summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorToni Uhlig <matzeton@googlemail.com>2023-07-20 09:25:11 +0200
committerToni Uhlig <matzeton@googlemail.com>2023-07-22 09:25:11 +0200
commit8a8de12fb3e282d7153ffbddcbc321a13f207db4 (patch)
tree4b0bc2d35acf9785a53052cf59d47158480753b6 /examples
parentc57ace2fd30c9031d9bae9ec101627bbba4a17ca (diff)
Keras AE supports loading/saving models.
* added training/batch size as cmdargs Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
Diffstat (limited to 'examples')
-rwxr-xr-xexamples/py-machine-learning/keras-autoencoder.py52
1 files changed, 37 insertions, 15 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py
index 943a6aefc..2a115395d 100755
--- a/examples/py-machine-learning/keras-autoencoder.py
+++ b/examples/py-machine-learning/keras-autoencoder.py
@@ -1,19 +1,14 @@
#!/usr/bin/env python3
import base64
+import joblib
import csv
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
-import tensorflow as tf
import sys
-from tensorflow.keras import layers, preprocessing
-from tensorflow.keras.layers import Embedding, Input, Dense
-from tensorflow.keras.models import Model, Sequential
-from tensorflow.keras.utils import plot_model
-
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
sys.path.append(os.path.dirname(sys.argv[0]))
@@ -21,13 +16,13 @@ sys.path.append(sys.base_prefix + '/share/nDPId')
import nDPIsrvd
from nDPIsrvd import nDPIsrvdSocket, TermColor
-input_size = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
-training_size = 500
-batch_size = 100
+INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
+TRAINING_SIZE = 500
+BATCH_SIZE = 10
def generate_autoencoder():
input_i = Input(shape=())
- input_i = Embedding(input_dim=input_size, output_dim=input_size, mask_zero=True)(input_i)
+ input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i)
encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i)
encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1)
encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2)
@@ -39,7 +34,7 @@ def generate_autoencoder():
decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2)
decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3)
decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4)
- return input_i, Model(input_i, Dense(input_size, activation='sigmoid', name='decoder_h5')(decoder_h5))
+ return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5))
def compile_autoencoder():
inp, autoencoder = generate_autoencoder()
@@ -72,16 +67,16 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
mat -= matmean
# Pad resulting matrice
- buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=input_size, truncating='post')
+ buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post')
padded_pkts.append(buf[0])
sys.stdout.write('.')
sys.stdout.flush()
- if (len(padded_pkts) % training_size == 0):
+ if (len(padded_pkts) % TRAINING_SIZE == 0):
print('\nGot {} packets, training..'.format(len(padded_pkts)))
tmp = np.array(padded_pkts)
history = autoencoder.fit(
- tmp, tmp, epochs=10, batch_size=batch_size,
+ tmp, tmp, epochs=10, batch_size=BATCH_SIZE,
validation_split=0.2,
shuffle=True
)
@@ -106,13 +101,36 @@ if __name__ == '__main__':
sys.stderr.write('Please do not rely on any of it\'s output!\n\n')
argparser = nDPIsrvd.defaultArgumentParser()
+ argparser.add_argument('--load-model', action='store',
+ help='Load a pre-trained model file.')
+ argparser.add_argument('--save-model', action='store',
+ help='Save the trained model to a file.')
+ argparser.add_argument('--training-size', action='store', type=int,
+ help='Set the amount of captured packets required to start the training phase.')
+ argparser.add_argument('--batch-size', action='store', type=int,
+ help='Set the batch size used for the training phase.')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
+ TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
+ BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
+
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
+ sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE))
- _, autoencoder = compile_autoencoder()
+ import tensorflow as tf
+ from tensorflow.keras import layers, preprocessing
+ from tensorflow.keras.layers import Embedding, Input, Dense
+ from tensorflow.keras.models import Model, Sequential
+ from tensorflow.keras.utils import plot_model
+
+ if args.load_model is not None:
+ sys.stderr.write('Loading model from {}\n'.format(args.load_model))
+ autoencoder, options = joblib.load(args.load_model)
+ else:
+ _, autoencoder = compile_autoencoder()
+ autoencoder.summary()
nsock = nDPIsrvdSocket()
nsock.connect(address)
@@ -123,3 +141,7 @@ if __name__ == '__main__':
sys.stderr.write('\n{}\n'.format(err))
except KeyboardInterrupt:
print()
+
+ if args.save_model is not None:
+ sys.stderr.write('Saving model to {}\n'.format(args.save_model))
+ joblib.dump([autoencoder, None], args.save_model)