summaryrefslogtreecommitdiff
path: root/examples/README.md
diff options
context:
space:
mode:
authorToni Uhlig <matzeton@googlemail.com>2022-10-24 21:22:01 +0200
committerToni Uhlig <matzeton@googlemail.com>2022-10-30 22:13:07 +0100
commit805aef5de8b127e58ceae2e6f5c946dba7af569d (patch)
tree689ad520dfb68e318d79d0f92f878d1277092636 /examples/README.md
parent2d14509f047ded824c1141b2355c5b9daba30c1e (diff)
Increased network buffer size to 33792 bytes.
Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
Diffstat (limited to 'examples/README.md')
-rw-r--r--examples/README.md7
1 files changed, 2 insertions, 5 deletions
diff --git a/examples/README.md b/examples/README.md
index 71b7b8204..eb00539d9 100644
--- a/examples/README.md
+++ b/examples/README.md
@@ -37,15 +37,12 @@ Prints prettyfied information about flow events.
Use sklearn together with CSVs created with **c-analysed** to train and predict DPI detections.
-Try it with: `./examples/py-machine-learning/sklearn-ml.py --csv ./ndpi-analysed.csv --proto-class tls.youtube --proto-class tls.github --proto-class tls.spotify --proto-class tls.facebook --proto-class tls.instagram --proto-class tls.doh_dot --proto-class quic --proto-class icmp`
+Try it with: `./examples/py-machine-learning/sklearn_random_forest.py --csv ./ndpi-analysed.csv --proto-class tls.youtube --proto-class tls.github --proto-class tls.spotify --proto-class tls.facebook --proto-class tls.instagram --proto-class tls.doh_dot --proto-class quic --proto-class icmp`
This way you should get 9 different classification classes.
You may notice that some classes e.g. TLS protocol classifications may have a higher false-negative rate.
-
Unfortunately, I can not provide any datasets due to some privacy concerns.
-But you can use a [pre-trained model](https://drive.google.com/file/d/1KEwbP-Gx7KJr54wNoa63I56VI4USCAPL/view?usp=sharing) with `--load-model` using python-joblib.
-Please send me your CSV files to improve the model. I will treat those files confidential.
-They'll only be used for the training process and purged afterwards.
+But you can use a [pre-trained model](https://drive.google.com/file/d/1KEwbP-Gx7KJr54wNoa63I56VI4USCAPL/view?usp=sharing) with `--load-model` and the aformentioned parameters.
## py-flow-dashboard