summaryrefslogtreecommitdiff
path: root/examples/py-machine-learning/keras-autoencoder.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/py-machine-learning/keras-autoencoder.py')
-rwxr-xr-xexamples/py-machine-learning/keras-autoencoder.py384
1 files changed, 384 insertions, 0 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py
new file mode 100755
index 000000000..a99cc1b2d
--- /dev/null
+++ b/examples/py-machine-learning/keras-autoencoder.py
@@ -0,0 +1,384 @@
+#!/usr/bin/env python3
+
+import base64
+import binascii
+import datetime as dt
+import math
+import matplotlib.animation as ani
+import matplotlib.pyplot as plt
+import multiprocessing as mp
+import numpy as np
+import os
+import queue
+import sys
+
+import tensorflow as tf
+from tensorflow.keras import models, layers, preprocessing
+from tensorflow.keras.layers import Embedding, Masking, Input, Dense
+from tensorflow.keras.models import Model
+from tensorflow.keras.utils import plot_model
+from tensorflow.keras.losses import MeanSquaredError, KLDivergence
+from tensorflow.keras.optimizers import Adam, SGD
+from tensorflow.keras.callbacks import TensorBoard, EarlyStopping
+
+sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
+sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
+sys.path.append(os.path.dirname(sys.argv[0]))
+sys.path.append(sys.base_prefix + '/share/nDPId')
+import nDPIsrvd
+from nDPIsrvd import nDPIsrvdSocket, TermColor
+
+INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
+LATENT_SIZE = 8
+TRAINING_SIZE = 512
+EPOCH_COUNT = 3
+BATCH_SIZE = 16
+LEARNING_RATE = 0.000001
+ES_PATIENCE = 3
+PLOT = False
+PLOT_HISTORY = 100
+TENSORBOARD = False
+TB_LOGPATH = 'logs/' + dt.datetime.now().strftime("%Y%m%d-%H%M%S")
+VAE_USE_KLDIV = False
+VAE_USE_SGD = False
+
+def generate_autoencoder():
+ # TODO: The current model does handle *each* packet separatly.
+ # But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
+ # The accuracy may (or may not) improve significantly, but some of changes in the code are required.
+ input_i = Input(shape=(), name='input_i')
+ input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
+ masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
+ encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
+ encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
+ encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
+ encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
+ encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
+ encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
+ encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
+ latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
+
+ input_l = Input(shape=(LATENT_SIZE), name='input_l')
+ decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
+ decoder_h2 = Dense(64, activation='relu', name='decoder_h2')(decoder_h1)
+ decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
+ decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
+ decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
+ decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
+ decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
+ output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
+
+ encoder = Model(input_e, latent, name='encoder')
+ decoder = Model(input_l, output_i, name='decoder')
+ return KLDivergence() if VAE_USE_KLDIV else MeanSquaredError(), \
+ SGD() if VAE_USE_SGD else Adam(learning_rate=LEARNING_RATE), \
+ Model(input_e, decoder(encoder(input_e)), name='VAE')
+
+def compile_autoencoder():
+ loss, optimizer, autoencoder = generate_autoencoder()
+ autoencoder.compile(loss=loss, optimizer=optimizer, metrics=[])
+ return autoencoder
+
+def get_autoencoder(load_from_file=None):
+ if load_from_file is None:
+ autoencoder = compile_autoencoder()
+ else:
+ autoencoder = models.load_model(load_from_file)
+
+ encoder_submodel = autoencoder.layers[1]
+ decoder_submodel = autoencoder.layers[2]
+ return encoder_submodel, decoder_submodel, autoencoder
+
+def on_json_line(json_dict, instance, current_flow, global_user_data):
+ if 'packet_event_name' not in json_dict:
+ return True
+
+ if json_dict['packet_event_name'] != 'packet' and \
+ json_dict['packet_event_name'] != 'packet-flow':
+ return True
+
+ shutdown_event, training_event, padded_pkts, print_dots = global_user_data
+ if shutdown_event.is_set():
+ return False
+
+ try:
+ buf = base64.b64decode(json_dict['pkt'], validate=True)
+ except binascii.Error as err:
+ sys.stderr.write('\nBase64 Exception: {}\n'.format(str(err)))
+ sys.stderr.write('Affected JSON: {}\n'.format(str(json_dict)))
+ sys.stderr.flush()
+ return False
+
+ # Generate decimal byte buffer with valus from 0-255
+ int_buf = []
+ for v in buf:
+ int_buf.append(int(v))
+
+ mat = np.array([int_buf], dtype='float64')
+
+ # Normalize the values
+ mat = mat.astype('float64') / 255.0
+
+ # Mean removal
+ matmean = np.mean(mat, dtype='float64')
+ mat -= matmean
+
+ # Pad resulting matrice
+ buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post', dtype='float64')
+ padded_pkts.put(buf[0])
+
+ #print(list(buf[0]))
+
+ if not training_event.is_set():
+ sys.stdout.write('.' * print_dots)
+ sys.stdout.flush()
+ print_dots = 1
+ else:
+ print_dots += 1
+
+ return True
+
+def ndpisrvd_worker(address, shared_shutdown_event, shared_training_event, shared_packet_list):
+ nsock = nDPIsrvdSocket()
+
+ try:
+ nsock.connect(address)
+ print_dots = 1
+ nsock.loop(on_json_line, None, (shared_shutdown_event, shared_training_event, shared_packet_list, print_dots))
+ except nDPIsrvd.SocketConnectionBroken as err:
+ sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err))
+ except KeyboardInterrupt:
+ sys.stderr.write('\n')
+ except Exception as err:
+ sys.stderr.write('\nnDPIsrvd-Worker Exception: {}\n'.format(str(err)))
+ sys.stderr.flush()
+
+ shared_shutdown_event.set()
+
+def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
+ shared_training_event.set()
+ try:
+ encoder, _, autoencoder = get_autoencoder(load_model)
+ except Exception as err:
+ sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
+ sys.stderr.flush()
+ encoder, _, autoencoder = get_autoencoder()
+ autoencoder.summary()
+ additional_callbacks = []
+ if TENSORBOARD is True:
+ tensorboard = TensorBoard(log_dir=TB_LOGPATH, histogram_freq=1)
+ additional_callbacks += [tensorboard]
+ early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=ES_PATIENCE, restore_best_weights=True, start_from_epoch=0, verbose=0, mode='auto')
+ additional_callbacks += [early_stopping]
+ shared_training_event.clear()
+
+ try:
+ packets = list()
+ while not shared_shutdown_event.is_set():
+ try:
+ packet = shared_packet_queue.get(timeout=1)
+ except queue.Empty:
+ packet = None
+
+ if packet is None:
+ continue
+
+ packets.append(packet)
+ if len(packets) % TRAINING_SIZE == 0:
+ shared_training_event.set()
+ print('\nGot {} packets, training..'.format(len(packets)))
+ tmp = np.array(packets)
+ history = autoencoder.fit(
+ tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
+ validation_split=0.2,
+ shuffle=True,
+ callbacks=[additional_callbacks]
+ )
+ reconstructed_data = autoencoder.predict(tmp)
+ mse = np.mean(np.square(tmp - reconstructed_data))
+ reconstruction_accuracy = (1.0 / mse)
+ encoded_data = encoder.predict(tmp)
+ latent_activations = encoder.predict(tmp)
+ shared_plot_queue.put((reconstruction_accuracy, history.history['val_loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
+ packets.clear()
+ shared_training_event.clear()
+ except KeyboardInterrupt:
+ sys.stderr.write('\n')
+ except Exception as err:
+ if len(str(err)) == 0:
+ err = 'Unknown'
+ sys.stderr.write('\nKeras-Worker Exception: {}\n'.format(str(err)))
+ sys.stderr.flush()
+
+ if save_model is not None:
+ sys.stderr.write('Saving model to {}\n'.format(save_model))
+ sys.stderr.flush()
+ autoencoder.save(save_model)
+
+ try:
+ shared_shutdown_event.set()
+ except Exception:
+ pass
+
+def plot_animate(i, shared_plot_queue, ax, xs, ys):
+ if not shared_plot_queue.empty():
+ accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
+ epochs = len(loss)
+ loss_mean = sum(loss) / epochs
+ else:
+ return
+
+ (ax1, ax2, ax3, ax4) = ax
+ (ys1, ys2, ys3, ys4) = ys
+
+ if len(xs) == 0:
+ xs.append(epochs)
+ else:
+ xs.append(xs[-1] + epochs)
+ ys1.append(accuracy)
+ ys2.append(loss_mean)
+
+ xs = xs[-PLOT_HISTORY:]
+ ys1 = ys1[-PLOT_HISTORY:]
+ ys2 = ys2[-PLOT_HISTORY:]
+
+ ax1.clear()
+ ax1.plot(xs, ys1, '-')
+ ax2.clear()
+ ax2.plot(xs, ys2, '-')
+ ax3.clear()
+ ax3.scatter(encoded_data0, encoded_data1, marker='.')
+ ax4.clear()
+ ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
+
+ ax1.set_xlabel('Epoch Count')
+ ax1.set_ylabel('Accuracy')
+ ax2.set_xlabel('Epoch Count')
+ ax2.set_ylabel('Validation Loss')
+ ax3.set_title('Latent Space')
+ ax4.set_title('Latent Space Heatmap')
+ ax4.set_xlabel('Latent Dimensions')
+ ax4.set_ylabel('Datapoints')
+
+def plot_worker(shared_shutdown_event, shared_plot_queue):
+ try:
+ fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
+ fig.tight_layout()
+ ax1.set_xlabel('Epoch Count')
+ ax1.set_ylabel('Accuracy')
+ ax2.set_xlabel('Epoch Count')
+ ax2.set_ylabel('Validation Loss')
+ ax3.set_title('Latent Space')
+ ax4.set_title('Latent Space Heatmap')
+ ax4.set_xlabel('Latent Dimensions')
+ ax4.set_ylabel('Datapoints')
+ xs = []
+ ys1 = []
+ ys2 = []
+ ys3 = []
+ ys4 = []
+ ani.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
+ plt.margins(x=0, y=0)
+ plt.show()
+ except Exception as err:
+ sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
+ sys.stderr.flush()
+ shared_shutdown_event.set()
+ return
+
+if __name__ == '__main__':
+ sys.stderr.write('\b\n***************\n')
+ sys.stderr.write('*** WARNING ***\n')
+ sys.stderr.write('***************\n')
+ sys.stderr.write('\nThis is an unmature Autoencoder example.\n')
+ sys.stderr.write('Please do not rely on any of it\'s output!\n\n')
+
+ argparser = nDPIsrvd.defaultArgumentParser()
+ argparser.add_argument('--load-model', action='store',
+ help='Load a pre-trained model file.')
+ argparser.add_argument('--save-model', action='store',
+ help='Save the trained model to a file.')
+ argparser.add_argument('--training-size', action='store', type=int, default=TRAINING_SIZE,
+ help='Set the amount of captured packets required to start the training phase.')
+ argparser.add_argument('--batch-size', action='store', type=int, default=BATCH_SIZE,
+ help='Set the batch size used for the training phase.')
+ argparser.add_argument('--learning-rate', action='store', type=float, default=LEARNING_RATE,
+ help='Set the (initial) learning rate for the optimizer.')
+ argparser.add_argument('--plot', action='store_true', default=PLOT,
+ help='Show some model metrics using pyplot.')
+ argparser.add_argument('--plot-history', action='store', type=int, default=PLOT_HISTORY,
+ help='Set the history size of Line plots. Requires --plot')
+ argparser.add_argument('--tensorboard', action='store_true', default=TENSORBOARD,
+ help='Enable TensorBoard compatible logging callback.')
+ argparser.add_argument('--tensorboard-logpath', action='store', default=TB_LOGPATH,
+ help='TensorBoard logging path.')
+ argparser.add_argument('--use-sgd', action='store_true', default=VAE_USE_SGD,
+ help='Use SGD optimizer instead of Adam.')
+ argparser.add_argument('--use-kldiv', action='store_true', default=VAE_USE_KLDIV,
+ help='Use Kullback-Leibler loss function instead of Mean-Squared-Error.')
+ argparser.add_argument('--patience', action='store', type=int, default=ES_PATIENCE,
+ help='Epoch value for EarlyStopping. This value forces VAE fitting to if no improvment achieved.')
+ args = argparser.parse_args()
+ address = nDPIsrvd.validateAddress(args)
+
+ LEARNING_RATE = args.learning_rate
+ TRAINING_SIZE = args.training_size
+ BATCH_SIZE = args.batch_size
+ PLOT = args.plot
+ PLOT_HISTORY = args.plot_history
+ TENSORBOARD = args.tensorboard
+ TB_LOGPATH = args.tensorboard_logpath if args.tensorboard_logpath is not None else TB_LOGPATH
+ VAE_USE_SGD = args.use_sgd
+ VAE_USE_KLDIV = args.use_kldiv
+ ES_PATIENCE = args.patience
+
+ sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
+ sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
+ sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(PLOT, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
+
+ mgr = mp.Manager()
+
+ shared_training_event = mgr.Event()
+ shared_training_event.clear()
+
+ shared_shutdown_event = mgr.Event()
+ shared_shutdown_event.clear()
+
+ shared_packet_queue = mgr.JoinableQueue()
+ shared_plot_queue = mgr.JoinableQueue()
+
+ nDPIsrvd_job = mp.Process(target=ndpisrvd_worker, args=(
+ address,
+ shared_shutdown_event,
+ shared_training_event,
+ shared_packet_queue
+ ))
+ nDPIsrvd_job.start()
+
+ keras_job = mp.Process(target=keras_worker, args=(
+ args.load_model,
+ args.save_model,
+ shared_shutdown_event,
+ shared_training_event,
+ shared_packet_queue,
+ shared_plot_queue
+ ))
+ keras_job.start()
+
+ if PLOT is True:
+ plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
+ plot_job.start()
+
+ try:
+ shared_shutdown_event.wait()
+ except KeyboardInterrupt:
+ print('\nShutting down worker processess..')
+
+ if PLOT is True:
+ plot_job.terminate()
+ plot_job.join()
+ nDPIsrvd_job.terminate()
+ nDPIsrvd_job.join()
+ keras_job.join(timeout=3)
+ keras_job.terminate()