1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
#include "ndpi_api.h"
#include "fuzz_common_code.h"
#include <stdint.h>
#include <stdio.h>
#include "fuzzer/FuzzedDataProvider.h"
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
FuzzedDataProvider fuzzed_data(data, size);
u_int16_t j, i, num_iteration;
struct ndpi_bin *b, *b_cloned, *bins, b2;
u_int16_t num_bins, num_cluster_ids, num_element, num_allocated_bins, rc;
enum ndpi_bin_family family;
u_int16_t *cluster_ids;
char buf[128];
/* Just to have some data */
if(fuzzed_data.remaining_bytes() < 2048)
return -1;
/* To allow memory allocation failures */
fuzz_set_alloc_callbacks_and_seed(size);
b = (struct ndpi_bin *)ndpi_malloc(sizeof(struct ndpi_bin));
num_bins = fuzzed_data.ConsumeIntegral<u_int16_t>();
family = fuzzed_data.ConsumeEnum<enum ndpi_bin_family>();
ndpi_init_bin(b, family, num_bins);
ndpi_init_bin(&b2, family, num_bins * 2);
num_iteration = fuzzed_data.ConsumeIntegral<u_int8_t>();
for (i = 0; i < num_iteration; i++) {
ndpi_inc_bin(b, fuzzed_data.ConsumeIntegral<u_int16_t>(),
fuzzed_data.ConsumeIntegral<u_int64_t>());
ndpi_inc_bin(&b2, fuzzed_data.ConsumeIntegral<u_int16_t>(),
fuzzed_data.ConsumeIntegral<u_int64_t>());
}
ndpi_bin_similarity(b, &b2, fuzzed_data.ConsumeBool(),
fuzzed_data.ConsumeFloatingPointInRange<float>(0, 1));
b_cloned = ndpi_clone_bin(b);
ndpi_bin_similarity(b, b_cloned, fuzzed_data.ConsumeBool(),
fuzzed_data.ConsumeFloatingPointInRange<float>(0, 1));
for (i = 0; i < num_iteration; i++)
ndpi_get_bin_value(b, fuzzed_data.ConsumeIntegral<u_int16_t>());
ndpi_reset_bin(b);
for (i = 0; i < num_iteration; i++)
ndpi_get_bin_value(b, fuzzed_data.ConsumeIntegral<u_int16_t>());
for (i = 0; i < num_iteration; i++)
ndpi_set_bin(b_cloned, fuzzed_data.ConsumeIntegral<u_int16_t>(),
fuzzed_data.ConsumeIntegral<u_int64_t>());
ndpi_bin_similarity(b, b_cloned, fuzzed_data.ConsumeBool(),
fuzzed_data.ConsumeFloatingPointInRange<float>(0, 1));
ndpi_normalize_bin(b);
ndpi_normalize_bin(b_cloned);
ndpi_print_bin(b, fuzzed_data.ConsumeBool(), buf, sizeof(buf));
ndpi_free_bin(b);
ndpi_free(b);
ndpi_free_bin(&b2);
ndpi_free_bin(b_cloned);
ndpi_free(b_cloned);
/* Cluster */
num_bins = fuzzed_data.ConsumeIntegral<u_int8_t>();
num_element = fuzzed_data.ConsumeIntegral<u_int8_t>();
num_cluster_ids = fuzzed_data.ConsumeIntegral<u_int16_t>();
bins = (struct ndpi_bin *)ndpi_malloc(sizeof(struct ndpi_bin) * num_bins);
cluster_ids = (u_int16_t *)ndpi_malloc(sizeof(u_int16_t) * num_bins);
num_allocated_bins = 0;
if (bins && cluster_ids) {
for (i = 0; i < num_bins; i++) {
rc = ndpi_init_bin(&bins[num_allocated_bins], ndpi_bin_family64 /* Use 64 bit to avoid overlaps */,
num_element);
if (rc != 0) {
continue;
}
num_iteration = fuzzed_data.ConsumeIntegral<u_int8_t>();
for (j = 0; j < num_iteration; j++) {
ndpi_set_bin(&bins[num_allocated_bins],
fuzzed_data.ConsumeIntegralInRange(0, num_element + 1),
fuzzed_data.ConsumeIntegral<u_int64_t>());
}
num_allocated_bins++;
}
ndpi_cluster_bins(bins, num_allocated_bins, num_cluster_ids, cluster_ids, NULL);
}
ndpi_free(cluster_ids);
if (bins)
for (i = 0; i < num_allocated_bins; i++)
ndpi_free_bin(&bins[i]);
ndpi_free(bins);
return 0;
}
|