ndpi_cm_sketch *sketch;

  len = sizeof(struct ndpi_cm_sketch);
  sketch = (struct ndpi_cm_sketch*)ndpi_malloc(len);

  if(!sketch)
    return(NULL);

#ifdef DEBUG
    tot_mem = len;
#endif

  if(num_hashes < 2) num_hashes = 2;
  num_hashes = ndpi_nearest_power_of_two(num_hashes);

  sketch->num_hashes = num_hashes;
  sketch->num_hash_buckets = num_hashes * NDPI_COUNT_MIN_SKETCH_NUM_BUCKETS;
  sketch->num_hash_buckets = ndpi_nearest_power_of_two(sketch->num_hash_buckets)-1,

  len = num_hashes * NDPI_COUNT_MIN_SKETCH_NUM_BUCKETS * sizeof(u_int32_t);
  sketch->tables = (u_int32_t*)ndpi_calloc(num_hashes, NDPI_COUNT_MIN_SKETCH_NUM_BUCKETS * sizeof(u_int32_t));

#ifdef DEBUG
  tot_mem += len;
#endif

#ifdef DEBUG
  printf("[Num_Hashes: %u][Total memory: %u]\n", num_hashes, tot_mem);
#endif

  if(!sketch->tables) {
    ndpi_free(sketch);
    return(NULL);
  }

  return(sketch);
}

/* ********************************************************************************* */

#define ndpi_simple_hash(value, seed) (value * seed)

/* ********************************************************************************* */

void ndpi_cm_sketch_add(struct ndpi_cm_sketch *sketch, u_int32_t element) {
  u_int32_t idx;

  for(idx = 1; idx <= sketch->num_hashes; idx++) {
    u_int32_t hashval = ndpi_simple_hash(element, idx) & sketch->num_hash_buckets;

    sketch->tables[hashval]++;

#ifdef DEBUG
    printf("ndpi_add_sketch_add() [hash: %d][num_hash_buckets: %u][hashval: %d][value: %d]\n",
	   idx, sketch->num_hash_buckets, hashval, sketch->tables[hashval]);
#endif
  }
}

/* ********************************************************************************* */

u_int32_t ndpi_cm_sketch_count(struct ndpi_cm_sketch *sketch, u_int32_t element) {
  u_int32_t min_value = INT_MAX, idx;

  for(idx = 1; idx <= sketch->num_hashes; idx++) {
    u_int32_t hashval = ndpi_simple_hash(element, idx) & sketch->num_hash_buckets;

#ifdef DEBUG
    printf("ndpi_add_sketch_add() [hash: %d][num_hash_buckets: %u][hashval: %d][value: %d]\n",
	   idx, sketch->num_hash_buckets, hashval, sketch->tables[hashval]);
#endif

    min_value = ndpi_min(min_value, sketch->tables[hashval]);
  }

  return(min_value);
}

/* ********************************************************************************* */

void ndpi_cm_sketch_destroy(struct ndpi_cm_sketch *sketch) {
  ndpi_free(sketch->tables);
  ndpi_free(sketch);
}

/* ********************************************************************************* */
/* ********************************************************************************* */

/* Popcount, short for "population count," is a computer programming term that refers to
   the number of set bits (bits with a value of 1) in a binary representation of a given
   data word or integer. In other words, it is the count of all the 1s present in the
   binary representation of a number.
   For example, consider the number 45, which is represented in binary as 101101.
   The popcount of 45 would be 4 because there are four 1s in its binary representation.
*/

int ndpi_popcount_init(struct ndpi_popcount *h)
{
  if(h) {
    memset(h, '\0', sizeof(*h));
    return 0;
  }
  return -1;
}

/* ********************************************************************************* */

void ndpi_popcount_count(struct ndpi_popcount *h, const u_int8_t *buf, u_int32_t buf_len)
{
  u_int32_t i;

  if(!h)
    return;

  /* Trivial alg. TODO: there are lots of better, more performant algorithms */

  for(i = 0; i < buf_len / 4; i++)
    h->pop_count += __builtin_popcount(*(u_int32_t *)(buf + i * 4));
  for(i = 0; i < buf_len % 4; i++)
    h->pop_count += __builtin_popcount(buf[buf_len - (buf_len % 4) + i]);

  h->tot_bytes_count += buf_len;
}

/* ********************************************************************************* */
/* ********************************************************************************* */

ndpi_kd_tree* ndpi_kd_create(u_int num_dimensions) { return(kd_create((int)num_dimensions)); }

void ndpi_kd_free(ndpi_kd_tree *tree) { kd_free((struct kdtree *)tree); }

void ndpi_kd_clear(ndpi_kd_tree *tree) { kd_clear((struct kdtree *)tree); }

bool ndpi_kd_insert(ndpi_kd_tree *tree, const double *data_vector, void *user_data) {
  return(kd_insert((struct kdtree *)tree, data_vector, user_data) == 0 ? true : false);
}

ndpi_kd_tree_result *ndpi_kd_nearest(ndpi_kd_tree *tree, const double *data_vector) {
  return(kd_nearest((struct kdtree *)tree, data_vector));
}

u_int32_t ndpi_kd_num_results(ndpi_kd_tree_result *res) { return((u_int32_t)kd_res_size((struct kdres*)res)); }

double* ndpi_kd_result_get_item(ndpi_kd_tree_result *res, double **user_data) {
  return(kd_res_item((struct kdres*)res, user_data));
}

void ndpi_kd_result_free(ndpi_kd_tree_result *res) { kd_res_free((struct kdres *)res); }

double ndpi_kd_distance(double *a1, double *a2, u_int num_dimensions) {
  double dist_sq = 0, diff;
  u_int i;

  for(i=0; i<num_dimensions; i++) {
    diff = a1[i] - a2[i];

#if 0
    if(diff != 0) {
      printf("Difference %.3f at position %u\n", diff, pos);
    }
#endif
    dist_sq += diff*diff;
  }

  return(dist_sq);
}

/* ********************************************************************************* */
/* ********************************************************************************* */

ndpi_btree* ndpi_btree_init(double **data, u_int32_t n_rows, u_int32_t n_columns) {
  return((ndpi_btree*)btree_init(data, (int)n_rows, (int)n_columns, 30));
}

ndpi_knn ndpi_btree_query(ndpi_btree *b, double **query_data,
			  u_int32_t query_data_num_rows, u_int32_t query_data_num_columns,
			  u_int32_t max_num_results) {
  return(btree_query((t_btree*)b, query_data, (int)query_data_num_rows,
		     (int)query_data_num_columns, (int)max_num_results));
}

void ndpi_free_knn(ndpi_knn knn) { free_knn(knn, knn.n_samples); }

void ndpi_free_btree(ndpi_btree *b) { free_tree((t_btree*)b); }