diff options
Diffstat (limited to 'src/lib/third_party/include/roaring.h')
-rw-r--r-- | src/lib/third_party/include/roaring.h | 959 |
1 files changed, 959 insertions, 0 deletions
diff --git a/src/lib/third_party/include/roaring.h b/src/lib/third_party/include/roaring.h new file mode 100644 index 000000000..0a33cea8d --- /dev/null +++ b/src/lib/third_party/include/roaring.h @@ -0,0 +1,959 @@ +// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!! +// Created by amalgamation.sh on Mer 25 Ago 2021 04:24:41 CEST + +/* + * Copyright 2016-2020 The CRoaring authors + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + * SPDX-License-Identifier: Apache-2.0 + */ + +/* begin file include/roaring/roaring_version.h */ +// /include/roaring/roaring_version.h automatically generated by release.py, do not change by hand +#ifndef ROARING_INCLUDE_ROARING_VERSION +#define ROARING_INCLUDE_ROARING_VERSION +#define ROARING_VERSION = 0.3.4, +enum { + ROARING_VERSION_MAJOR = 0, + ROARING_VERSION_MINOR = 3, + ROARING_VERSION_REVISION = 4 +}; +#endif // ROARING_INCLUDE_ROARING_VERSION +/* end file include/roaring/roaring_version.h */ +/* begin file include/roaring/roaring_types.h */ +/* + Typedefs used by various components +*/ + +#ifndef ROARING_TYPES_H +#define ROARING_TYPES_H + +#include <stdbool.h> +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { namespace roaring { namespace api { +#endif + + +/** + * When building .c files as C++, there's added compile-time checking if the + * container types are derived from a `container_t` base class. So long as + * such a base class is empty, the struct will behave compatibly with C structs + * despite the derivation. This is due to the Empty Base Class Optimization: + * + * https://en.cppreference.com/w/cpp/language/ebo + * + * But since C isn't namespaced, taking `container_t` globally might collide + * with other projects. So roaring.h uses ROARING_CONTAINER_T, while internal + * code #undefs that after declaring `typedef ROARING_CONTAINER_T container_t;` + */ +#if defined(__cplusplus) + extern "C++" { + struct container_s {}; + } + #define ROARING_CONTAINER_T ::roaring::api::container_s +#else + #define ROARING_CONTAINER_T void // no compile-time checking +#endif + + +#define MAX_CONTAINERS 65536 + +#define SERIALIZATION_ARRAY_UINT32 1 +#define SERIALIZATION_CONTAINER 2 + +#define ROARING_FLAG_COW UINT8_C(0x1) +#define ROARING_FLAG_FROZEN UINT8_C(0x2) + +/** + * Roaring arrays are array-based key-value pairs having containers as values + * and 16-bit integer keys. A roaring bitmap might be implemented as such. + */ + +// parallel arrays. Element sizes quite different. +// Alternative is array +// of structs. Which would have better +// cache performance through binary searches? + +typedef struct roaring_array_s { + int32_t size; + int32_t allocation_size; + ROARING_CONTAINER_T **containers; // Use container_t in non-API files! + uint16_t *keys; + uint8_t *typecodes; + uint8_t flags; +} roaring_array_t; + + +typedef bool (*roaring_iterator)(uint32_t value, void *param); +typedef bool (*roaring_iterator64)(uint64_t value, void *param); + +/** +* (For advanced users.) +* The roaring_statistics_t can be used to collect detailed statistics about +* the composition of a roaring bitmap. +*/ +typedef struct roaring_statistics_s { + uint32_t n_containers; /* number of containers */ + + uint32_t n_array_containers; /* number of array containers */ + uint32_t n_run_containers; /* number of run containers */ + uint32_t n_bitset_containers; /* number of bitmap containers */ + + uint32_t + n_values_array_containers; /* number of values in array containers */ + uint32_t n_values_run_containers; /* number of values in run containers */ + uint32_t + n_values_bitset_containers; /* number of values in bitmap containers */ + + uint32_t n_bytes_array_containers; /* number of allocated bytes in array + containers */ + uint32_t n_bytes_run_containers; /* number of allocated bytes in run + containers */ + uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap + containers */ + + uint32_t + max_value; /* the maximal value, undefined if cardinality is zero */ + uint32_t + min_value; /* the minimal value, undefined if cardinality is zero */ + uint64_t sum_value; /* the sum of all values (could be used to compute + average) */ + + uint64_t cardinality; /* total number of values stored in the bitmap */ + + // and n_values_arrays, n_values_rle, n_values_bitmap +} roaring_statistics_t; + +#ifdef __cplusplus +} } } // extern "C" { namespace roaring { namespace api { +#endif + +#endif /* ROARING_TYPES_H */ +/* end file include/roaring/roaring_types.h */ +/* begin file include/roaring/roaring.h */ +/* + * An implementation of Roaring Bitmaps in C. + */ + +#ifndef ROARING_H +#define ROARING_H + +#include <stdbool.h> +#include <stdint.h> +#include <stddef.h> // for `size_t` + + +#ifdef __cplusplus +extern "C" { namespace roaring { namespace api { +#endif + +typedef struct roaring_bitmap_s { + roaring_array_t high_low_container; +} roaring_bitmap_t; + +/** + * Dynamically allocates a new bitmap (initially empty). + * Returns NULL if the allocation fails. + * Capacity is a performance hint for how many "containers" the data will need. + * Client is responsible for calling `roaring_bitmap_free()`. + */ +roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap); + +/** + * Dynamically allocates a new bitmap (initially empty). + * Returns NULL if the allocation fails. + * Client is responsible for calling `roaring_bitmap_free()`. + */ +static inline roaring_bitmap_t *roaring_bitmap_create(void) + { return roaring_bitmap_create_with_capacity(0); } + +/** + * Initialize a roaring bitmap structure in memory controlled by client. + * Capacity is a performance hint for how many "containers" the data will need. + * Can return false if auxiliary allocations fail when capacity greater than 0. + */ +bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap); + +/** + * Initialize a roaring bitmap structure in memory controlled by client. + * The bitmap will be in a "clear" state, with no auxiliary allocations. + * Since this performs no allocations, the function will not fail. + */ +static inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r) + { roaring_bitmap_init_with_capacity(r, 0); } + +/** + * Add all the values between min (included) and max (excluded) that are at a + * distance k*step from min. +*/ +roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max, + uint32_t step); + +/** + * Creates a new bitmap from a pointer of uint32_t integers + */ +roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals); + +/* + * Whether you want to use copy-on-write. + * Saves memory and avoids copies, but needs more care in a threaded context. + * Most users should ignore this flag. + * + * Note: If you do turn this flag to 'true', enabling COW, then ensure that you + * do so for all of your bitmaps, since interactions between bitmaps with and + * without COW is unsafe. + */ +static inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t* r) { + return r->high_low_container.flags & ROARING_FLAG_COW; +} +static inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t* r, + bool cow) { + if (cow) { + r->high_low_container.flags |= ROARING_FLAG_COW; + } else { + r->high_low_container.flags &= ~ROARING_FLAG_COW; + } +} + +/** + * Describe the inner structure of the bitmap. + */ +void roaring_bitmap_printf_describe(const roaring_bitmap_t *r); + +/** + * Creates a new bitmap from a list of uint32_t integers + */ +roaring_bitmap_t *roaring_bitmap_of(size_t n, ...); + +/** + * Copies a bitmap (this does memory allocation). + * The caller is responsible for memory management. + */ +roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r); + +/** + * Copies a bitmap from src to dest. It is assumed that the pointer dest + * is to an already allocated bitmap. The content of the dest bitmap is + * freed/deleted. + * + * It might be preferable and simpler to call roaring_bitmap_copy except + * that roaring_bitmap_overwrite can save on memory allocations. + */ +bool roaring_bitmap_overwrite(roaring_bitmap_t *dest, + const roaring_bitmap_t *src); + +/** + * Print the content of the bitmap. + */ +void roaring_bitmap_printf(const roaring_bitmap_t *r); + +/** + * Computes the intersection between two bitmaps and returns new bitmap. The + * caller is responsible for memory management. + */ +roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Computes the size of the intersection between two bitmaps. + */ +uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Check whether two bitmaps intersect. + */ +bool roaring_bitmap_intersect(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Check whether a bitmap and a closed range intersect. + */ +bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, + uint64_t x, uint64_t y); + +/** + * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto + * distance, or the Jaccard similarity coefficient) + * + * The Jaccard index is undefined if both bitmaps are empty. + */ +double roaring_bitmap_jaccard_index(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Computes the size of the union between two bitmaps. + */ +uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Computes the size of the difference (andnot) between two bitmaps. + */ +uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Computes the size of the symmetric difference (xor) between two bitmaps. + */ +uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Inplace version of `roaring_bitmap_and()`, modifies r1 + * r1 == r2 is allowed + */ +void roaring_bitmap_and_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Computes the union between two bitmaps and returns new bitmap. The caller is + * responsible for memory management. + */ +roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Inplace version of `roaring_bitmap_or(), modifies r1. + * TODO: decide whether r1 == r2 ok + */ +void roaring_bitmap_or_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Compute the union of 'number' bitmaps. + * Caller is responsible for freeing the result. + * See also `roaring_bitmap_or_many_heap()` + */ +roaring_bitmap_t *roaring_bitmap_or_many(size_t number, + const roaring_bitmap_t **rs); + +/** + * Compute the union of 'number' bitmaps using a heap. This can sometimes be + * faster than `roaring_bitmap_or_many() which uses a naive algorithm. + * Caller is responsible for freeing the result. + */ +roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number, + const roaring_bitmap_t **rs); + +/** + * Computes the symmetric difference (xor) between two bitmaps + * and returns new bitmap. The caller is responsible for memory management. + */ +roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Inplace version of roaring_bitmap_xor, modifies r1, r1 != r2. + */ +void roaring_bitmap_xor_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Compute the xor of 'number' bitmaps. + * Caller is responsible for freeing the result. + */ +roaring_bitmap_t *roaring_bitmap_xor_many(size_t number, + const roaring_bitmap_t **rs); + +/** + * Computes the difference (andnot) between two bitmaps and returns new bitmap. + * Caller is responsible for freeing the result. + */ +roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Inplace version of roaring_bitmap_andnot, modifies r1, r1 != r2. + */ +void roaring_bitmap_andnot_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * TODO: consider implementing: + * + * "Compute the xor of 'number' bitmaps using a heap. This can sometimes be + * faster than roaring_bitmap_xor_many which uses a naive algorithm. Caller is + * responsible for freeing the result."" + * + * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number, + * const roaring_bitmap_t **rs); + */ + +/** + * Frees the memory. + */ +void roaring_bitmap_free(const roaring_bitmap_t *r); + +/** + * Add value n_args from pointer vals, faster than repeatedly calling + * `roaring_bitmap_add()` + */ +void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args, + const uint32_t *vals); + +/** + * Add value x + */ +void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x); + +/** + * Add value x + * Returns true if a new value was added, false if the value already existed. + */ +bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x); + +/** + * Add all values in range [min, max] + */ +void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, + uint32_t min, uint32_t max); + +/** + * Add all values in range [min, max) + */ +static inline void roaring_bitmap_add_range(roaring_bitmap_t *r, + uint64_t min, uint64_t max) { + if(max == min) return; + roaring_bitmap_add_range_closed(r, (uint32_t)min, (uint32_t)(max - 1)); +} + +/** + * Remove value x + */ +void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x); + +/** + * Remove all values in range [min, max] + */ +void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, + uint32_t min, uint32_t max); + +/** + * Remove all values in range [min, max) + */ +static inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, + uint64_t min, uint64_t max) { + if(max == min) return; + roaring_bitmap_remove_range_closed(r, (uint32_t)min, (uint32_t)(max - 1)); +} + +/** + * Remove multiple values + */ +void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args, + const uint32_t *vals); + +/** + * Remove value x + * Returns true if a new value was removed, false if the value was not existing. + */ +bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x); + +/** + * Check if value is present + */ +bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val); + +/** + * Check whether a range of values from range_start (included) + * to range_end (excluded) is present + */ +bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, + uint64_t range_start, + uint64_t range_end); + +/** + * Get the cardinality of the bitmap (number of elements). + */ +uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r); + +/** + * Returns the number of elements in the range [range_start, range_end). + */ +uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r, + uint64_t range_start, + uint64_t range_end); + +/** +* Returns true if the bitmap is empty (cardinality is zero). +*/ +bool roaring_bitmap_is_empty(const roaring_bitmap_t *r); + + +/** + * Empties the bitmap. It will have no auxiliary allocations (so if the bitmap + * was initialized in client memory via roaring_bitmap_init(), then a call to + * roaring_bitmap_clear() would be enough to "free" it) + */ +void roaring_bitmap_clear(roaring_bitmap_t *r); + +/** + * Convert the bitmap to an array, output in `ans`, + * + * Caller is responsible to ensure that there is enough memory allocated, e.g. + * + * ans = malloc(roaring_bitmap_get_cardinality(bitmap) * sizeof(uint32_t)); + */ +void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans); + + +/** + * Convert the bitmap to an array from `offset` by `limit`, output in `ans`. + * + * Caller is responsible to ensure that there is enough memory allocated, e.g. + * + * ans = malloc(roaring_bitmap_get_cardinality(limit) * sizeof(uint32_t)); + * + * Return false in case of failure (e.g., insufficient memory) + */ +bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, + size_t offset, size_t limit, + uint32_t *ans); + +/** + * Remove run-length encoding even when it is more space efficient. + * Return whether a change was applied. + */ +bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r); + +/** + * Convert array and bitmap containers to run containers when it is more + * efficient; also convert from run containers when more space efficient. + * + * Returns true if the result has at least one run container. + * Additional savings might be possible by calling `shrinkToFit()`. + */ +bool roaring_bitmap_run_optimize(roaring_bitmap_t *r); + +/** + * If needed, reallocate memory to shrink the memory usage. + * Returns the number of bytes saved. + */ +size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r); + +/** + * Write the bitmap to an output pointer, this output buffer should refer to + * at least `roaring_bitmap_size_in_bytes(r)` allocated bytes. + * + * See `roaring_bitmap_portable_serialize()` if you want a format that's + * compatible with Java and Go implementations. This format can sometimes be + * more space efficient than the portable form, e.g. when the data is sparse. + * + * Returns how many bytes written, should be `roaring_bitmap_size_in_bytes(r)`. + */ +size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf); + +/** + * Use with `roaring_bitmap_serialize()`. + * + * (See `roaring_bitmap_portable_deserialize()` if you want a format that's + * compatible with Java and Go implementations) + */ +roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf); + +/** + * How many bytes are required to serialize this bitmap (NOT compatible + * with Java and Go versions) + */ +size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r); + +/** + * Read bitmap from a serialized buffer. + * In case of failure, NULL is returned. + * + * This function is unsafe in the sense that if there is no valid serialized + * bitmap at the pointer, then many bytes could be read, possibly causing a + * buffer overflow. See also roaring_bitmap_portable_deserialize_safe(). + * + * This is meant to be compatible with the Java and Go versions: + * https://github.com/RoaringBitmap/RoaringFormatSpec + */ +roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf); + +/** + * Read bitmap from a serialized buffer safely (reading up to maxbytes). + * In case of failure, NULL is returned. + * + * This is meant to be compatible with the Java and Go versions: + * https://github.com/RoaringBitmap/RoaringFormatSpec + */ +roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, + size_t maxbytes); + +/** + * Check how many bytes would be read (up to maxbytes) at this pointer if there + * is a bitmap, returns zero if there is no valid bitmap. + * + * This is meant to be compatible with the Java and Go versions: + * https://github.com/RoaringBitmap/RoaringFormatSpec + */ +size_t roaring_bitmap_portable_deserialize_size(const char *buf, + size_t maxbytes); + +/** + * How many bytes are required to serialize this bitmap. + * + * This is meant to be compatible with the Java and Go versions: + * https://github.com/RoaringBitmap/RoaringFormatSpec + */ +size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r); + +/** + * Write a bitmap to a char buffer. The output buffer should refer to at least + * `roaring_bitmap_portable_size_in_bytes(r)` bytes of allocated memory. + * + * Returns how many bytes were written which should match + * `roaring_bitmap_portable_size_in_bytes(r)`. + * + * This is meant to be compatible with the Java and Go versions: + * https://github.com/RoaringBitmap/RoaringFormatSpec + */ +size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf); + +/* + * "Frozen" serialization format imitates memory layout of roaring_bitmap_t. + * Deserialized bitmap is a constant view of the underlying buffer. + * This significantly reduces amount of allocations and copying required during + * deserialization. + * It can be used with memory mapped files. + * Example can be found in benchmarks/frozen_benchmark.c + * + * [#####] const roaring_bitmap_t * + * | | | + * +----+ | +-+ + * | | | + * [#####################################] underlying buffer + * + * Note that because frozen serialization format imitates C memory layout + * of roaring_bitmap_t, it is not fixed. It is different on big/little endian + * platforms and can be changed in future. + */ + +/** + * Returns number of bytes required to serialize bitmap using frozen format. + */ +size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *r); + +/** + * Serializes bitmap using frozen format. + * Buffer size must be at least roaring_bitmap_frozen_size_in_bytes(). + */ +void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *r, char *buf); + +/** + * Creates constant bitmap that is a view of a given buffer. + * Buffer data should have been written by `roaring_bitmap_frozen_serialize()` + * Its beginning must also be aligned by 32 bytes. + * Length must be equal exactly to `roaring_bitmap_frozen_size_in_bytes()`. + * In case of failure, NULL is returned. + * + * Bitmap returned by this function can be used in all readonly contexts. + * Bitmap must be freed as usual, by calling roaring_bitmap_free(). + * Underlying buffer must not be freed or modified while it backs any bitmaps. + */ +const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf, + size_t length); + +/** + * Iterate over the bitmap elements. The function iterator is called once for + * all the values with ptr (can be NULL) as the second parameter of each call. + * + * `roaring_iterator` is simply a pointer to a function that returns bool + * (true means that the iteration should continue while false means that it + * should stop), and takes (uint32_t,void*) as inputs. + * + * Returns true if the roaring_iterator returned true throughout (so that all + * data points were necessarily visited). + * + * Iteration is ordered: from the smallest to the largest elements. + */ +bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator, + void *ptr); + +bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator, + uint64_t high_bits, void *ptr); + +/** + * Return true if the two bitmaps contain the same elements. + */ +bool roaring_bitmap_equals(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Return true if all the elements of r1 are also in r2. + */ +bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Return true if all the elements of r1 are also in r2, and r2 is strictly + * greater than r1. + */ +bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * (For expert users who seek high performance.) + * + * Computes the union between two bitmaps and returns new bitmap. The caller is + * responsible for memory management. + * + * The lazy version defers some computations such as the maintenance of the + * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()` + * after executing "lazy" computations. + * + * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result. + * + * `bitsetconversion` is a flag which determines whether container-container + * operations force a bitset conversion. + */ +roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2, + const bool bitsetconversion); + +/** + * (For expert users who seek high performance.) + * + * Inplace version of roaring_bitmap_lazy_or, modifies r1. + * + * `bitsetconversion` is a flag which determines whether container-container + * operations force a bitset conversion. + */ +void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2, + const bool bitsetconversion); + +/** + * (For expert users who seek high performance.) + * + * Execute maintenance on a bitmap created from `roaring_bitmap_lazy_or()` + * or modified with `roaring_bitmap_lazy_or_inplace()`. + */ +void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r1); + +/** + * Computes the symmetric difference between two bitmaps and returns new bitmap. + * The caller is responsible for memory management. + * + * The lazy version defers some computations such as the maintenance of the + * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()` + * after executing "lazy" computations. + * + * It is safe to repeatedly call `roaring_bitmap_lazy_xor_inplace()` on + * the result. + */ +roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * (For expert users who seek high performance.) + * + * Inplace version of roaring_bitmap_lazy_xor, modifies r1. r1 != r2 + */ +void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *r1, + const roaring_bitmap_t *r2); + +/** + * Compute the negation of the bitmap in the interval [range_start, range_end). + * The number of negated values is range_end - range_start. + * Areas outside the range are passed through unchanged. + */ +roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *r1, + uint64_t range_start, uint64_t range_end); + +/** + * compute (in place) the negation of the roaring bitmap within a specified + * interval: [range_start, range_end). The number of negated values is + * range_end - range_start. + * Areas outside the range are passed through unchanged. + */ +void roaring_bitmap_flip_inplace(roaring_bitmap_t *r1, uint64_t range_start, + uint64_t range_end); + +/** + * Selects the element at index 'rank' where the smallest element is at index 0. + * If the size of the roaring bitmap is strictly greater than rank, then this + * function returns true and sets element to the element of given rank. + * Otherwise, it returns false. + */ +bool roaring_bitmap_select(const roaring_bitmap_t *r, uint32_t rank, + uint32_t *element); + +/** + * roaring_bitmap_rank returns the number of integers that are smaller or equal + * to x. Thus if x is the first element, this function will return 1. If + * x is smaller than the smallest element, this function will return 0. + * + * The indexing convention differs between roaring_bitmap_select and + * roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value + * as having index 0, whereas roaring_bitmap_rank returns 1 when ranking + * the smallest value. + */ +uint64_t roaring_bitmap_rank(const roaring_bitmap_t *r, uint32_t x); + +/** + * Returns the smallest value in the set, or UINT32_MAX if the set is empty. + */ +uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *r); + +/** + * Returns the greatest value in the set, or 0 if the set is empty. + */ +uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *r); + +/** + * (For advanced users.) + * + * Collect statistics about the bitmap, see roaring_types.h for + * a description of roaring_statistics_t + */ +void roaring_bitmap_statistics(const roaring_bitmap_t *r, + roaring_statistics_t *stat); + +/********************* +* What follows is code use to iterate through values in a roaring bitmap + +roaring_bitmap_t *r =... +roaring_uint32_iterator_t i; +roaring_create_iterator(r, &i); +while(i.has_value) { + printf("value = %d\n", i.current_value); + roaring_advance_uint32_iterator(&i); +} + +Obviously, if you modify the underlying bitmap, the iterator +becomes invalid. So don't. +*/ + +typedef struct roaring_uint32_iterator_s { + const roaring_bitmap_t *parent; // owner + int32_t container_index; // point to the current container index + int32_t in_container_index; // for bitset and array container, this is out + // index + int32_t run_index; // for run container, this points at the run + + uint32_t current_value; + bool has_value; + + const ROARING_CONTAINER_T + *container; // should be: + // parent->high_low_container.containers[container_index]; + uint8_t typecode; // should be: + // parent->high_low_container.typecodes[container_index]; + uint32_t highbits; // should be: + // parent->high_low_container.keys[container_index]) << + // 16; + +} roaring_uint32_iterator_t; + +/** + * Initialize an iterator object that can be used to iterate through the + * values. If there is a value, then this iterator points to the first value + * and `it->has_value` is true. The value is in `it->current_value`. + */ +void roaring_init_iterator(const roaring_bitmap_t *r, + roaring_uint32_iterator_t *newit); + +/** + * Initialize an iterator object that can be used to iterate through the + * values. If there is a value, then this iterator points to the last value + * and `it->has_value` is true. The value is in `it->current_value`. + */ +void roaring_init_iterator_last(const roaring_bitmap_t *r, + roaring_uint32_iterator_t *newit); + +/** + * Create an iterator object that can be used to iterate through the values. + * Caller is responsible for calling `roaring_free_iterator()`. + * + * The iterator is initialized (this function calls `roaring_init_iterator()`) + * If there is a value, then this iterator points to the first value and + * `it->has_value` is true. The value is in `it->current_value`. + */ +roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *r); + +/** +* Advance the iterator. If there is a new value, then `it->has_value` is true. +* The new value is in `it->current_value`. Values are traversed in increasing +* orders. For convenience, returns `it->has_value`. +*/ +bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it); + +/** +* Decrement the iterator. If there's a new value, then `it->has_value` is true. +* The new value is in `it->current_value`. Values are traversed in decreasing +* order. For convenience, returns `it->has_value`. +*/ +bool roaring_previous_uint32_iterator(roaring_uint32_iterator_t *it); + +/** + * Move the iterator to the first value >= `val`. If there is a such a value, + * then `it->has_value` is true. The new value is in `it->current_value`. + * For convenience, returns `it->has_value`. + */ +bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, + uint32_t val); + +/** + * Creates a copy of an iterator. + * Caller must free it. + */ +roaring_uint32_iterator_t *roaring_copy_uint32_iterator( + const roaring_uint32_iterator_t *it); + +/** + * Free memory following `roaring_create_iterator()` + */ +void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it); + +/* + * Reads next ${count} values from iterator into user-supplied ${buf}. + * Returns the number of read elements. + * This number can be smaller than ${count}, which means that iterator is drained. + * + * This function satisfies semantics of iteration and can be used together with + * other iterator functions. + * - first value is copied from ${it}->current_value + * - after function returns, iterator is positioned at the next element + */ +uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, + uint32_t* buf, uint32_t count); + +#ifdef __cplusplus +} } } // extern "C" { namespace roaring { namespace api { +#endif + +#endif /* ROARING_H */ + +#ifdef __cplusplus + /** + * Best practices for C++ headers is to avoid polluting global scope. + * But for C compatibility when just `roaring.h` is included building as + * C++, default to global access for the C public API. + * + * BUT when `roaring.hh` is included instead, it sets this flag. That way + * explicit namespacing must be used to get the C functions. + * + * This is outside the include guard so that if you include BOTH headers, + * the order won't matter; you still get the global definitions. + */ + #if !defined(ROARING_API_NOT_IN_GLOBAL_NAMESPACE) + using namespace ::roaring::api; + #endif +#endif + +/* end file include/roaring/roaring.h */ |