#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #if (NDPI_MAJOR == 3 && NDPI_MINOR < 3) || NDPI_MAJOR < 3 #error "nDPI >= 3.3.0 requiired" #endif enum nDPId_l3_type { L3_IP, L3_IP6 }; struct nDPId_flow_info { uint32_t flow_id; unsigned long long int packets_processed; uint64_t first_seen; uint64_t last_seen; uint64_t hashval; enum nDPId_l3_type l3_type; union { struct { uint32_t src; uint32_t dst; } v4; struct { uint64_t src[2]; uint64_t dst[2]; } v6; } ip_tuple; uint16_t min_l4_data_len; uint16_t max_l4_data_len; unsigned long long int total_l4_data_len; uint16_t src_port; uint16_t dst_port; uint8_t is_midstream_flow : 1; uint8_t flow_fin_ack_seen : 1; uint8_t flow_ack_seen : 1; uint8_t detection_completed : 1; uint8_t reserved_00 : 4; uint8_t reserved_01[3]; uint8_t l4_protocol; struct ndpi_proto detected_l7_protocol; struct ndpi_proto guessed_protocol; struct ndpi_flow_struct * ndpi_flow; struct ndpi_id_struct * ndpi_src; struct ndpi_id_struct * ndpi_dst; }; struct nDPId_workflow { pcap_t * pcap_handle; uint8_t error_or_eof : 1; uint8_t reserved_00 : 7; uint8_t reserved_01[3]; unsigned long long int packets_captured; unsigned long long int packets_processed; unsigned long long int total_l4_data_len; unsigned long long int detected_flow_protocols; uint64_t last_idle_scan_time; uint64_t last_time; void ** ndpi_flows_active; unsigned long long int max_active_flows; unsigned long long int cur_active_flows; unsigned long long int total_active_flows; void ** ndpi_flows_idle; unsigned long long int max_idle_flows; unsigned long long int cur_idle_flows; unsigned long long int total_idle_flows; ndpi_serializer ndpi_serializer; struct ndpi_detection_module_struct * ndpi_struct; }; struct nDPId_reader_thread { struct nDPId_workflow * workflow; pthread_t thread_id; int json_sockfd; int json_sock_reconnect; int array_index; }; enum packet_event { PACKET_EVENT_INVALID = 0, PACKET_EVENT_PAYLOAD, PACKET_EVENT_PAYLOAD_FLOW, PACKET_EVENT_COUNT }; enum flow_event { FLOW_EVENT_INVALID = 0, FLOW_EVENT_NEW, FLOW_EVENT_END, FLOW_EVENT_IDLE, FLOW_EVENT_GUESSED, FLOW_EVENT_DETECTED, FLOW_EVENT_NOT_DETECTED, FLOW_EVENT_COUNT }; enum basic_event { BASIC_EVENT_INVALID = 0, UNKNOWN_DATALINK_LAYER, UNKNOWN_L3_PROTOCOL, NON_IP_PACKET, ETHERNET_PACKET_TOO_SHORT, ETHERNET_PACKET_UNKNOWN, IP4_PACKET_TOO_SHORT, IP4_SIZE_SMALLER_THAN_HEADER, IP4_L4_PAYLOAD_DETECTION_FAILED, IP6_PACKET_TOO_SHORT, IP6_SIZE_SMALLER_THAN_HEADER, IP6_L4_PAYLOAD_DETECTION_FAILED, TCP_PACKET_TOO_SHORT, UDP_PACKET_TOO_SHORT, CAPTURE_SIZE_SMALLER_THAN_PACKET_SIZE, MAX_FLOW_TO_TRACK, FLOW_MEMORY_ALLOCATION_FAILED, NDPI_FLOW_MEMORY_ALLOCATION_FAILED, NDPI_ID_MEMORY_ALLOCATION_FAILED, BASIC_EVENT_COUNT }; static char const * const packet_event_name_table[PACKET_EVENT_COUNT] = {[PACKET_EVENT_INVALID] = "invalid", [PACKET_EVENT_PAYLOAD] = "packet", [PACKET_EVENT_PAYLOAD_FLOW] = "packet-flow"}; static char const * const flow_event_name_table[FLOW_EVENT_COUNT] = {[FLOW_EVENT_INVALID] = "invalid", [FLOW_EVENT_NEW] = "new", [FLOW_EVENT_END] = "end", [FLOW_EVENT_IDLE] = "idle", [FLOW_EVENT_GUESSED] = "guessed", [FLOW_EVENT_DETECTED] = "detected", [FLOW_EVENT_NOT_DETECTED] = "not-detected"}; static char const * const basic_event_name_table[BASIC_EVENT_COUNT] = { [BASIC_EVENT_INVALID] = "invalid", [UNKNOWN_DATALINK_LAYER] = "Unknown datalink layer packet", [UNKNOWN_L3_PROTOCOL] = "Unknown L3 protocol", [NON_IP_PACKET] = "Non IP packet", [ETHERNET_PACKET_TOO_SHORT] = "Ethernet packet too short", [ETHERNET_PACKET_UNKNOWN] = "Unknown Ethernet packet type", [IP4_PACKET_TOO_SHORT] = "IP4 packet too short", [IP4_SIZE_SMALLER_THAN_HEADER] = "Packet smaller than IP4 header", [IP4_L4_PAYLOAD_DETECTION_FAILED] = "nDPI IPv4/L4 payload detection failed", [IP6_PACKET_TOO_SHORT] = "IP6 packet too short", [IP6_SIZE_SMALLER_THAN_HEADER] = "Packet smaller than IP6 header", [IP6_L4_PAYLOAD_DETECTION_FAILED] = "nDPI IPv6/L4 payload detection failed", [TCP_PACKET_TOO_SHORT] = "TCP packet smaller than expected", [UDP_PACKET_TOO_SHORT] = "UDP packet smaller than expected", [CAPTURE_SIZE_SMALLER_THAN_PACKET_SIZE] = "Captured packet size is smaller than packet size", [MAX_FLOW_TO_TRACK] = "Max flows to track reached", [FLOW_MEMORY_ALLOCATION_FAILED] = "Flow memory allocation failed", [NDPI_FLOW_MEMORY_ALLOCATION_FAILED] = "nDPI Flow memory allocation failed", [NDPI_ID_MEMORY_ALLOCATION_FAILED] = "Not enough memory for src id struct", }; static struct nDPId_reader_thread reader_threads[nDPId_MAX_READER_THREADS] = {}; static int reader_thread_count = nDPId_MAX_READER_THREADS; static int main_thread_shutdown = 0; static uint32_t global_flow_id = 0; static char * pcap_file_or_interface = NULL; static int log_to_stderr = 0; static char json_sockpath[UNIX_PATH_MAX] = COLLECTOR_UNIX_SOCKET; static void free_workflow(struct nDPId_workflow ** const workflow); static void serialize_and_send(struct nDPId_reader_thread * const reader_thread); static void jsonize_flow_event(struct nDPId_reader_thread * const reader_thread, struct nDPId_flow_info const * const flow, enum flow_event event); static struct nDPId_workflow * init_workflow(char const * const file_or_device) { char pcap_error_buffer[PCAP_ERRBUF_SIZE]; struct nDPId_workflow * workflow = (struct nDPId_workflow *)ndpi_calloc(1, sizeof(*workflow)); if (workflow == NULL) { return NULL; } if (access(file_or_device, R_OK) != 0 && errno == ENOENT) { workflow->pcap_handle = pcap_open_live(file_or_device, 65535, 1, 250, pcap_error_buffer); } else { workflow->pcap_handle = pcap_open_offline_with_tstamp_precision(file_or_device, PCAP_TSTAMP_PRECISION_MICRO, pcap_error_buffer); } if (workflow->pcap_handle == NULL) { syslog(LOG_DAEMON | LOG_ERR, "pcap_open_live / pcap_open_offline_with_tstamp_precision: %s\n", pcap_error_buffer); free_workflow(&workflow); return NULL; } ndpi_init_prefs init_prefs = ndpi_no_prefs; workflow->ndpi_struct = ndpi_init_detection_module(init_prefs); if (workflow->ndpi_struct == NULL) { free_workflow(&workflow); return NULL; } workflow->total_active_flows = 0; workflow->max_active_flows = nDPId_MAX_FLOW_ROOTS_PER_THREAD; workflow->ndpi_flows_active = (void **)ndpi_calloc(workflow->max_active_flows, sizeof(void *)); if (workflow->ndpi_flows_active == NULL) { free_workflow(&workflow); return NULL; } workflow->total_idle_flows = 0; workflow->max_idle_flows = nDPId_MAX_IDLE_FLOWS_PER_THREAD; workflow->ndpi_flows_idle = (void **)ndpi_calloc(workflow->max_idle_flows, sizeof(void *)); if (workflow->ndpi_flows_idle == NULL) { free_workflow(&workflow); return NULL; } NDPI_PROTOCOL_BITMASK protos; NDPI_BITMASK_SET_ALL(protos); ndpi_set_protocol_detection_bitmask2(workflow->ndpi_struct, &protos); ndpi_finalize_initalization(workflow->ndpi_struct); if (ndpi_init_serializer_ll(&workflow->ndpi_serializer, ndpi_serialization_format_json, BUFSIZ) != 1) { return NULL; } return workflow; } static void ndpi_flow_info_freer(void * const node) { struct nDPId_flow_info * const flow = (struct nDPId_flow_info *)node; ndpi_free(flow->ndpi_dst); ndpi_free(flow->ndpi_src); ndpi_flow_free(flow->ndpi_flow); ndpi_free(flow); } static void free_workflow(struct nDPId_workflow ** const workflow) { struct nDPId_workflow * const w = *workflow; if (w == NULL) { return; } if (w->pcap_handle != NULL) { pcap_close(w->pcap_handle); w->pcap_handle = NULL; } if (w->ndpi_struct != NULL) { ndpi_exit_detection_module(w->ndpi_struct); } for (size_t i = 0; i < w->max_active_flows; i++) { ndpi_tdestroy(w->ndpi_flows_active[i], ndpi_flow_info_freer); } ndpi_free(w->ndpi_flows_active); ndpi_free(w->ndpi_flows_idle); ndpi_term_serializer(&w->ndpi_serializer); ndpi_free(w); *workflow = NULL; } static int setup_reader_threads(char const * const file_or_device) { char const * file_or_default_device; char pcap_error_buffer[PCAP_ERRBUF_SIZE]; if (reader_thread_count > nDPId_MAX_READER_THREADS) { return 1; } if (file_or_device == NULL) { file_or_default_device = pcap_lookupdev(pcap_error_buffer); if (file_or_default_device == NULL) { syslog(LOG_DAEMON | LOG_ERR, "pcap_lookupdev: %s\n", pcap_error_buffer); return 1; } } else { file_or_default_device = file_or_device; } for (int i = 0; i < reader_thread_count; ++i) { reader_threads[i].workflow = init_workflow(file_or_default_device); if (reader_threads[i].workflow == NULL) { return 1; } } return 0; } static int ip_tuple_to_string(struct nDPId_flow_info const * const flow, char * const src_addr_str, size_t src_addr_len, char * const dst_addr_str, size_t dst_addr_len) { switch (flow->l3_type) { case L3_IP: return inet_ntop(AF_INET, (struct sockaddr_in *)&flow->ip_tuple.v4.src, src_addr_str, src_addr_len) != NULL && inet_ntop(AF_INET, (struct sockaddr_in *)&flow->ip_tuple.v4.dst, dst_addr_str, dst_addr_len) != NULL; case L3_IP6: return inet_ntop(AF_INET6, (struct sockaddr_in6 *)&flow->ip_tuple.v6.src[0], src_addr_str, src_addr_len) != NULL && inet_ntop(AF_INET6, (struct sockaddr_in6 *)&flow->ip_tuple.v6.dst[0], dst_addr_str, dst_addr_len) != NULL; } return 0; } static int ip_tuples_equal(struct nDPId_flow_info const * const A, struct nDPId_flow_info const * const B) { // generate a warning if the enum changes switch (A->l3_type) { case L3_IP: case L3_IP6: break; } if (A->l3_type == L3_IP && B->l3_type == L3_IP6) { return A->ip_tuple.v4.src == B->ip_tuple.v4.src && A->ip_tuple.v4.dst == B->ip_tuple.v4.dst; } else if (A->l3_type == L3_IP6 && B->l3_type == L3_IP6) { return A->ip_tuple.v6.src[0] == B->ip_tuple.v6.src[0] && A->ip_tuple.v6.src[1] == B->ip_tuple.v6.src[1] && A->ip_tuple.v6.dst[0] == B->ip_tuple.v6.dst[0] && A->ip_tuple.v6.dst[1] == B->ip_tuple.v6.dst[1]; } return 0; } static int ip_tuples_compare(struct nDPId_flow_info const * const A, struct nDPId_flow_info const * const B) { // generate a warning if the enum changes switch (A->l3_type) { case L3_IP: case L3_IP6: break; } if (A->l3_type == L3_IP && B->l3_type == L3_IP6) { if (A->ip_tuple.v4.src < B->ip_tuple.v4.src || A->ip_tuple.v4.dst < B->ip_tuple.v4.dst) { return -1; } if (A->ip_tuple.v4.src > B->ip_tuple.v4.src || A->ip_tuple.v4.dst > B->ip_tuple.v4.dst) { return 1; } } else if (A->l3_type == L3_IP6 && B->l3_type == L3_IP6) { if ((A->ip_tuple.v6.src[0] < B->ip_tuple.v6.src[0] && A->ip_tuple.v6.src[1] < B->ip_tuple.v6.src[1]) || (A->ip_tuple.v6.dst[0] < B->ip_tuple.v6.dst[0] && A->ip_tuple.v6.dst[1] < B->ip_tuple.v6.dst[1])) { return -1; } if ((A->ip_tuple.v6.src[0] > B->ip_tuple.v6.src[0] && A->ip_tuple.v6.src[1] > B->ip_tuple.v6.src[1]) || (A->ip_tuple.v6.dst[0] > B->ip_tuple.v6.dst[0] && A->ip_tuple.v6.dst[1] > B->ip_tuple.v6.dst[1])) { return 1; } } if (A->src_port < B->src_port || A->dst_port < B->dst_port) { return -1; } else if (A->src_port > B->src_port || A->dst_port > B->dst_port) { return 1; } return 0; } static void ndpi_idle_scan_walker(void const * const A, ndpi_VISIT which, int depth, void * const user_data) { struct nDPId_workflow * const workflow = (struct nDPId_workflow *)user_data; struct nDPId_flow_info * const flow = *(struct nDPId_flow_info **)A; (void)depth; if (workflow == NULL || flow == NULL) { return; } if (workflow->cur_idle_flows == nDPId_MAX_IDLE_FLOWS_PER_THREAD) { return; } if (which == ndpi_preorder || which == ndpi_leaf) { if ((flow->flow_fin_ack_seen == 1 && flow->flow_ack_seen == 1) || flow->last_seen + nDPId_MAX_IDLE_TIME < workflow->last_time) { char src_addr_str[INET6_ADDRSTRLEN + 1]; char dst_addr_str[INET6_ADDRSTRLEN + 1]; ip_tuple_to_string(flow, src_addr_str, sizeof(src_addr_str), dst_addr_str, sizeof(dst_addr_str)); workflow->ndpi_flows_idle[workflow->cur_idle_flows++] = flow; workflow->total_idle_flows++; } } } static int ndpi_workflow_node_cmp(void const * const A, void const * const B) { struct nDPId_flow_info const * const flow_info_a = (struct nDPId_flow_info *)A; struct nDPId_flow_info const * const flow_info_b = (struct nDPId_flow_info *)B; if (flow_info_a->hashval < flow_info_b->hashval) { return (-1); } else if (flow_info_a->hashval > flow_info_b->hashval) { return (1); } /* Flows have the same hash */ if (flow_info_a->l4_protocol < flow_info_b->l4_protocol) { return (-1); } else if (flow_info_a->l4_protocol > flow_info_b->l4_protocol) { return (1); } if (ip_tuples_equal(flow_info_a, flow_info_b) != 0 && flow_info_a->src_port == flow_info_b->src_port && flow_info_a->dst_port == flow_info_b->dst_port) { return (0); } return ip_tuples_compare(flow_info_a, flow_info_b); } static void check_for_idle_flows(struct nDPId_reader_thread * const reader_thread) { struct nDPId_workflow * const workflow = reader_thread->workflow; if (workflow->last_idle_scan_time + nDPId_IDLE_SCAN_PERIOD < workflow->last_time) { for (size_t idle_scan_index = 0; idle_scan_index < workflow->max_active_flows; ++idle_scan_index) { ndpi_twalk(workflow->ndpi_flows_active[idle_scan_index], ndpi_idle_scan_walker, workflow); while (workflow->cur_idle_flows > 0) { struct nDPId_flow_info * const f = (struct nDPId_flow_info *)workflow->ndpi_flows_idle[--workflow->cur_idle_flows]; jsonize_flow_event(reader_thread, f, FLOW_EVENT_IDLE); ndpi_tdelete(f, &workflow->ndpi_flows_active[idle_scan_index], ndpi_workflow_node_cmp); ndpi_flow_info_freer(f); workflow->cur_active_flows--; } } workflow->last_idle_scan_time = workflow->last_time; } } static int jsonize_l3_l4_dpi(struct nDPId_workflow * const workflow, struct nDPId_flow_info const * const flow) { ndpi_serializer * const serializer = &workflow->ndpi_serializer; char src_name[32] = {}; char dst_name[32] = {}; switch (flow->l3_type) { case L3_IP: ndpi_serialize_string_string(serializer, "l3_proto", "ip4"); inet_ntop(AF_INET, &flow->ip_tuple.v4.src, src_name, sizeof(src_name)); inet_ntop(AF_INET, &flow->ip_tuple.v4.dst, dst_name, sizeof(dst_name)); break; case L3_IP6: ndpi_serialize_string_string(serializer, "l3_proto", "ip6"); inet_ntop(AF_INET6, &flow->ip_tuple.v6.src[0], src_name, sizeof(src_name)); inet_ntop(AF_INET6, &flow->ip_tuple.v6.dst[0], dst_name, sizeof(dst_name)); /* For consistency across platforms replace :0: with :: */ ndpi_patchIPv6Address(src_name), ndpi_patchIPv6Address(dst_name); break; default: ndpi_serialize_string_string(serializer, "l3_proto", "unknown"); } ndpi_serialize_string_string(serializer, "src_ip", src_name); ndpi_serialize_string_string(serializer, "dest_ip", dst_name); if (flow->src_port) { ndpi_serialize_string_uint32(serializer, "src_port", flow->src_port); } if (flow->dst_port) { ndpi_serialize_string_uint32(serializer, "dst_port", flow->dst_port); } switch (flow->l4_protocol) { case IPPROTO_TCP: ndpi_serialize_string_string(serializer, "l4_proto", "tcp"); break; case IPPROTO_UDP: ndpi_serialize_string_string(serializer, "l4_proto", "udp"); break; case IPPROTO_ICMP: ndpi_serialize_string_string(serializer, "l4_proto", "icmp"); break; case IPPROTO_ICMPV6: ndpi_serialize_string_string(serializer, "l4_proto", "icmp6"); break; default: ndpi_serialize_string_uint32(serializer, "l4_proto", flow->l4_protocol); break; } return ndpi_dpi2json(workflow->ndpi_struct, flow->ndpi_flow, flow->detected_l7_protocol, serializer); } static void jsonize_basic(struct nDPId_reader_thread * const reader_thread) { struct nDPId_workflow * const workflow = reader_thread->workflow; ndpi_serialize_string_int32(&workflow->ndpi_serializer, "thread_id", reader_thread->array_index); ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "packet_id", workflow->packets_captured); } static void jsonize_flow(struct nDPId_workflow * const workflow, struct nDPId_flow_info const * const flow) { ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "flow_id", flow->flow_id); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_packet_id", flow->packets_processed); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_first_seen", flow->first_seen); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_last_seen", flow->last_seen); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_tot_l4_data_len", flow->total_l4_data_len); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_min_l4_data_len", flow->min_l4_data_len); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_max_l4_data_len", flow->max_l4_data_len); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_avg_l4_data_len", (flow->packets_processed > 0 ? flow->total_l4_data_len / flow->packets_processed : 0)); ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "midstream", flow->is_midstream_flow); ndpi_serialize_risk(&workflow->ndpi_serializer, flow->ndpi_flow); if (jsonize_l3_l4_dpi(workflow, flow) != 0) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %4u] flow2json/dpi2json failed\n", workflow->packets_captured, flow->flow_id); } } static int connect_to_json_socket(struct nDPId_reader_thread * const reader_thread) { struct nDPId_workflow * const workflow = reader_thread->workflow; struct sockaddr_un saddr; close(reader_thread->json_sockfd); reader_thread->json_sockfd = socket(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0); if (reader_thread->json_sockfd < 0) { reader_thread->json_sock_reconnect = 1; return 1; } saddr.sun_family = AF_UNIX; if (snprintf(saddr.sun_path, sizeof(saddr.sun_path), "%s", json_sockpath) < 0 || connect(reader_thread->json_sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) { reader_thread->json_sock_reconnect = 1; return 1; } if (shutdown(reader_thread->json_sockfd, SHUT_RD) != 0) { return 1; } if (fcntl(reader_thread->json_sockfd, F_SETFL, fcntl(reader_thread->json_sockfd, F_GETFL, 0) | O_NONBLOCK) == -1) { reader_thread->json_sock_reconnect = 1; return 1; } reader_thread->json_sock_reconnect = 0; if (ndpi_serialize_string_int32(&workflow->ndpi_serializer, "thread_id", reader_thread->array_index) != 0 || ndpi_serialize_string_boolean(&workflow->ndpi_serializer, "init_complete", 1) != 0) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] JSON serialize buffer failed", reader_thread->workflow->packets_captured, reader_thread->array_index); } serialize_and_send(reader_thread); return 0; } static void send_to_json_sink(struct nDPId_reader_thread * const reader_thread, char const * const json_str, size_t json_str_len) { struct nDPId_workflow * const workflow = reader_thread->workflow; int saved_errno; int s_ret; char newline_json_str[BUFSIZ]; s_ret = snprintf(newline_json_str, sizeof(newline_json_str), "%zu%.*s\n", json_str_len, (int)json_str_len, json_str); if (s_ret < 0 || s_ret > (int)sizeof(newline_json_str)) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] JSON buffer prepare failed", workflow->packets_captured, reader_thread->array_index); return; } if (reader_thread->json_sock_reconnect != 0) { if (connect_to_json_socket(reader_thread) == 0) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] Reconnected to JSON sink", workflow->packets_captured, reader_thread->array_index); } } if (reader_thread->json_sock_reconnect == 0 && send(reader_thread->json_sockfd, newline_json_str, s_ret, MSG_NOSIGNAL) < 0) { saved_errno = errno; syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] send data to JSON sink failed: %s", workflow->packets_captured, reader_thread->array_index, strerror(saved_errno)); if (saved_errno == EPIPE) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] Lost connection to JSON sink", workflow->packets_captured, reader_thread->array_index); } reader_thread->json_sock_reconnect = 1; } } static void serialize_and_send(struct nDPId_reader_thread * const reader_thread) { char * json_str; uint32_t json_str_len; json_str = ndpi_serializer_get_buffer(&reader_thread->workflow->ndpi_serializer, &json_str_len); if (json_str == NULL || json_str_len == 0) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] jsonize failed, buffer length: %u\n", reader_thread->workflow->packets_captured, reader_thread->array_index, json_str_len); } else { send_to_json_sink(reader_thread, json_str, json_str_len); } ndpi_reset_serializer(&reader_thread->workflow->ndpi_serializer); } size_t base64_out_len(size_t in_len) { return ((in_len + 2) / 3) * 4; } char * base64_encode(uint8_t const * in, size_t in_len, char * const out, size_t const out_len) { static const unsigned char base64_table[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; size_t len = 0, ret_size; int i = 0; unsigned char char_array_3[3]; unsigned char char_array_4[4]; ret_size = base64_out_len(in_len); if (out_len < ret_size) { return NULL; } while (in_len-- != 0) { char_array_3[i++] = *(in++); if (i == 3) { char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); char_array_4[3] = char_array_3[2] & 0x3f; for (i = 0; i < 4; i++) { out[len++] = base64_table[char_array_4[i]]; } i = 0; } } if (i != 0) { for (int j = i; j < 3; j++) { char_array_3[j] = '\0'; } char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); char_array_4[3] = char_array_3[2] & 0x3f; for (int j = 0; (j < i + 1); j++) { out[len++] = base64_table[char_array_4[j]]; } while ((i++ < 3)) { out[len++] = '='; } } out[len++] = '\0'; return out; } static void jsonize_packet_event(struct nDPId_reader_thread * const reader_thread, struct pcap_pkthdr const * const header, uint8_t const * const packet, struct nDPId_flow_info const * const flow, enum packet_event event) { struct nDPId_workflow * const workflow = reader_thread->workflow; char const ev[] = "packet_event_name"; if (event == PACKET_EVENT_PAYLOAD_FLOW) { if (flow == NULL) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] BUG: got a PACKET_EVENT_PAYLOAD_FLOW with a flow pointer equals NULL", reader_thread->workflow->packets_captured, reader_thread->array_index); return; } if (flow->packets_processed > nDPId_MAX_PACKETS_PER_FLOW_TO_SEND) { return; } ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "flow_id", flow->flow_id); ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "flow_packet_id", flow->packets_processed); ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "max_packets", nDPId_MAX_PACKETS_PER_FLOW_TO_SEND); } ndpi_serialize_string_int32(&workflow->ndpi_serializer, "packet_event_id", event); if (event > PACKET_EVENT_INVALID && event < PACKET_EVENT_COUNT) { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, packet_event_name_table[event]); } else { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, packet_event_name_table[PACKET_EVENT_INVALID]); } jsonize_basic(reader_thread); size_t base64_data_len = base64_out_len(header->caplen); char base64_data[BUFSIZ]; if (ndpi_serialize_string_boolean(&workflow->ndpi_serializer, "pkt_oversize", base64_data_len > sizeof(base64_data)) != 0 || ndpi_serialize_string_uint64(&workflow->ndpi_serializer, "pkt_ts", header->ts.tv_sec) != 0 || ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "pkt_len", header->len) != 0 || ndpi_serialize_string_string(&workflow->ndpi_serializer, "pkt", base64_encode(packet, header->caplen, base64_data, sizeof(base64_data))) != 0 || ndpi_serialize_string_uint32(&workflow->ndpi_serializer, "pkt_caplen", header->caplen) != 0) { syslog(LOG_DAEMON | LOG_ERR, "[%8llu, %d] JSON serialize buffer failed", reader_thread->workflow->packets_captured, reader_thread->array_index); } serialize_and_send(reader_thread); } static void jsonize_flow_event(struct nDPId_reader_thread * const reader_thread, struct nDPId_flow_info const * const flow, enum flow_event event) { struct nDPId_workflow * const workflow = reader_thread->workflow; char const ev[] = "flow_event_name"; ndpi_serialize_string_int32(&workflow->ndpi_serializer, "flow_event_id", event); if (event > FLOW_EVENT_INVALID && event < FLOW_EVENT_COUNT) { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, flow_event_name_table[event]); } else { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, flow_event_name_table[FLOW_EVENT_INVALID]); } jsonize_basic(reader_thread); jsonize_flow(workflow, flow); serialize_and_send(reader_thread); } static void jsonize_format_error(struct nDPId_reader_thread * const reader_thread, uint32_t format_index) { ndpi_serialize_string_string(&reader_thread->workflow->ndpi_serializer, "serializer-error", "format"); ndpi_serialize_string_uint32(&reader_thread->workflow->ndpi_serializer, "serializer-format-index", format_index); serialize_and_send(reader_thread); } static void vjsonize_basic_eventf(struct nDPId_reader_thread * const reader_thread, char const * format, va_list ap) { uint8_t got_jsonkey = 0; uint8_t is_long_long = 0; char json_key[BUFSIZ]; uint32_t format_index = 0; while (*format) { if (got_jsonkey == 0) { json_key[0] = '\0'; } switch (*format++) { case 's': { format_index++; char * value = va_arg(ap, char *); if (got_jsonkey == 0) { snprintf(json_key, sizeof(json_key), "%s", value); got_jsonkey = 1; } else { ndpi_serialize_string_string(&reader_thread->workflow->ndpi_serializer, json_key, value); got_jsonkey = 0; } break; } case 'f': { format_index++; if (got_jsonkey == 1) { float value = va_arg(ap, double); ndpi_serialize_string_float(&reader_thread->workflow->ndpi_serializer, json_key, value, "%.2f"); got_jsonkey = 0; } else { jsonize_format_error(reader_thread, format_index); return; } break; } case 'z': case 'l': format_index++; if (got_jsonkey != 1) { jsonize_format_error(reader_thread, format_index); return; } if (*format == 'l') { format++; is_long_long = 1; } else { is_long_long = 0; } if (*format == 'd') { long long int value; if (is_long_long != 0) { value = va_arg(ap, long long int); } else { value = va_arg(ap, long int); } ndpi_serialize_string_int64(&reader_thread->workflow->ndpi_serializer, json_key, value); got_jsonkey = 0; } else if (*format == 'u') { unsigned long long int value; if (is_long_long != 0) { value = va_arg(ap, unsigned long long int); } else { value = va_arg(ap, unsigned long int); } ndpi_serialize_string_uint64(&reader_thread->workflow->ndpi_serializer, json_key, value); got_jsonkey = 0; } else { jsonize_format_error(reader_thread, format_index); return; } format++; break; case 'u': format_index++; if (got_jsonkey == 1) { unsigned int value = va_arg(ap, unsigned int); ndpi_serialize_string_uint32(&reader_thread->workflow->ndpi_serializer, json_key, value); got_jsonkey = 0; } else { jsonize_format_error(reader_thread, format_index); return; } break; case 'd': format_index++; if (got_jsonkey == 1) { int value = va_arg(ap, int); ndpi_serialize_string_int32(&reader_thread->workflow->ndpi_serializer, json_key, value); got_jsonkey = 0; } else { jsonize_format_error(reader_thread, format_index); return; } break; case ' ': case ',': case '%': break; default: jsonize_format_error(reader_thread, format_index); return; } } } __attribute__((format(printf, 3, 4))) static void jsonize_basic_eventf(struct nDPId_reader_thread * const reader_thread, enum basic_event event, char const * format, ...) { struct nDPId_workflow * const workflow = reader_thread->workflow; va_list ap; char const ev[] = "basic_event_name"; ndpi_serialize_string_int32(&reader_thread->workflow->ndpi_serializer, "basic_event_id", event); if (event > BASIC_EVENT_INVALID && event < BASIC_EVENT_COUNT) { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, basic_event_name_table[event]); } else { ndpi_serialize_string_string(&workflow->ndpi_serializer, ev, basic_event_name_table[BASIC_EVENT_INVALID]); } jsonize_basic(reader_thread); if (format != NULL) { va_start(ap, format); vjsonize_basic_eventf(reader_thread, format, ap); va_end(ap); } serialize_and_send(reader_thread); } static void ndpi_process_packet(uint8_t * const args, struct pcap_pkthdr const * const header, uint8_t const * const packet) { struct nDPId_reader_thread * const reader_thread = (struct nDPId_reader_thread *)args; struct nDPId_workflow * workflow; struct nDPId_flow_info flow = {}; size_t hashed_index; void * tree_result; struct nDPId_flow_info * flow_to_process; uint8_t direction_changed = 0; uint8_t is_new_flow = 0; struct ndpi_id_struct * ndpi_src; struct ndpi_id_struct * ndpi_dst; const struct ndpi_ethhdr * ethernet; const struct ndpi_iphdr * ip; struct ndpi_ipv6hdr * ip6; uint64_t time_ms; const uint16_t eth_offset = 0; uint16_t ip_offset; uint16_t ip_size; const uint8_t * l4_ptr = NULL; uint16_t l4_len = 0; uint16_t type; int thread_index = nDPId_INITIAL_THREAD_HASH; // generated with `dd if=/dev/random bs=1024 count=1 |& hd' if (reader_thread == NULL) { return; } workflow = reader_thread->workflow; if (workflow == NULL) { return; } workflow->packets_captured++; time_ms = ((uint64_t)header->ts.tv_sec) * nDPId_TICK_RESOLUTION + header->ts.tv_usec / (1000000 / nDPId_TICK_RESOLUTION); workflow->last_time = time_ms; check_for_idle_flows(reader_thread); /* process datalink layer */ switch (pcap_datalink(workflow->pcap_handle)) { case DLT_NULL: if (ntohl(*((uint32_t *)&packet[eth_offset])) == 0x00000002) { type = ETH_P_IP; } else { type = ETH_P_IPV6; } ip_offset = 4 + eth_offset; break; case DLT_EN10MB: if (header->len < sizeof(struct ndpi_ethhdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, ETHERNET_PACKET_TOO_SHORT, NULL); return; } ethernet = (struct ndpi_ethhdr *)&packet[eth_offset]; ip_offset = sizeof(struct ndpi_ethhdr) + eth_offset; type = ntohs(ethernet->h_proto); switch (type) { case ETH_P_IP: /* IPv4 */ if (header->len < sizeof(struct ndpi_ethhdr) + sizeof(struct ndpi_iphdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, IP4_PACKET_TOO_SHORT, NULL); return; } break; case ETH_P_IPV6: /* IPV6 */ if (header->len < sizeof(struct ndpi_ethhdr) + sizeof(struct ndpi_ipv6hdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, IP6_PACKET_TOO_SHORT, NULL); return; } break; case ETH_P_ARP: /* ARP */ return; default: jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, ETHERNET_PACKET_UNKNOWN, "%s%u", "type", type); return; } break; default: jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf( reader_thread, UNKNOWN_DATALINK_LAYER, "%s%u", "datalink", pcap_datalink(workflow->pcap_handle)); return; } if (type == ETH_P_IP) { ip = (struct ndpi_iphdr *)&packet[ip_offset]; ip6 = NULL; } else if (type == ETH_P_IPV6) { ip = NULL; ip6 = (struct ndpi_ipv6hdr *)&packet[ip_offset]; } else { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, UNKNOWN_L3_PROTOCOL, "%s%u", "protocol", type); return; } ip_size = header->len - ip_offset; if (type == ETH_P_IP && header->len >= ip_offset) { if (header->caplen < header->len) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, CAPTURE_SIZE_SMALLER_THAN_PACKET_SIZE, "%s%u %s%u", "caplen", header->caplen, "len", header->len); } } /* process layer3 e.g. IPv4 / IPv6 */ if (ip != NULL && ip->version == 4) { if (ip_size < sizeof(*ip)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf( reader_thread, IP4_SIZE_SMALLER_THAN_HEADER, "%s%u %s%zu", "ip_size", ip_size, "expected", sizeof(*ip)); return; } flow.l3_type = L3_IP; if (ndpi_detection_get_l4( (uint8_t *)ip, ip_size, &l4_ptr, &l4_len, &flow.l4_protocol, NDPI_DETECTION_ONLY_IPV4) != 0) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf( reader_thread, IP4_L4_PAYLOAD_DETECTION_FAILED, "%s%zu", "l4_data_len", ip_size - sizeof(*ip)); return; } flow.ip_tuple.v4.src = ip->saddr; flow.ip_tuple.v4.dst = ip->daddr; uint32_t min_addr = (flow.ip_tuple.v4.src > flow.ip_tuple.v4.dst ? flow.ip_tuple.v4.dst : flow.ip_tuple.v4.src); thread_index = min_addr + ip->protocol; } else if (ip6 != NULL) { if (ip_size < sizeof(ip6->ip6_hdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, IP6_SIZE_SMALLER_THAN_HEADER, "%s%u %s%zu", "ip_size", ip_size, "expected", sizeof(ip6->ip6_hdr)); return; } flow.l3_type = L3_IP6; if (ndpi_detection_get_l4( (uint8_t *)ip6, ip_size, &l4_ptr, &l4_len, &flow.l4_protocol, NDPI_DETECTION_ONLY_IPV6) != 0) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf( reader_thread, IP6_L4_PAYLOAD_DETECTION_FAILED, "%s%zu", "l4_data_len", ip_size - sizeof(*ip)); return; } flow.ip_tuple.v6.src[0] = ip6->ip6_src.u6_addr.u6_addr64[0]; flow.ip_tuple.v6.src[1] = ip6->ip6_src.u6_addr.u6_addr64[1]; flow.ip_tuple.v6.dst[0] = ip6->ip6_dst.u6_addr.u6_addr64[0]; flow.ip_tuple.v6.dst[1] = ip6->ip6_dst.u6_addr.u6_addr64[1]; uint64_t min_addr[2]; if (flow.ip_tuple.v6.src[0] > flow.ip_tuple.v6.dst[0] && flow.ip_tuple.v6.src[1] > flow.ip_tuple.v6.dst[1]) { min_addr[0] = flow.ip_tuple.v6.dst[0]; min_addr[1] = flow.ip_tuple.v6.dst[0]; } else { min_addr[0] = flow.ip_tuple.v6.src[0]; min_addr[1] = flow.ip_tuple.v6.src[0]; } thread_index = min_addr[0] + min_addr[1] + ip6->ip6_hdr.ip6_un1_nxt; } else { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, UNKNOWN_L3_PROTOCOL, "%s%u", "protocol", type); return; } /* process layer4 e.g. TCP / UDP */ if (flow.l4_protocol == IPPROTO_TCP) { const struct ndpi_tcphdr * tcp; if (header->len < (l4_ptr - packet) + sizeof(struct ndpi_tcphdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, TCP_PACKET_TOO_SHORT, "%s%u %s%zu", "header_len", header->len, "expected", (l4_ptr - packet) + sizeof(struct ndpi_tcphdr)); return; } tcp = (struct ndpi_tcphdr *)l4_ptr; flow.is_midstream_flow = (tcp->syn == 0 ? 1 : 0); flow.flow_fin_ack_seen = (tcp->fin == 1 && tcp->ack == 1 ? 1 : 0); flow.flow_ack_seen = tcp->ack; flow.src_port = ntohs(tcp->source); flow.dst_port = ntohs(tcp->dest); } else if (flow.l4_protocol == IPPROTO_UDP) { const struct ndpi_udphdr * udp; if (header->len < (l4_ptr - packet) + sizeof(struct ndpi_udphdr)) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, UDP_PACKET_TOO_SHORT, "%s%u %s%zu", "header_len", header->len, "expected", (l4_ptr - packet) + sizeof(struct ndpi_udphdr)); return; } udp = (struct ndpi_udphdr *)l4_ptr; flow.src_port = ntohs(udp->source); flow.dst_port = ntohs(udp->dest); } /* distribute flows to threads while keeping stability (same flow goes always to same thread) */ thread_index += (flow.src_port < flow.dst_port ? flow.dst_port : flow.src_port); thread_index %= reader_thread_count; if (thread_index != reader_thread->array_index) { return; } workflow->packets_processed++; workflow->total_l4_data_len += l4_len; /* calculate flow hash for btree find, search(insert) */ switch (flow.l3_type) { case L3_IP: if (ndpi_flowv4_flow_hash(flow.l4_protocol, flow.ip_tuple.v4.src, flow.ip_tuple.v4.dst, flow.src_port, flow.dst_port, 0, 0, (uint8_t *)&flow.hashval, sizeof(flow.hashval)) != 0) { flow.hashval = flow.ip_tuple.v4.src + flow.ip_tuple.v4.dst; // fallback } break; case L3_IP6: if (ndpi_flowv6_flow_hash(flow.l4_protocol, &ip6->ip6_src, &ip6->ip6_dst, flow.src_port, flow.dst_port, 0, 0, (uint8_t *)&flow.hashval, sizeof(flow.hashval)) != 0) { flow.hashval = flow.ip_tuple.v6.src[0] + flow.ip_tuple.v6.src[1]; flow.hashval += flow.ip_tuple.v6.dst[0] + flow.ip_tuple.v6.dst[1]; } break; } flow.hashval += flow.l4_protocol + flow.src_port + flow.dst_port; hashed_index = flow.hashval % workflow->max_active_flows; tree_result = ndpi_tfind(&flow, &workflow->ndpi_flows_active[hashed_index], ndpi_workflow_node_cmp); if (tree_result == NULL) { /* flow not found in btree: switch src <-> dst and try to find it again */ uint64_t orig_src_ip[2] = {flow.ip_tuple.v6.src[0], flow.ip_tuple.v6.src[1]}; uint64_t orig_dst_ip[2] = {flow.ip_tuple.v6.dst[0], flow.ip_tuple.v6.dst[1]}; uint16_t orig_src_port = flow.src_port; uint16_t orig_dst_port = flow.dst_port; flow.ip_tuple.v6.src[0] = orig_dst_ip[0]; flow.ip_tuple.v6.src[1] = orig_dst_ip[1]; flow.ip_tuple.v6.dst[0] = orig_src_ip[0]; flow.ip_tuple.v6.dst[1] = orig_src_ip[1]; flow.src_port = orig_dst_port; flow.dst_port = orig_src_port; tree_result = ndpi_tfind(&flow, &workflow->ndpi_flows_active[hashed_index], ndpi_workflow_node_cmp); if (tree_result != NULL) { direction_changed = 1; } flow.ip_tuple.v6.src[0] = orig_src_ip[0]; flow.ip_tuple.v6.src[1] = orig_src_ip[1]; flow.ip_tuple.v6.dst[0] = orig_dst_ip[0]; flow.ip_tuple.v6.dst[1] = orig_dst_ip[1]; flow.src_port = orig_src_port; flow.dst_port = orig_dst_port; } if (tree_result == NULL) { /* flow still not found, must be new */ if (workflow->cur_active_flows == workflow->max_active_flows) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, MAX_FLOW_TO_TRACK, "%s%llu %s%llu %s%llu", "current_active", workflow->max_active_flows, "current_idle", workflow->cur_idle_flows, "max_active", workflow->max_active_flows); return; } flow_to_process = (struct nDPId_flow_info *)ndpi_malloc(sizeof(*flow_to_process)); if (flow_to_process == NULL) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf( reader_thread, FLOW_MEMORY_ALLOCATION_FAILED, "%s%zu", "size", sizeof(*flow_to_process)); return; } workflow->cur_active_flows++; workflow->total_active_flows++; memcpy(flow_to_process, &flow, sizeof(*flow_to_process)); #ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 flow_to_process->flow_id = __sync_fetch_and_add(&global_flow_id, 1); #else #warning "Compare and Fetch aka __sync_fetch_and_add not available on your platform/compiler, do not trust any flow_id!" flow_to_process->flow_id = global_flow_id++; #endif flow_to_process->ndpi_flow = (struct ndpi_flow_struct *)ndpi_flow_malloc(SIZEOF_FLOW_STRUCT); if (flow_to_process->ndpi_flow == NULL) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, NDPI_FLOW_MEMORY_ALLOCATION_FAILED, "%s%u %s%zu", "flow_id", flow_to_process->flow_id, "size", SIZEOF_FLOW_STRUCT); return; } memset(flow_to_process->ndpi_flow, 0, SIZEOF_FLOW_STRUCT); flow_to_process->ndpi_src = (struct ndpi_id_struct *)ndpi_calloc(1, SIZEOF_ID_STRUCT); if (flow_to_process->ndpi_src == NULL) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, NDPI_ID_MEMORY_ALLOCATION_FAILED, "%s%u %s%zu %s%s", "flow_id", flow_to_process->flow_id, "size", SIZEOF_ID_STRUCT, "direction", "src"); return; } flow_to_process->ndpi_dst = (struct ndpi_id_struct *)ndpi_calloc(1, SIZEOF_ID_STRUCT); if (flow_to_process->ndpi_dst == NULL) { jsonize_packet_event(reader_thread, header, packet, NULL, PACKET_EVENT_PAYLOAD); jsonize_basic_eventf(reader_thread, NDPI_ID_MEMORY_ALLOCATION_FAILED, "%s%u %s%zu %s%s", "flow_id", flow_to_process->flow_id, "size", SIZEOF_ID_STRUCT, "direction", "dst"); return; } if (ndpi_tsearch(flow_to_process, &workflow->ndpi_flows_active[hashed_index], ndpi_workflow_node_cmp) == NULL) { /* Possible Leak, but should not happen as we'd abort earlier. */ return; } ndpi_src = flow_to_process->ndpi_src; ndpi_dst = flow_to_process->ndpi_dst; is_new_flow = 1; } else { flow_to_process = *(struct nDPId_flow_info **)tree_result; if (direction_changed != 0) { ndpi_src = flow_to_process->ndpi_dst; ndpi_dst = flow_to_process->ndpi_src; } else { ndpi_src = flow_to_process->ndpi_src; ndpi_dst = flow_to_process->ndpi_dst; } } flow_to_process->packets_processed++; flow_to_process->total_l4_data_len += l4_len; /* update timestamps, important for timeout handling */ if (flow_to_process->first_seen == 0) { flow_to_process->first_seen = time_ms; } flow_to_process->last_seen = time_ms; /* current packet is an TCP-ACK? */ flow_to_process->flow_ack_seen = flow.flow_ack_seen; if (l4_len > flow_to_process->max_l4_data_len) { flow_to_process->max_l4_data_len = l4_len; } if (l4_len < flow_to_process->min_l4_data_len) { flow_to_process->min_l4_data_len = l4_len; } jsonize_packet_event(reader_thread, header, packet, flow_to_process, PACKET_EVENT_PAYLOAD_FLOW); if (is_new_flow != 0) { flow_to_process->max_l4_data_len = l4_len; flow_to_process->min_l4_data_len = l4_len; jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_NEW); } /* TCP-FIN: indicates that at least one side wants to end the connection */ if (flow.flow_fin_ack_seen != 0 && flow_to_process->flow_fin_ack_seen == 0) { flow_to_process->flow_fin_ack_seen = 1; jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_END); return; } if (flow_to_process->ndpi_flow->num_processed_pkts == 0xFF) { return; } else if (flow_to_process->ndpi_flow->num_processed_pkts == 0xFE) { if (flow_to_process->detection_completed != 0) { jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_DETECTED); } else { /* last chance to guess something, better then nothing */ uint8_t protocol_was_guessed = 0; flow_to_process->guessed_protocol = ndpi_detection_giveup(workflow->ndpi_struct, flow_to_process->ndpi_flow, 1, &protocol_was_guessed); if (protocol_was_guessed != 0) { jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_GUESSED); } else { jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_NOT_DETECTED); } } } flow_to_process->detected_l7_protocol = ndpi_detection_process_packet(workflow->ndpi_struct, flow_to_process->ndpi_flow, ip != NULL ? (uint8_t *)ip : (uint8_t *)ip6, ip_size, time_ms, ndpi_src, ndpi_dst); if (ndpi_is_protocol_detected(workflow->ndpi_struct, flow_to_process->detected_l7_protocol) != 0 && flow_to_process->detection_completed == 0) { if (flow_to_process->detected_l7_protocol.master_protocol != NDPI_PROTOCOL_UNKNOWN || flow_to_process->detected_l7_protocol.app_protocol != NDPI_PROTOCOL_UNKNOWN) { flow_to_process->detection_completed = 1; workflow->detected_flow_protocols++; jsonize_flow_event(reader_thread, flow_to_process, FLOW_EVENT_DETECTED); } } } static void run_pcap_loop(struct nDPId_reader_thread const * const reader_thread) { if (reader_thread->workflow != NULL && reader_thread->workflow->pcap_handle != NULL) { if (pcap_loop(reader_thread->workflow->pcap_handle, -1, &ndpi_process_packet, (uint8_t *)reader_thread) == PCAP_ERROR) { syslog(LOG_DAEMON | LOG_ERR, "Error while reading pcap file: '%s'\n", pcap_geterr(reader_thread->workflow->pcap_handle)); reader_thread->workflow->error_or_eof = 1; } } } static void break_pcap_loop(struct nDPId_reader_thread * const reader_thread) { if (reader_thread->workflow != NULL && reader_thread->workflow->pcap_handle != NULL) { pcap_breakloop(reader_thread->workflow->pcap_handle); } } static void * processing_thread(void * const ndpi_thread_arg) { struct nDPId_reader_thread * const reader_thread = (struct nDPId_reader_thread *)ndpi_thread_arg; reader_thread->json_sockfd = -1; reader_thread->json_sock_reconnect = 1; if (connect_to_json_socket(reader_thread) != 0) { syslog(LOG_DAEMON | LOG_ERR, "Thread %u: Could not connect to JSON sink, will try again later", reader_thread->array_index); } run_pcap_loop(reader_thread); reader_thread->workflow->error_or_eof = 1; return NULL; } static int processing_threads_error_or_eof(void) { for (int i = 0; i < reader_thread_count; ++i) { if (reader_threads[i].workflow->error_or_eof == 0) { return 0; } } return 1; } static int start_reader_threads(void) { sigset_t thread_signal_set, old_signal_set; sigfillset(&thread_signal_set); sigdelset(&thread_signal_set, SIGINT); sigdelset(&thread_signal_set, SIGTERM); if (pthread_sigmask(SIG_BLOCK, &thread_signal_set, &old_signal_set) != 0) { syslog(LOG_DAEMON | LOG_ERR, "pthread_sigmask: %s\n", strerror(errno)); return 1; } openlog("nDPId", LOG_CONS | (log_to_stderr != 0 ? LOG_PERROR : 0), LOG_DAEMON); for (int i = 0; i < reader_thread_count; ++i) { reader_threads[i].array_index = i; if (reader_threads[i].workflow == NULL) { /* no more threads should be started */ break; } if (pthread_create(&reader_threads[i].thread_id, NULL, processing_thread, &reader_threads[i]) != 0) { syslog(LOG_DAEMON | LOG_ERR, "pthread_create: %s\n", strerror(errno)); return 1; } } if (pthread_sigmask(SIG_BLOCK, &old_signal_set, NULL) != 0) { syslog(LOG_DAEMON | LOG_ERR, "pthread_sigmask: %s\n", strerror(errno)); return 1; } return 0; } static int stop_reader_threads(void) { unsigned long long int total_packets_processed = 0; unsigned long long int total_l4_data_len = 0; unsigned long long int total_flows_captured = 0; unsigned long long int total_flows_idle = 0; unsigned long long int total_flows_detected = 0; for (int i = 0; i < reader_thread_count; ++i) { break_pcap_loop(&reader_threads[i]); } printf("------------------------------------ Stopping reader threads\n"); for (int i = 0; i < reader_thread_count; ++i) { if (reader_threads[i].workflow == NULL) { continue; } if (pthread_join(reader_threads[i].thread_id, NULL) != 0) { syslog(LOG_DAEMON | LOG_ERR, "pthread_join: %s\n", strerror(errno)); } } printf("------------------------------------ Results\n"); for (int i = 0; i < reader_thread_count; ++i) { if (reader_threads[i].workflow == NULL) { continue; } total_packets_processed += reader_threads[i].workflow->packets_processed; total_l4_data_len += reader_threads[i].workflow->total_l4_data_len; total_flows_captured += reader_threads[i].workflow->total_active_flows; total_flows_idle += reader_threads[i].workflow->total_idle_flows; total_flows_detected += reader_threads[i].workflow->detected_flow_protocols; printf( "Stopping Thread %d, processed %10llu packets, %12llu bytes, total flows: %8llu, " "idle flows: %8llu, detected flows: %8llu\n", reader_threads[i].array_index, reader_threads[i].workflow->packets_processed, reader_threads[i].workflow->total_l4_data_len, reader_threads[i].workflow->total_active_flows, reader_threads[i].workflow->total_idle_flows, reader_threads[i].workflow->detected_flow_protocols); } /* total packets captured: same value for all threads as packet2thread distribution happens later */ printf("Total packets captured.: %llu\n", reader_threads[0].workflow->packets_captured); printf("Total packets processed: %llu\n", total_packets_processed); printf("Total layer4 data size.: %llu\n", total_l4_data_len); printf("Total flows captured...: %llu\n", total_flows_captured); printf("Total flows timed out..: %llu\n", total_flows_idle); printf("Total flows detected...: %llu\n", total_flows_detected); return 0; } static void free_reader_threads(void) { for (int i = 0; i < reader_thread_count; ++i) { if (reader_threads[i].workflow == NULL) { continue; } free_workflow(&reader_threads[i].workflow); } } static void sighandler(int signum) { syslog(LOG_DAEMON | LOG_NOTICE, "Received SIGNAL %d\n", signum); if (main_thread_shutdown == 0) { main_thread_shutdown = 1; if (stop_reader_threads() != 0) { syslog(LOG_DAEMON | LOG_ERR, "Failed to stop reader threads!\n"); exit(EXIT_FAILURE); } } else { syslog(LOG_DAEMON | LOG_NOTICE, "Reader threads are already shutting down, please be patient.\n"); } } static int parse_options(int argc, char ** argv) { int opt; while ((opt = getopt(argc, argv, "hi:lc:")) != -1) { switch (opt) { case 'i': pcap_file_or_interface = strdup(optarg); break; case 'l': log_to_stderr = 1; break; case 'c': strncpy(json_sockpath, optarg, sizeof(json_sockpath) - 1); json_sockpath[sizeof(json_sockpath) - 1] = '\0'; break; default: fprintf(stderr, "Usage: %s [-i pcap-file/interface ] [-l] [-c path-to-unix-sock]\n", argv[0]); return 1; } } return 0; } int main(int argc, char ** argv) { if (argc == 0) { return 1; } if (parse_options(argc, argv) != 0) { return 1; } printf( "----------------------------------\n" "nDPI version: %s\n" " API version: %u\n" "pcap version: %s\n" "----------------------------------\n", ndpi_revision(), ndpi_get_api_version(), pcap_lib_version() + strlen("libpcap version ")); openlog("nDPId", LOG_CONS | LOG_PERROR, LOG_DAEMON); if (setup_reader_threads(pcap_file_or_interface) != 0) { syslog(LOG_DAEMON | LOG_ERR, "%s: setup_reader_threads failed\n", argv[0]); return 1; } if (start_reader_threads() != 0) { syslog(LOG_DAEMON | LOG_ERR, "%s: start_reader_threads\n", argv[0]); return 1; } signal(SIGINT, sighandler); signal(SIGTERM, sighandler); while (main_thread_shutdown == 0 && processing_threads_error_or_eof() == 0) { sleep(1); } if (main_thread_shutdown == 0 && stop_reader_threads() != 0) { syslog(LOG_DAEMON | LOG_ERR, "%s: stop_reader_threads\n", argv[0]); return 1; } free_reader_threads(); closelog(); return 0; }