diff options
Diffstat (limited to 'examples/py-machine-learning/sklearn-ml.py')
-rwxr-xr-x | examples/py-machine-learning/sklearn-ml.py | 267 |
1 files changed, 0 insertions, 267 deletions
diff --git a/examples/py-machine-learning/sklearn-ml.py b/examples/py-machine-learning/sklearn-ml.py deleted file mode 100755 index 2a2569651..000000000 --- a/examples/py-machine-learning/sklearn-ml.py +++ /dev/null @@ -1,267 +0,0 @@ -#!/usr/bin/env python3 - -import csv -import matplotlib.pyplot -import numpy -import os -import pandas -import sklearn -import sklearn.ensemble -import sklearn.inspection -import sys -import time - -sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') -sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') -sys.path.append(os.path.dirname(sys.argv[0])) -sys.path.append(sys.base_prefix + '/share/nDPId') -import nDPIsrvd -from nDPIsrvd import nDPIsrvdSocket, TermColor - - -N_DIRS = 0 -N_BINS = 0 - -ENABLE_FEATURE_IAT = False -ENABLE_FEATURE_PKTLEN = False -ENABLE_FEATURE_DIRS = True -ENABLE_FEATURE_BINS = True - -def getFeatures(json): - return [json['flow_src_packets_processed'], - json['flow_dst_packets_processed'], - json['flow_src_tot_l4_payload_len'], - json['flow_dst_tot_l4_payload_len']] - -def getFeaturesFromArray(json, expected_len=0): - if type(json) is str: - dirs = numpy.fromstring(json, sep=',', dtype=int) - dirs = numpy.asarray(dirs, dtype=int).tolist() - elif type(json) is list: - dirs = json - else: - raise TypeError('Invalid type: {}.'.format(type(json))) - - if expected_len > 0 and len(dirs) != expected_len: - raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs))) - - return dirs - -def getRelevantFeaturesCSV(line): - ret = list() - ret.extend(getFeatures(line)); - if ENABLE_FEATURE_IAT is True: - ret.extend(getFeaturesFromArray(line['iat_data'], N_DIRS - 1)) - if ENABLE_FEATURE_PKTLEN is True: - ret.extend(getFeaturesFromArray(line['pktlen_data'], N_DIRS)) - if ENABLE_FEATURE_DIRS is True: - ret.extend(getFeaturesFromArray(line['directions'], N_DIRS)) - if ENABLE_FEATURE_BINS is True: - ret.extend(getFeaturesFromArray(line['bins_c_to_s'], N_BINS)) - ret.extend(getFeaturesFromArray(line['bins_s_to_c'], N_BINS)) - return [ret] - -def getRelevantFeaturesJSON(line): - ret = list() - ret.extend(getFeatures(line)) - if ENABLE_FEATURE_IAT is True: - ret.extend(getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1)) - if ENABLE_FEATURE_PKTLEN is True: - ret.extend(getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS)) - if ENABLE_FEATURE_DIRS is True: - ret.extend(getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS)) - if ENABLE_FEATURE_BINS is True: - ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS)) - ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) ) - return [ret] - -def getRelevantFeatureNames(): - names = list() - names.extend(['flow_src_packets_processed', 'flow_dst_packets_processed', - 'flow_src_tot_l4_payload_len', 'flow_dst_tot_l4_payload_len']) - if ENABLE_FEATURE_IAT is True: - for x in range(N_DIRS - 1): - names.append('iat_{}'.format(x)) - if ENABLE_FEATURE_PKTLEN is True: - for x in range(N_DIRS): - names.append('pktlen_{}'.format(x)) - if ENABLE_FEATURE_DIRS is True: - for x in range(N_DIRS): - names.append('dirs_{}'.format(x)) - if ENABLE_FEATURE_BINS is True: - for x in range(N_BINS): - names.append('bins_c_to_s_{}'.format(x)) - for x in range(N_BINS): - names.append('bins_s_to_c_{}'.format(x)) - return names - -def plotPermutatedImportance(model, X, y): - result = sklearn.inspection.permutation_importance(model, X, y, n_repeats=10, random_state=42, n_jobs=-1) - forest_importances = pandas.Series(result.importances_mean, index=getRelevantFeatureNames()) - - fig, ax = matplotlib.pyplot.subplots() - forest_importances.plot.bar(yerr=result.importances_std, ax=ax) - ax.set_title("Feature importances using permutation on full model") - ax.set_ylabel("Mean accuracy decrease") - fig.tight_layout() - matplotlib.pyplot.show() - -def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): - if 'flow_event_name' not in json_dict: - return True - if json_dict['flow_event_name'] != 'analyse': - return True - - if 'ndpi' not in json_dict: - return True - if 'proto' not in json_dict['ndpi']: - return True - - #print(json_dict) - - model, proto_class, disable_colors = global_user_data - - try: - X = getRelevantFeaturesJSON(json_dict) - y = model.predict(X) - s = model.score(X, y) - p = model.predict_log_proba(X) - - if y[0] <= 0: - y_text = 'n/a' - else: - y_text = proto_class[y[0] - 1] - - color_start = '' - color_end = '' - pred_failed = False - if disable_colors is False: - if json_dict['ndpi']['proto'].lower().startswith(y_text) is True: - color_start = TermColor.BOLD - color_end = TermColor.END - elif y_text not in proto_class and \ - json_dict['ndpi']['proto'].lower() not in proto_class: - pass - else: - pred_failed = True - color_start = TermColor.FAIL + TermColor.BOLD + TermColor.BLINK - color_end = TermColor.END - - probs = str() - for i in range(len(p[0])): - if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False: - probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '', - p[0][i], TermColor.END) - elif i == y[0]: - probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end) - else: - probs += '{:>2.1f}, '.format(p[0][i]) - probs = probs[:-2] - - print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Score: {}, Probabilities: {}'.format( - color_start, json_dict['ndpi']['proto'], color_end, - color_start, y_text, color_end, s, probs)) - except Exception as err: - print('Got exception `{}\'\nfor json: {}'.format(err, json_dict)) - - return True - -def isProtoClass(proto_class, line): - s = line.lower() - - for x in range(len(proto_class)): - if s.startswith(proto_class[x].lower()) is True: - return x + 1 - - return 0 - -if __name__ == '__main__': - argparser = nDPIsrvd.defaultArgumentParser() - argparser.add_argument('--csv', action='store', required=True, - help='Input CSV file generated with nDPIsrvd-analysed.') - argparser.add_argument('--proto-class', action='append', required=True, - help='nDPId protocol class of interest used for training and prediction. ' + - 'Can be specified multiple times. Example: tls.youtube') - argparser.add_argument('--generate-feature-importance', action='store_true', - help='Generates the permutated feature importance with matplotlib.') - argparser.add_argument('--enable-iat', action='store_true', default=False, - help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.') - argparser.add_argument('--enable-pktlen', action='store_true', default=False, - help='Enable layer 4 packet lengths for learning and prediction.') - argparser.add_argument('--disable-dirs', action='store_true', default=False, - help='Disable packet directions for learning and prediction.') - argparser.add_argument('--disable-bins', action='store_true', default=False, - help='Disable packet length distribution for learning and prediction.') - argparser.add_argument('--disable-colors', action='store_true', default=False, - help='Disable any coloring.') - argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1, - help='Number of sklearn processes during training.') - argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000, - help='Number of trees in the forest.') - argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=5, - help='The minimum number of samples required to be at a leaf node.') - argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?', - choices=['balanced', 'balanced_subsample'], - help='Weights associated with the protocol classes.') - argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?', - choices=['sqrt', 'log2'], - help='The number of features to consider when looking for the best split.') - argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0, - help='Controls the verbosity of sklearn\'s random forest classifier.') - args = argparser.parse_args() - address = nDPIsrvd.validateAddress(args) - - ENABLE_FEATURE_IAT = args.enable_iat - ENABLE_FEATURE_PKTLEN = args.enable_pktlen - ENABLE_FEATURE_DIRS = args.disable_dirs is False - ENABLE_FEATURE_BINS = args.disable_bins is False - - numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ') - numpy.seterr(divide = 'ignore') - - sys.stderr.write('Learning via CSV..\n') - with open(args.csv, newline='\n') as csvfile: - reader = csv.DictReader(csvfile, delimiter=',', quotechar='"') - X = list() - y = list() - - for line in reader: - N_DIRS = len(getFeaturesFromArray(line['directions'])) - N_BINS = len(getFeaturesFromArray(line['bins_c_to_s'])) - break - - for line in reader: - try: - #if isProtoClass(args.proto_class, line['proto']) > 0: - X += getRelevantFeaturesCSV(line) - y += [isProtoClass(args.proto_class, line['proto'])] - except RuntimeError as err: - print('Error: `{}\'\non line: {}'.format(err, line)) - - sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X))) - - model = sklearn.ensemble.RandomForestClassifier(bootstrap=False, - class_weight = args.sklearn_class_weight, - n_jobs = args.sklearn_jobs, - n_estimators = args.sklearn_estimators, - verbose = args.sklearn_verbosity, - min_samples_leaf = args.sklearn_min_samples_leaf, - max_features = args.sklearn_max_features - ) - sys.stderr.write('Training model..\n') - model.fit(X, y) - - if args.generate_feature_importance is True: - sys.stderr.write('Generating feature importance .. this may take some time') - plotPermutatedImportance(model, X, y) - - print('Map[*] -> [0]') - for x in range(len(args.proto_class)): - print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1)) - - sys.stderr.write('Predicting realtime traffic..\n') - sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) - sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) - nsock = nDPIsrvdSocket() - nsock.connect(address) - nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors)) |