aboutsummaryrefslogtreecommitdiff
path: root/examples/py-machine-learning/sklearn-ml.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/py-machine-learning/sklearn-ml.py')
-rwxr-xr-xexamples/py-machine-learning/sklearn-ml.py267
1 files changed, 0 insertions, 267 deletions
diff --git a/examples/py-machine-learning/sklearn-ml.py b/examples/py-machine-learning/sklearn-ml.py
deleted file mode 100755
index 2a2569651..000000000
--- a/examples/py-machine-learning/sklearn-ml.py
+++ /dev/null
@@ -1,267 +0,0 @@
-#!/usr/bin/env python3
-
-import csv
-import matplotlib.pyplot
-import numpy
-import os
-import pandas
-import sklearn
-import sklearn.ensemble
-import sklearn.inspection
-import sys
-import time
-
-sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
-sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
-sys.path.append(os.path.dirname(sys.argv[0]))
-sys.path.append(sys.base_prefix + '/share/nDPId')
-import nDPIsrvd
-from nDPIsrvd import nDPIsrvdSocket, TermColor
-
-
-N_DIRS = 0
-N_BINS = 0
-
-ENABLE_FEATURE_IAT = False
-ENABLE_FEATURE_PKTLEN = False
-ENABLE_FEATURE_DIRS = True
-ENABLE_FEATURE_BINS = True
-
-def getFeatures(json):
- return [json['flow_src_packets_processed'],
- json['flow_dst_packets_processed'],
- json['flow_src_tot_l4_payload_len'],
- json['flow_dst_tot_l4_payload_len']]
-
-def getFeaturesFromArray(json, expected_len=0):
- if type(json) is str:
- dirs = numpy.fromstring(json, sep=',', dtype=int)
- dirs = numpy.asarray(dirs, dtype=int).tolist()
- elif type(json) is list:
- dirs = json
- else:
- raise TypeError('Invalid type: {}.'.format(type(json)))
-
- if expected_len > 0 and len(dirs) != expected_len:
- raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs)))
-
- return dirs
-
-def getRelevantFeaturesCSV(line):
- ret = list()
- ret.extend(getFeatures(line));
- if ENABLE_FEATURE_IAT is True:
- ret.extend(getFeaturesFromArray(line['iat_data'], N_DIRS - 1))
- if ENABLE_FEATURE_PKTLEN is True:
- ret.extend(getFeaturesFromArray(line['pktlen_data'], N_DIRS))
- if ENABLE_FEATURE_DIRS is True:
- ret.extend(getFeaturesFromArray(line['directions'], N_DIRS))
- if ENABLE_FEATURE_BINS is True:
- ret.extend(getFeaturesFromArray(line['bins_c_to_s'], N_BINS))
- ret.extend(getFeaturesFromArray(line['bins_s_to_c'], N_BINS))
- return [ret]
-
-def getRelevantFeaturesJSON(line):
- ret = list()
- ret.extend(getFeatures(line))
- if ENABLE_FEATURE_IAT is True:
- ret.extend(getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1))
- if ENABLE_FEATURE_PKTLEN is True:
- ret.extend(getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS))
- if ENABLE_FEATURE_DIRS is True:
- ret.extend(getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS))
- if ENABLE_FEATURE_BINS is True:
- ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS))
- ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) )
- return [ret]
-
-def getRelevantFeatureNames():
- names = list()
- names.extend(['flow_src_packets_processed', 'flow_dst_packets_processed',
- 'flow_src_tot_l4_payload_len', 'flow_dst_tot_l4_payload_len'])
- if ENABLE_FEATURE_IAT is True:
- for x in range(N_DIRS - 1):
- names.append('iat_{}'.format(x))
- if ENABLE_FEATURE_PKTLEN is True:
- for x in range(N_DIRS):
- names.append('pktlen_{}'.format(x))
- if ENABLE_FEATURE_DIRS is True:
- for x in range(N_DIRS):
- names.append('dirs_{}'.format(x))
- if ENABLE_FEATURE_BINS is True:
- for x in range(N_BINS):
- names.append('bins_c_to_s_{}'.format(x))
- for x in range(N_BINS):
- names.append('bins_s_to_c_{}'.format(x))
- return names
-
-def plotPermutatedImportance(model, X, y):
- result = sklearn.inspection.permutation_importance(model, X, y, n_repeats=10, random_state=42, n_jobs=-1)
- forest_importances = pandas.Series(result.importances_mean, index=getRelevantFeatureNames())
-
- fig, ax = matplotlib.pyplot.subplots()
- forest_importances.plot.bar(yerr=result.importances_std, ax=ax)
- ax.set_title("Feature importances using permutation on full model")
- ax.set_ylabel("Mean accuracy decrease")
- fig.tight_layout()
- matplotlib.pyplot.show()
-
-def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
- if 'flow_event_name' not in json_dict:
- return True
- if json_dict['flow_event_name'] != 'analyse':
- return True
-
- if 'ndpi' not in json_dict:
- return True
- if 'proto' not in json_dict['ndpi']:
- return True
-
- #print(json_dict)
-
- model, proto_class, disable_colors = global_user_data
-
- try:
- X = getRelevantFeaturesJSON(json_dict)
- y = model.predict(X)
- s = model.score(X, y)
- p = model.predict_log_proba(X)
-
- if y[0] <= 0:
- y_text = 'n/a'
- else:
- y_text = proto_class[y[0] - 1]
-
- color_start = ''
- color_end = ''
- pred_failed = False
- if disable_colors is False:
- if json_dict['ndpi']['proto'].lower().startswith(y_text) is True:
- color_start = TermColor.BOLD
- color_end = TermColor.END
- elif y_text not in proto_class and \
- json_dict['ndpi']['proto'].lower() not in proto_class:
- pass
- else:
- pred_failed = True
- color_start = TermColor.FAIL + TermColor.BOLD + TermColor.BLINK
- color_end = TermColor.END
-
- probs = str()
- for i in range(len(p[0])):
- if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False:
- probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '',
- p[0][i], TermColor.END)
- elif i == y[0]:
- probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end)
- else:
- probs += '{:>2.1f}, '.format(p[0][i])
- probs = probs[:-2]
-
- print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Score: {}, Probabilities: {}'.format(
- color_start, json_dict['ndpi']['proto'], color_end,
- color_start, y_text, color_end, s, probs))
- except Exception as err:
- print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
-
- return True
-
-def isProtoClass(proto_class, line):
- s = line.lower()
-
- for x in range(len(proto_class)):
- if s.startswith(proto_class[x].lower()) is True:
- return x + 1
-
- return 0
-
-if __name__ == '__main__':
- argparser = nDPIsrvd.defaultArgumentParser()
- argparser.add_argument('--csv', action='store', required=True,
- help='Input CSV file generated with nDPIsrvd-analysed.')
- argparser.add_argument('--proto-class', action='append', required=True,
- help='nDPId protocol class of interest used for training and prediction. ' +
- 'Can be specified multiple times. Example: tls.youtube')
- argparser.add_argument('--generate-feature-importance', action='store_true',
- help='Generates the permutated feature importance with matplotlib.')
- argparser.add_argument('--enable-iat', action='store_true', default=False,
- help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.')
- argparser.add_argument('--enable-pktlen', action='store_true', default=False,
- help='Enable layer 4 packet lengths for learning and prediction.')
- argparser.add_argument('--disable-dirs', action='store_true', default=False,
- help='Disable packet directions for learning and prediction.')
- argparser.add_argument('--disable-bins', action='store_true', default=False,
- help='Disable packet length distribution for learning and prediction.')
- argparser.add_argument('--disable-colors', action='store_true', default=False,
- help='Disable any coloring.')
- argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1,
- help='Number of sklearn processes during training.')
- argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000,
- help='Number of trees in the forest.')
- argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=5,
- help='The minimum number of samples required to be at a leaf node.')
- argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?',
- choices=['balanced', 'balanced_subsample'],
- help='Weights associated with the protocol classes.')
- argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?',
- choices=['sqrt', 'log2'],
- help='The number of features to consider when looking for the best split.')
- argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0,
- help='Controls the verbosity of sklearn\'s random forest classifier.')
- args = argparser.parse_args()
- address = nDPIsrvd.validateAddress(args)
-
- ENABLE_FEATURE_IAT = args.enable_iat
- ENABLE_FEATURE_PKTLEN = args.enable_pktlen
- ENABLE_FEATURE_DIRS = args.disable_dirs is False
- ENABLE_FEATURE_BINS = args.disable_bins is False
-
- numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ')
- numpy.seterr(divide = 'ignore')
-
- sys.stderr.write('Learning via CSV..\n')
- with open(args.csv, newline='\n') as csvfile:
- reader = csv.DictReader(csvfile, delimiter=',', quotechar='"')
- X = list()
- y = list()
-
- for line in reader:
- N_DIRS = len(getFeaturesFromArray(line['directions']))
- N_BINS = len(getFeaturesFromArray(line['bins_c_to_s']))
- break
-
- for line in reader:
- try:
- #if isProtoClass(args.proto_class, line['proto']) > 0:
- X += getRelevantFeaturesCSV(line)
- y += [isProtoClass(args.proto_class, line['proto'])]
- except RuntimeError as err:
- print('Error: `{}\'\non line: {}'.format(err, line))
-
- sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X)))
-
- model = sklearn.ensemble.RandomForestClassifier(bootstrap=False,
- class_weight = args.sklearn_class_weight,
- n_jobs = args.sklearn_jobs,
- n_estimators = args.sklearn_estimators,
- verbose = args.sklearn_verbosity,
- min_samples_leaf = args.sklearn_min_samples_leaf,
- max_features = args.sklearn_max_features
- )
- sys.stderr.write('Training model..\n')
- model.fit(X, y)
-
- if args.generate_feature_importance is True:
- sys.stderr.write('Generating feature importance .. this may take some time')
- plotPermutatedImportance(model, X, y)
-
- print('Map[*] -> [0]')
- for x in range(len(args.proto_class)):
- print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1))
-
- sys.stderr.write('Predicting realtime traffic..\n')
- sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
- sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
- nsock = nDPIsrvdSocket()
- nsock.connect(address)
- nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors))