diff options
author | Toni Uhlig <matzeton@googlemail.com> | 2023-07-20 09:25:11 +0200 |
---|---|---|
committer | Toni Uhlig <matzeton@googlemail.com> | 2023-07-22 09:25:11 +0200 |
commit | 8a8de12fb3e282d7153ffbddcbc321a13f207db4 (patch) | |
tree | 4b0bc2d35acf9785a53052cf59d47158480753b6 /examples | |
parent | c57ace2fd30c9031d9bae9ec101627bbba4a17ca (diff) |
Keras AE supports loading/saving models.
* added training/batch size as cmdargs
Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
Diffstat (limited to 'examples')
-rwxr-xr-x | examples/py-machine-learning/keras-autoencoder.py | 52 |
1 files changed, 37 insertions, 15 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py index 943a6aefc..2a115395d 100755 --- a/examples/py-machine-learning/keras-autoencoder.py +++ b/examples/py-machine-learning/keras-autoencoder.py @@ -1,19 +1,14 @@ #!/usr/bin/env python3 import base64 +import joblib import csv import matplotlib.pyplot as plt import numpy as np import os import pandas as pd -import tensorflow as tf import sys -from tensorflow.keras import layers, preprocessing -from tensorflow.keras.layers import Embedding, Input, Dense -from tensorflow.keras.models import Model, Sequential -from tensorflow.keras.utils import plot_model - sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') sys.path.append(os.path.dirname(sys.argv[0])) @@ -21,13 +16,13 @@ sys.path.append(sys.base_prefix + '/share/nDPId') import nDPIsrvd from nDPIsrvd import nDPIsrvdSocket, TermColor -input_size = nDPIsrvd.nDPId_PACKETS_PLEN_MAX -training_size = 500 -batch_size = 100 +INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX +TRAINING_SIZE = 500 +BATCH_SIZE = 10 def generate_autoencoder(): input_i = Input(shape=()) - input_i = Embedding(input_dim=input_size, output_dim=input_size, mask_zero=True)(input_i) + input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i) encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i) encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1) encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2) @@ -39,7 +34,7 @@ def generate_autoencoder(): decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2) decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3) decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4) - return input_i, Model(input_i, Dense(input_size, activation='sigmoid', name='decoder_h5')(decoder_h5)) + return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5)) def compile_autoencoder(): inp, autoencoder = generate_autoencoder() @@ -72,16 +67,16 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): mat -= matmean # Pad resulting matrice - buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=input_size, truncating='post') + buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post') padded_pkts.append(buf[0]) sys.stdout.write('.') sys.stdout.flush() - if (len(padded_pkts) % training_size == 0): + if (len(padded_pkts) % TRAINING_SIZE == 0): print('\nGot {} packets, training..'.format(len(padded_pkts))) tmp = np.array(padded_pkts) history = autoencoder.fit( - tmp, tmp, epochs=10, batch_size=batch_size, + tmp, tmp, epochs=10, batch_size=BATCH_SIZE, validation_split=0.2, shuffle=True ) @@ -106,13 +101,36 @@ if __name__ == '__main__': sys.stderr.write('Please do not rely on any of it\'s output!\n\n') argparser = nDPIsrvd.defaultArgumentParser() + argparser.add_argument('--load-model', action='store', + help='Load a pre-trained model file.') + argparser.add_argument('--save-model', action='store', + help='Save the trained model to a file.') + argparser.add_argument('--training-size', action='store', type=int, + help='Set the amount of captured packets required to start the training phase.') + argparser.add_argument('--batch-size', action='store', type=int, + help='Set the batch size used for the training phase.') args = argparser.parse_args() address = nDPIsrvd.validateAddress(args) + TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE + BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE + sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) + sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE)) - _, autoencoder = compile_autoencoder() + import tensorflow as tf + from tensorflow.keras import layers, preprocessing + from tensorflow.keras.layers import Embedding, Input, Dense + from tensorflow.keras.models import Model, Sequential + from tensorflow.keras.utils import plot_model + + if args.load_model is not None: + sys.stderr.write('Loading model from {}\n'.format(args.load_model)) + autoencoder, options = joblib.load(args.load_model) + else: + _, autoencoder = compile_autoencoder() + autoencoder.summary() nsock = nDPIsrvdSocket() nsock.connect(address) @@ -123,3 +141,7 @@ if __name__ == '__main__': sys.stderr.write('\n{}\n'.format(err)) except KeyboardInterrupt: print() + + if args.save_model is not None: + sys.stderr.write('Saving model to {}\n'.format(args.save_model)) + joblib.dump([autoencoder, None], args.save_model) |