diff options
Diffstat (limited to 'modules/crypto/ssh/keys.go')
-rwxr-xr-x | modules/crypto/ssh/keys.go | 628 |
1 files changed, 0 insertions, 628 deletions
diff --git a/modules/crypto/ssh/keys.go b/modules/crypto/ssh/keys.go deleted file mode 100755 index 3272d7c9..00000000 --- a/modules/crypto/ssh/keys.go +++ /dev/null @@ -1,628 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package ssh - -import ( - "bytes" - "crypto" - "crypto/dsa" - "crypto/ecdsa" - "crypto/elliptic" - "crypto/rsa" - "crypto/x509" - "encoding/asn1" - "encoding/base64" - "encoding/pem" - "errors" - "fmt" - "io" - "math/big" -) - -// These constants represent the algorithm names for key types supported by this -// package. -const ( - KeyAlgoRSA = "ssh-rsa" - KeyAlgoDSA = "ssh-dss" - KeyAlgoECDSA256 = "ecdsa-sha2-nistp256" - KeyAlgoECDSA384 = "ecdsa-sha2-nistp384" - KeyAlgoECDSA521 = "ecdsa-sha2-nistp521" -) - -// parsePubKey parses a public key of the given algorithm. -// Use ParsePublicKey for keys with prepended algorithm. -func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) { - switch algo { - case KeyAlgoRSA: - return parseRSA(in) - case KeyAlgoDSA: - return parseDSA(in) - case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521: - return parseECDSA(in) - case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01: - cert, err := parseCert(in, certToPrivAlgo(algo)) - if err != nil { - return nil, nil, err - } - return cert, nil, nil - } - return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", err) -} - -// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format -// (see sshd(8) manual page) once the options and key type fields have been -// removed. -func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) { - in = bytes.TrimSpace(in) - - i := bytes.IndexAny(in, " \t") - if i == -1 { - i = len(in) - } - base64Key := in[:i] - - key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key))) - n, err := base64.StdEncoding.Decode(key, base64Key) - if err != nil { - return nil, "", err - } - key = key[:n] - out, err = ParsePublicKey(key) - if err != nil { - return nil, "", err - } - comment = string(bytes.TrimSpace(in[i:])) - return out, comment, nil -} - -// ParseAuthorizedKeys parses a public key from an authorized_keys -// file used in OpenSSH according to the sshd(8) manual page. -func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) { - for len(in) > 0 { - end := bytes.IndexByte(in, '\n') - if end != -1 { - rest = in[end+1:] - in = in[:end] - } else { - rest = nil - } - - end = bytes.IndexByte(in, '\r') - if end != -1 { - in = in[:end] - } - - in = bytes.TrimSpace(in) - if len(in) == 0 || in[0] == '#' { - in = rest - continue - } - - i := bytes.IndexAny(in, " \t") - if i == -1 { - in = rest - continue - } - - if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { - return out, comment, options, rest, nil - } - - // No key type recognised. Maybe there's an options field at - // the beginning. - var b byte - inQuote := false - var candidateOptions []string - optionStart := 0 - for i, b = range in { - isEnd := !inQuote && (b == ' ' || b == '\t') - if (b == ',' && !inQuote) || isEnd { - if i-optionStart > 0 { - candidateOptions = append(candidateOptions, string(in[optionStart:i])) - } - optionStart = i + 1 - } - if isEnd { - break - } - if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) { - inQuote = !inQuote - } - } - for i < len(in) && (in[i] == ' ' || in[i] == '\t') { - i++ - } - if i == len(in) { - // Invalid line: unmatched quote - in = rest - continue - } - - in = in[i:] - i = bytes.IndexAny(in, " \t") - if i == -1 { - in = rest - continue - } - - if out, comment, err = parseAuthorizedKey(in[i:]); err == nil { - options = candidateOptions - return out, comment, options, rest, nil - } - - in = rest - continue - } - - return nil, "", nil, nil, errors.New("ssh: no key found") -} - -// ParsePublicKey parses an SSH public key formatted for use in -// the SSH wire protocol according to RFC 4253, section 6.6. -func ParsePublicKey(in []byte) (out PublicKey, err error) { - algo, in, ok := parseString(in) - if !ok { - return nil, errShortRead - } - var rest []byte - out, rest, err = parsePubKey(in, string(algo)) - if len(rest) > 0 { - return nil, errors.New("ssh: trailing junk in public key") - } - - return out, err -} - -// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH -// authorized_keys file. The return value ends with newline. -func MarshalAuthorizedKey(key PublicKey) []byte { - b := &bytes.Buffer{} - b.WriteString(key.Type()) - b.WriteByte(' ') - e := base64.NewEncoder(base64.StdEncoding, b) - e.Write(key.Marshal()) - e.Close() - b.WriteByte('\n') - return b.Bytes() -} - -// PublicKey is an abstraction of different types of public keys. -type PublicKey interface { - // Type returns the key's type, e.g. "ssh-rsa". - Type() string - - // Marshal returns the serialized key data in SSH wire format, - // with the name prefix. - Marshal() []byte - - // Verify that sig is a signature on the given data using this - // key. This function will hash the data appropriately first. - Verify(data []byte, sig *Signature) error -} - -// A Signer can create signatures that verify against a public key. -type Signer interface { - // PublicKey returns an associated PublicKey instance. - PublicKey() PublicKey - - // Sign returns raw signature for the given data. This method - // will apply the hash specified for the keytype to the data. - Sign(rand io.Reader, data []byte) (*Signature, error) -} - -type rsaPublicKey rsa.PublicKey - -func (r *rsaPublicKey) Type() string { - return "ssh-rsa" -} - -// parseRSA parses an RSA key according to RFC 4253, section 6.6. -func parseRSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - E *big.Int - N *big.Int - Rest []byte `ssh:"rest"` - } - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - if w.E.BitLen() > 24 { - return nil, nil, errors.New("ssh: exponent too large") - } - e := w.E.Int64() - if e < 3 || e&1 == 0 { - return nil, nil, errors.New("ssh: incorrect exponent") - } - - var key rsa.PublicKey - key.E = int(e) - key.N = w.N - return (*rsaPublicKey)(&key), w.Rest, nil -} - -func (r *rsaPublicKey) Marshal() []byte { - e := new(big.Int).SetInt64(int64(r.E)) - wirekey := struct { - Name string - E *big.Int - N *big.Int - }{ - KeyAlgoRSA, - e, - r.N, - } - return Marshal(&wirekey) -} - -func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != r.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type()) - } - h := crypto.SHA1.New() - h.Write(data) - digest := h.Sum(nil) - return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig.Blob) -} - -type rsaPrivateKey struct { - *rsa.PrivateKey -} - -func (r *rsaPrivateKey) PublicKey() PublicKey { - return (*rsaPublicKey)(&r.PrivateKey.PublicKey) -} - -func (r *rsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { - h := crypto.SHA1.New() - h.Write(data) - digest := h.Sum(nil) - blob, err := rsa.SignPKCS1v15(rand, r.PrivateKey, crypto.SHA1, digest) - if err != nil { - return nil, err - } - return &Signature{ - Format: r.PublicKey().Type(), - Blob: blob, - }, nil -} - -type dsaPublicKey dsa.PublicKey - -func (r *dsaPublicKey) Type() string { - return "ssh-dss" -} - -// parseDSA parses an DSA key according to RFC 4253, section 6.6. -func parseDSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - P, Q, G, Y *big.Int - Rest []byte `ssh:"rest"` - } - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - key := &dsaPublicKey{ - Parameters: dsa.Parameters{ - P: w.P, - Q: w.Q, - G: w.G, - }, - Y: w.Y, - } - return key, w.Rest, nil -} - -func (k *dsaPublicKey) Marshal() []byte { - w := struct { - Name string - P, Q, G, Y *big.Int - }{ - k.Type(), - k.P, - k.Q, - k.G, - k.Y, - } - - return Marshal(&w) -} - -func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != k.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type()) - } - h := crypto.SHA1.New() - h.Write(data) - digest := h.Sum(nil) - - // Per RFC 4253, section 6.6, - // The value for 'dss_signature_blob' is encoded as a string containing - // r, followed by s (which are 160-bit integers, without lengths or - // padding, unsigned, and in network byte order). - // For DSS purposes, sig.Blob should be exactly 40 bytes in length. - if len(sig.Blob) != 40 { - return errors.New("ssh: DSA signature parse error") - } - r := new(big.Int).SetBytes(sig.Blob[:20]) - s := new(big.Int).SetBytes(sig.Blob[20:]) - if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) { - return nil - } - return errors.New("ssh: signature did not verify") -} - -type dsaPrivateKey struct { - *dsa.PrivateKey -} - -func (k *dsaPrivateKey) PublicKey() PublicKey { - return (*dsaPublicKey)(&k.PrivateKey.PublicKey) -} - -func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { - h := crypto.SHA1.New() - h.Write(data) - digest := h.Sum(nil) - r, s, err := dsa.Sign(rand, k.PrivateKey, digest) - if err != nil { - return nil, err - } - - sig := make([]byte, 40) - rb := r.Bytes() - sb := s.Bytes() - - copy(sig[20-len(rb):20], rb) - copy(sig[40-len(sb):], sb) - - return &Signature{ - Format: k.PublicKey().Type(), - Blob: sig, - }, nil -} - -type ecdsaPublicKey ecdsa.PublicKey - -func (key *ecdsaPublicKey) Type() string { - return "ecdsa-sha2-" + key.nistID() -} - -func (key *ecdsaPublicKey) nistID() string { - switch key.Params().BitSize { - case 256: - return "nistp256" - case 384: - return "nistp384" - case 521: - return "nistp521" - } - panic("ssh: unsupported ecdsa key size") -} - -func supportedEllipticCurve(curve elliptic.Curve) bool { - return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521() -} - -// ecHash returns the hash to match the given elliptic curve, see RFC -// 5656, section 6.2.1 -func ecHash(curve elliptic.Curve) crypto.Hash { - bitSize := curve.Params().BitSize - switch { - case bitSize <= 256: - return crypto.SHA256 - case bitSize <= 384: - return crypto.SHA384 - } - return crypto.SHA512 -} - -// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1. -func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) { - var w struct { - Curve string - KeyBytes []byte - Rest []byte `ssh:"rest"` - } - - if err := Unmarshal(in, &w); err != nil { - return nil, nil, err - } - - key := new(ecdsa.PublicKey) - - switch w.Curve { - case "nistp256": - key.Curve = elliptic.P256() - case "nistp384": - key.Curve = elliptic.P384() - case "nistp521": - key.Curve = elliptic.P521() - default: - return nil, nil, errors.New("ssh: unsupported curve") - } - - key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes) - if key.X == nil || key.Y == nil { - return nil, nil, errors.New("ssh: invalid curve point") - } - return (*ecdsaPublicKey)(key), w.Rest, nil -} - -func (key *ecdsaPublicKey) Marshal() []byte { - // See RFC 5656, section 3.1. - keyBytes := elliptic.Marshal(key.Curve, key.X, key.Y) - w := struct { - Name string - ID string - Key []byte - }{ - key.Type(), - key.nistID(), - keyBytes, - } - - return Marshal(&w) -} - -func (key *ecdsaPublicKey) Verify(data []byte, sig *Signature) error { - if sig.Format != key.Type() { - return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, key.Type()) - } - - h := ecHash(key.Curve).New() - h.Write(data) - digest := h.Sum(nil) - - // Per RFC 5656, section 3.1.2, - // The ecdsa_signature_blob value has the following specific encoding: - // mpint r - // mpint s - var ecSig struct { - R *big.Int - S *big.Int - } - - if err := Unmarshal(sig.Blob, &ecSig); err != nil { - return err - } - - if ecdsa.Verify((*ecdsa.PublicKey)(key), digest, ecSig.R, ecSig.S) { - return nil - } - return errors.New("ssh: signature did not verify") -} - -type ecdsaPrivateKey struct { - *ecdsa.PrivateKey -} - -func (k *ecdsaPrivateKey) PublicKey() PublicKey { - return (*ecdsaPublicKey)(&k.PrivateKey.PublicKey) -} - -func (k *ecdsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) { - h := ecHash(k.PrivateKey.PublicKey.Curve).New() - h.Write(data) - digest := h.Sum(nil) - r, s, err := ecdsa.Sign(rand, k.PrivateKey, digest) - if err != nil { - return nil, err - } - - sig := make([]byte, intLength(r)+intLength(s)) - rest := marshalInt(sig, r) - marshalInt(rest, s) - return &Signature{ - Format: k.PublicKey().Type(), - Blob: sig, - }, nil -} - -// NewSignerFromKey takes a pointer to rsa, dsa or ecdsa PrivateKey -// returns a corresponding Signer instance. EC keys should use P256, -// P384 or P521. -func NewSignerFromKey(k interface{}) (Signer, error) { - var sshKey Signer - switch t := k.(type) { - case *rsa.PrivateKey: - sshKey = &rsaPrivateKey{t} - case *dsa.PrivateKey: - sshKey = &dsaPrivateKey{t} - case *ecdsa.PrivateKey: - if !supportedEllipticCurve(t.Curve) { - return nil, errors.New("ssh: only P256, P384 and P521 EC keys are supported.") - } - - sshKey = &ecdsaPrivateKey{t} - default: - return nil, fmt.Errorf("ssh: unsupported key type %T", k) - } - return sshKey, nil -} - -// NewPublicKey takes a pointer to rsa, dsa or ecdsa PublicKey -// and returns a corresponding ssh PublicKey instance. EC keys should use P256, P384 or P521. -func NewPublicKey(k interface{}) (PublicKey, error) { - var sshKey PublicKey - switch t := k.(type) { - case *rsa.PublicKey: - sshKey = (*rsaPublicKey)(t) - case *ecdsa.PublicKey: - if !supportedEllipticCurve(t.Curve) { - return nil, errors.New("ssh: only P256, P384 and P521 EC keys are supported.") - } - sshKey = (*ecdsaPublicKey)(t) - case *dsa.PublicKey: - sshKey = (*dsaPublicKey)(t) - default: - return nil, fmt.Errorf("ssh: unsupported key type %T", k) - } - return sshKey, nil -} - -// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports -// the same keys as ParseRawPrivateKey. -func ParsePrivateKey(pemBytes []byte) (Signer, error) { - key, err := ParseRawPrivateKey(pemBytes) - if err != nil { - return nil, err - } - - return NewSignerFromKey(key) -} - -// ParseRawPrivateKey returns a private key from a PEM encoded private key. It -// supports RSA (PKCS#1), DSA (OpenSSL), and ECDSA private keys. -func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) { - block, _ := pem.Decode(pemBytes) - if block == nil { - return nil, errors.New("ssh: no key found") - } - - switch block.Type { - case "RSA PRIVATE KEY": - return x509.ParsePKCS1PrivateKey(block.Bytes) - case "EC PRIVATE KEY": - return x509.ParseECPrivateKey(block.Bytes) - case "DSA PRIVATE KEY": - return ParseDSAPrivateKey(block.Bytes) - default: - return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type) - } -} - -// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as -// specified by the OpenSSL DSA man page. -func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) { - var k struct { - Version int - P *big.Int - Q *big.Int - G *big.Int - Priv *big.Int - Pub *big.Int - } - rest, err := asn1.Unmarshal(der, &k) - if err != nil { - return nil, errors.New("ssh: failed to parse DSA key: " + err.Error()) - } - if len(rest) > 0 { - return nil, errors.New("ssh: garbage after DSA key") - } - - return &dsa.PrivateKey{ - PublicKey: dsa.PublicKey{ - Parameters: dsa.Parameters{ - P: k.P, - Q: k.Q, - G: k.G, - }, - Y: k.Priv, - }, - X: k.Pub, - }, nil -} |