#!/usr/bin/env python3 import base64 import binascii import datetime as dt import math import matplotlib.animation as ani import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import os import queue import sys import tensorflow as tf from tensorflow.keras import models, layers, preprocessing from tensorflow.keras.layers import Embedding, Masking, Input, Dense from tensorflow.keras.models import Model from tensorflow.keras.utils import plot_model from tensorflow.keras.losses import MeanSquaredError, KLDivergence from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.callbacks import TensorBoard, EarlyStopping sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') sys.path.append(os.path.dirname(sys.argv[0])) sys.path.append(sys.base_prefix + '/share/nDPId') import nDPIsrvd from nDPIsrvd import nDPIsrvdSocket, TermColor INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX LATENT_SIZE = 16 TRAINING_SIZE = 8192 EPOCH_COUNT = 50 BATCH_SIZE = 512 LEARNING_RATE = 0.0000001 ES_PATIENCE = 10 PLOT = False PLOT_HISTORY = 100 TENSORBOARD = False TB_LOGPATH = 'logs/' + dt.datetime.now().strftime("%Y%m%d-%H%M%S") VAE_USE_KLDIV = False VAE_USE_SGD = False def generate_autoencoder(): # TODO: The current model does handle *each* packet separatly. # But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other. # The accuracy may (or may not) improve significantly, but some of changes in the code are required. input_i = Input(shape=(), name='input_i') input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i) masked_e = Masking(mask_value=0.0, name='masked_e')(input_e) encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e) encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1) encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2) encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3) encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4) encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5) encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6) latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7) input_l = Input(shape=(LATENT_SIZE), name='input_l') decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l) decoder_h2 = Dense(64, activation='relu', name='decoder_h2')(decoder_h1) decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2) decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3) decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4) decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5) decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6) output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7) encoder = Model(input_e, latent, name='encoder') decoder = Model(input_l, output_i, name='decoder') return KLDivergence() if VAE_USE_KLDIV else MeanSquaredError(), \ SGD() if VAE_USE_SGD else Adam(learning_rate=LEARNING_RATE), \ Model(input_e, decoder(encoder(input_e)), name='VAE') def compile_autoencoder(): loss, optimizer, autoencoder = generate_autoencoder() autoencoder.compile(loss=loss, optimizer=optimizer, metrics=[]) return autoencoder def get_autoencoder(load_from_file=None): if load_from_file is None: autoencoder = compile_autoencoder() else: autoencoder = models.load_model(load_from_file) encoder_submodel = autoencoder.layers[1] decoder_submodel = autoencoder.layers[2] return encoder_submodel, decoder_submodel, autoencoder def on_json_line(json_dict, instance, current_flow, global_user_data): if 'packet_event_name' not in json_dict: return True if json_dict['packet_event_name'] != 'packet' and \ json_dict['packet_event_name'] != 'packet-flow': return True shutdown_event, training_event, padded_pkts, print_dots = global_user_data if shutdown_event.is_set(): return False try: buf = base64.b64decode(json_dict['pkt'], validate=True) except binascii.Error as err: sys.stderr.write('\nBase64 Exception: {}\n'.format(str(err))) sys.stderr.write('Affected JSON: {}\n'.format(str(json_dict))) sys.stderr.flush() return False # Generate decimal byte buffer with valus from 0-255 int_buf = [] for v in buf: int_buf.append(int(v)) mat = np.array([int_buf], dtype='float64') # Normalize the values mat = mat.astype('float64') / 255.0 # Mean removal matmean = np.mean(mat, dtype='float64') mat -= matmean # Pad resulting matrice buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post', dtype='float64') padded_pkts.put(buf[0]) #print(list(buf[0])) if not training_event.is_set(): sys.stdout.write('.' * print_dots) sys.stdout.flush() print_dots = 1 else: print_dots += 1 return True def ndpisrvd_worker(address, shared_shutdown_event, shared_training_event, shared_packet_list): nsock = nDPIsrvdSocket() try: nsock.connect(address) print_dots = 1 nsock.loop(on_json_line, None, (shared_shutdown_event, shared_training_event, shared_packet_list, print_dots)) except nDPIsrvd.SocketConnectionBroken as err: sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err)) except KeyboardInterrupt: sys.stderr.write('\n') except Exception as err: sys.stderr.write('\nnDPIsrvd-Worker Exception: {}\n'.format(str(err))) sys.stderr.flush() shared_shutdown_event.set() def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue): shared_training_event.set() try: encoder, _, autoencoder = get_autoencoder(load_model) except Exception as err: sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err))) sys.stderr.flush() encoder, _, autoencoder = get_autoencoder() autoencoder.summary() tensorboard = TensorBoard(log_dir=TB_LOGPATH, histogram_freq=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=ES_PATIENCE, restore_best_weights=True, start_from_epoch=0, verbose=0, mode='auto') shared_training_event.clear() try: packets = list() while not shared_shutdown_event.is_set(): try: packet = shared_packet_queue.get(timeout=1) except queue.Empty: packet = None if packet is None: continue packets.append(packet) if len(packets) % TRAINING_SIZE == 0: shared_training_event.set() print('\nGot {} packets, training..'.format(len(packets))) tmp = np.array(packets) history = autoencoder.fit( tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE, validation_split=0.2, shuffle=True, callbacks=[tensorboard, early_stopping] ) reconstructed_data = autoencoder.predict(tmp) mse = np.mean(np.square(tmp - reconstructed_data)) reconstruction_accuracy = (1.0 / mse) encoded_data = encoder.predict(tmp) latent_activations = encoder.predict(tmp) shared_plot_queue.put((reconstruction_accuracy, history.history['val_loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations)) packets.clear() shared_training_event.clear() except KeyboardInterrupt: sys.stderr.write('\n') except Exception as err: if len(str(err)) == 0: err = 'Unknown' sys.stderr.write('\nKeras-Worker Exception: {}\n'.format(str(err))) sys.stderr.flush() if save_model is not None: sys.stderr.write('Saving model to {}\n'.format(save_model)) sys.stderr.flush() autoencoder.save(save_model) try: shared_shutdown_event.set() except Exception: pass def plot_animate(i, shared_plot_queue, ax, xs, ys): if not shared_plot_queue.empty(): accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1) epochs = len(loss) loss_mean = sum(loss) / epochs else: return (ax1, ax2, ax3, ax4) = ax (ys1, ys2, ys3, ys4) = ys if len(xs) == 0: xs.append(epochs) else: xs.append(xs[-1] + epochs) ys1.append(accuracy) ys2.append(loss_mean) xs = xs[-PLOT_HISTORY:] ys1 = ys1[-PLOT_HISTORY:] ys2 = ys2[-PLOT_HISTORY:] ax1.clear() ax1.plot(xs, ys1, '-') ax2.clear() ax2.plot(xs, ys2, '-') ax3.clear() ax3.scatter(encoded_data0, encoded_data1, marker='.') ax4.clear() ax4.imshow(latent_activations, cmap='viridis', aspect='auto') ax1.set_xlabel('Epoch Count') ax1.set_ylabel('Accuracy') ax2.set_xlabel('Epoch Count') ax2.set_ylabel('Validation Loss') ax3.set_title('Latent Space') ax4.set_title('Latent Space Heatmap') ax4.set_xlabel('Latent Dimensions') ax4.set_ylabel('Datapoints') def plot_worker(shared_shutdown_event, shared_plot_queue): try: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) fig.tight_layout() ax1.set_xlabel('Epoch Count') ax1.set_ylabel('Accuracy') ax2.set_xlabel('Epoch Count') ax2.set_ylabel('Validation Loss') ax3.set_title('Latent Space') ax4.set_title('Latent Space Heatmap') ax4.set_xlabel('Latent Dimensions') ax4.set_ylabel('Datapoints') xs = [] ys1 = [] ys2 = [] ys3 = [] ys4 = [] ani.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False) plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) plt.margins(x=0, y=0) plt.show() except Exception as err: sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err))) sys.stderr.flush() shared_shutdown_event.set() return if __name__ == '__main__': sys.stderr.write('\b\n***************\n') sys.stderr.write('*** WARNING ***\n') sys.stderr.write('***************\n') sys.stderr.write('\nThis is an unmature Autoencoder example.\n') sys.stderr.write('Please do not rely on any of it\'s output!\n\n') argparser = nDPIsrvd.defaultArgumentParser() argparser.add_argument('--load-model', action='store', help='Load a pre-trained model file.') argparser.add_argument('--save-model', action='store', help='Save the trained model to a file.') argparser.add_argument('--training-size', action='store', default=TRAINING_SIZE, help='Set the amount of captured packets required to start the training phase.') argparser.add_argument('--batch-size', action='store', default=BATCH_SIZE, help='Set the batch size used for the training phase.') argparser.add_argument('--learning-rate', action='store', default=LEARNING_RATE, help='Set the (initial) learning rate for the optimizer.') argparser.add_argument('--plot', action='store_true', default=PLOT, help='Show some model metrics using pyplot.') argparser.add_argument('--plot-history', action='store', default=PLOT_HISTORY, help='Set the history size of Line plots. Requires --plot') argparser.add_argument('--tensorboard', action='store_true', default=TENSORBOARD, help='Enable TensorBoard compatible logging callback.') argparser.add_argument('--tensorboard-logpath', action='store', default=TB_LOGPATH, help='TensorBoard logging path.') argparser.add_argument('--use-sgd', action='store_true', default=VAE_USE_SGD, help='Use SGD optimizer instead of Adam.') argparser.add_argument('--use-kldiv', action='store_true', default=VAE_USE_KLDIV, help='Use Kullback-Leibler loss function instead of Mean-Squared-Error.') argparser.add_argument('--patience', action='store', default=ES_PATIENCE, help='Epoch value for EarlyStopping. This value forces VAE fitting to if no improvment achieved.') args = argparser.parse_args() address = nDPIsrvd.validateAddress(args) LEARNING_RATE = args.learning_rate TRAINING_SIZE = args.training_size BATCH_SIZE = args.batch_size PLOT = args.plot PLOT_HISTORY = args.plot_history TENSORBOARD = args.tensorboard TB_LOGPATH = args.tensorboard_logpath if args.tensorboard_logpath is not None else TB_LOGPATH VAE_USE_SGD = args.use_sgd VAE_USE_KLDIV = args.use_kldiv ES_PATIENCE = args.patience sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(PLOT, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE)) mgr = mp.Manager() shared_training_event = mgr.Event() shared_training_event.clear() shared_shutdown_event = mgr.Event() shared_shutdown_event.clear() shared_packet_queue = mgr.JoinableQueue() shared_plot_queue = mgr.JoinableQueue() nDPIsrvd_job = mp.Process(target=ndpisrvd_worker, args=( address, shared_shutdown_event, shared_training_event, shared_packet_queue )) nDPIsrvd_job.start() keras_job = mp.Process(target=keras_worker, args=( args.load_model, args.save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue )) keras_job.start() if PLOT is True: plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue)) plot_job.start() try: shared_shutdown_event.wait() except KeyboardInterrupt: print('\nShutting down worker processess..') if PLOT is True: plot_job.terminate() plot_job.join() nDPIsrvd_job.terminate() nDPIsrvd_job.join() keras_job.join(timeout=3) keras_job.terminate()