aboutsummaryrefslogtreecommitdiff
path: root/tests/do-dga.sh
diff options
context:
space:
mode:
authorZied Aouini <aouinizied@gmail.com>2020-11-16 21:17:16 +0100
committerGitHub <noreply@github.com>2020-11-16 21:17:16 +0100
commit3d8fd42307fba1f4dd7272efa14d024c15c008e0 (patch)
tree2a718e9346537468a229a222a9656df06fb70b47 /tests/do-dga.sh
parent76bb83085b6f20e280da9e63cf5e867669ddb007 (diff)
Implement DGA detection performances tracking workflow. (#1064)
* Implement dga evaluation helper. * Add test set for DGA classification. * Add DGA classification performances tracking as part of Travis. * Add DGA evaluation doc. * Fix CI on OSX. * Add missing backquote.
Diffstat (limited to 'tests/do-dga.sh')
-rwxr-xr-xtests/do-dga.sh65
1 files changed, 65 insertions, 0 deletions
diff --git a/tests/do-dga.sh b/tests/do-dga.sh
new file mode 100755
index 000000000..dbcbe35b1
--- /dev/null
+++ b/tests/do-dga.sh
@@ -0,0 +1,65 @@
+#!/bin/sh
+
+cd "$(dirname "${0}")"
+
+# Baseline performances ------------------------------------------------------------------------------------------------
+# Important notes: BASE values must be integers examples and represents percentage (e.g. 79%, 98%).
+BASE_ACCURACY=66
+BASE_PRECISION=86
+BASE_RECALL=38
+# ----------------------------------------------------------------------------------------------------------------------
+
+DGA_EVALUATE="./dga/dga_evaluate"
+DGA_DATA="dga/test_dga.csv"
+NON_DGA_DATA="dga/test_non_dga.csv"
+DGA_DATA_SIZE=0
+NON_DGA_DATA_SIZE=0
+DATA_SIZE=0
+RC=0
+
+get_evaluation_data_size() {
+ DGA_DATA_SIZE=`wc -l dga/test_dga.csv | awk '{split($0,a," "); print a[1]}'`
+ NON_DGA_DATA_SIZE=`wc -l dga/test_non_dga.csv | awk '{split($0,a," "); print a[1]}'`
+ DATA_SIZE=$(( $NON_DGA_DATA_SIZE + $DGA_DATA_SIZE ))
+}
+
+evaluate_ndpi_dga_detection() {
+ # DGA detection is a binary classification problem, We evaluate the following metrics:
+ # Accuracy: (TP + TN) / (TP + TN + FN + FP)
+ # Precision: TP / (TP + FP)
+ # Recall: TP / (TP + FN)
+
+ TP=`$DGA_EVALUATE dga/test_dga.csv`
+ FN=$(( $DGA_DATA_SIZE - $TP ))
+ FP=`$DGA_EVALUATE dga/test_non_dga.csv`
+ TN=$(( $NON_DGA_DATA_SIZE - $FP ))
+
+ ACCURACY=`echo "print(int(((${TP} + ${TN})/(${TP} + ${TN} + ${FP} + ${FN}))*100))" | python3`
+ PRECISION=`echo "print(int(((${TP})/(${TP} + ${FP}))*100))" | python3`
+ RECALL=`echo "print(int(((${TP})/(${TP} + ${FN}))*100))" | python3`
+
+ # In case modified version of classification algorithm decreases performances, test do not pass.
+ if [ $ACCURACY -lt $BASE_ACCURACY ]; then
+ printf "ERROR: Your modifications decreased DGA classifier accuracy: 0.${BASE_ACCURACY} decreased to 0.${ACCURACY}!\n"
+ RC=1
+ fi
+ if [ $PRECISION -lt $BASE_PRECISION ]; then
+ printf "ERROR: Your modifications decreased DGA classifier precision: 0.${BASE_PRECISION} decreased to 0.${PRECISION}!\n"
+ RC=1
+ fi
+ if [ $RECALL -lt $BASE_RECALL ]; then
+ printf "ERROR: Your modifications decreased DGA classifier recall: 0.${BASE_RECALL} decreased to 0.${RECALL}!\n"
+ RC=1
+ fi
+
+ # Finally we print the current performances, upgrade BASE_ metrics in case you improved it.
+ echo "DGA detection performances report:"
+ echo "Accuracy=0.$ACCURACY"
+ echo "Precision=0.$PRECISION"
+ echo "Recall=0.$RECALL"
+}
+
+get_evaluation_data_size
+evaluate_ndpi_dga_detection
+
+exit $RC