#!/usr/bin/env python3 import base64 import joblib import csv import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import sys sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') sys.path.append(os.path.dirname(sys.argv[0])) sys.path.append(sys.base_prefix + '/share/nDPId') import nDPIsrvd from nDPIsrvd import nDPIsrvdSocket, TermColor INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX TRAINING_SIZE = 500 BATCH_SIZE = 10 def generate_autoencoder(): input_i = Input(shape=()) input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i) encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i) encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1) encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2) encoded_h4 = Dense(64, activation='relu', name='encoded_h3')(encoded_h3) encoded_h5 = Dense(32, activation='relu', name='encoded_h4')(encoded_h4) latent = Dense(2, activation='relu', name='encoded_h5')(encoded_h5) decoder_h1 = Dense(32, activation='relu', name='latent')(latent) decoder_h2 = Dense(64, activation='relu', name='decoder_h1')(decoder_h1) decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2) decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3) decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4) return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5)) def compile_autoencoder(): inp, autoencoder = generate_autoencoder() autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()]) return inp, autoencoder def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): if 'packet_event_name' not in json_dict: return True if json_dict['packet_event_name'] != 'packet' and \ json_dict['packet_event_name'] != 'packet-flow': return True _, padded_pkts = global_user_data buf = base64.b64decode(json_dict['pkt'], validate=True) # Generate decimal byte buffer with valus from 0-255 int_buf = [] for v in buf: int_buf.append(int(v)) mat = np.array([int_buf]) # Normalize the values mat = mat.astype('float32') / 255. # Mean removal matmean = np.mean(mat, axis=0) mat -= matmean # Pad resulting matrice buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post') padded_pkts.append(buf[0]) sys.stdout.write('.') sys.stdout.flush() if (len(padded_pkts) % TRAINING_SIZE == 0): print('\nGot {} packets, training..'.format(len(padded_pkts))) tmp = np.array(padded_pkts) history = autoencoder.fit( tmp, tmp, epochs=10, batch_size=BATCH_SIZE, validation_split=0.2, shuffle=True ) padded_pkts.clear() #plot_model(autoencoder, show_shapes=True, show_layer_names=True) #plt.plot(history.history['loss']) #plt.plot(history.history['val_loss']) #plt.title('model loss') #plt.xlabel('loss') #plt.ylabel('val_loss') #plt.legend(['loss', 'val_loss'], loc='upper left') #plt.show() return True if __name__ == '__main__': sys.stderr.write('\b\n***************\n') sys.stderr.write('*** WARNING ***\n') sys.stderr.write('***************\n') sys.stderr.write('\nThis is an unmature Autoencoder example.\n') sys.stderr.write('Please do not rely on any of it\'s output!\n\n') argparser = nDPIsrvd.defaultArgumentParser() argparser.add_argument('--load-model', action='store', help='Load a pre-trained model file.') argparser.add_argument('--save-model', action='store', help='Save the trained model to a file.') argparser.add_argument('--training-size', action='store', type=int, help='Set the amount of captured packets required to start the training phase.') argparser.add_argument('--batch-size', action='store', type=int, help='Set the batch size used for the training phase.') args = argparser.parse_args() address = nDPIsrvd.validateAddress(args) TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE)) import tensorflow as tf from tensorflow.keras import layers, preprocessing from tensorflow.keras.layers import Embedding, Input, Dense from tensorflow.keras.models import Model, Sequential from tensorflow.keras.utils import plot_model if args.load_model is not None: sys.stderr.write('Loading model from {}\n'.format(args.load_model)) autoencoder, options = joblib.load(args.load_model) else: _, autoencoder = compile_autoencoder() autoencoder.summary() nsock = nDPIsrvdSocket() nsock.connect(address) try: padded_pkts = list() nsock.loop(onJsonLineRecvd, None, (autoencoder, padded_pkts)) except nDPIsrvd.SocketConnectionBroken as err: sys.stderr.write('\n{}\n'.format(err)) except KeyboardInterrupt: print() if args.save_model is not None: sys.stderr.write('Saving model to {}\n'.format(args.save_model)) joblib.dump([autoencoder, None], args.save_model)