summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorToni Uhlig <matzeton@googlemail.com>2023-08-20 23:05:08 +0200
committerToni Uhlig <matzeton@googlemail.com>2023-08-20 23:05:08 +0200
commit86ac09a8db9d6749adf6e29adc010d6eebc1d88c (patch)
treeb603e4ee4c0a31ca9c2bd7738f1551b8bbf8246a
parent4b3031245dcf78741c83664fee886825d73f1cb1 (diff)
keras-autoencoder.py: Improved Model
* added initial learning rate for Adam * plot some metrics using pyplot Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
-rwxr-xr-xexamples/py-machine-learning/keras-autoencoder.py189
1 files changed, 148 insertions, 41 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py
index bcb63f30a..4f9307a6d 100755
--- a/examples/py-machine-learning/keras-autoencoder.py
+++ b/examples/py-machine-learning/keras-autoencoder.py
@@ -2,13 +2,23 @@
import base64
import binascii
-import joblib
+import datetime as dt
+import math
+import matplotlib.animation as animation
+import matplotlib.pyplot as plt
import multiprocessing as mp
import numpy as np
import os
import queue
import sys
+import tensorflow as tf
+from tensorflow.keras import models, layers, preprocessing
+from tensorflow.keras.layers import Embedding, Masking, Input, Dense
+from tensorflow.keras.models import Model
+from tensorflow.keras.utils import plot_model
+from tensorflow.keras.optimizers import Adam
+
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
sys.path.append(os.path.dirname(sys.argv[0]))
@@ -16,21 +26,29 @@ sys.path.append(sys.base_prefix + '/share/nDPId')
import nDPIsrvd
from nDPIsrvd import nDPIsrvdSocket, TermColor
-INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
-LATENT_SIZE = 8
-TRAINING_SIZE = 500
-EPOCH_COUNT = 5
-BATCH_SIZE = 10
+INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
+LATENT_SIZE = 16
+TRAINING_SIZE = 1024
+EPOCH_COUNT = 50
+BATCH_SIZE = 256
+LEARNING_RATE = 0.0000001
+PLOT_HISTORY = 100
def generate_autoencoder():
+ # TODO: The current model does handle *each* packet separatly.
+ # But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
+ # The accuracy may (or may not) improve significantly, but some of changes in the code are required.
input_i = Input(shape=(), name='input_i')
input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
- encoded_h1 = Dense(1024, activation='relu', name='encoded_h1')(input_e)
- encoded_h2 = Dense(512, activation='relu', name='encoded_h2')(encoded_h1)
- encoded_h3 = Dense(128, activation='relu', name='encoded_h3')(encoded_h2)
- encoded_h4 = Dense(64, activation='relu', name='encoded_h4')(encoded_h3)
- encoded_h5 = Dense(32, activation='relu', name='encoded_h5')(encoded_h4)
- latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h5)
+ masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
+ encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
+ encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
+ encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
+ encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
+ encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
+ encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
+ encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
+ latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
input_l = Input(shape=(LATENT_SIZE), name='input_l')
decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
@@ -38,16 +56,28 @@ def generate_autoencoder():
decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
- output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h5)
+ decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
+ decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
+ output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
encoder = Model(input_e, latent, name='encoder')
decoder = Model(input_l, output_i, name='decoder')
- return encoder, decoder, Model(input_e, decoder(encoder(input_e)), name='VAE')
+ return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE')
def compile_autoencoder():
- encoder, decoder, autoencoder = generate_autoencoder()
- autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()])
- return encoder, decoder, autoencoder
+ optimizer, autoencoder = generate_autoencoder()
+ autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[])
+ return autoencoder
+
+def get_autoencoder(load_from_file=None):
+ if load_from_file is None:
+ autoencoder = compile_autoencoder()
+ else:
+ autoencoder = models.load_model(load_from_file)
+
+ encoder_submodel = autoencoder.layers[1]
+ decoder_submodel = autoencoder.layers[2]
+ return encoder_submodel, decoder_submodel, autoencoder
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
if 'packet_event_name' not in json_dict:
@@ -112,22 +142,14 @@ def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, share
shared_shutdown_event.set()
-def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue):
+def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
shared_training_event.set()
- if load_model is not None:
- sys.stderr.write('Loading model from {}\n'.format(load_model))
+ try:
+ encoder, decoder, autoencoder = get_autoencoder(load_model)
+ except Exception as err:
+ sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
sys.stderr.flush()
- try:
- encoder, decoder, autoencoder = joblib.load(load_model)
- except:
- sys.stderr.write('Could not load model from {}\n'.format(load_model))
- sys.stderr.write('Compiling new Autoencoder..\n')
- sys.stderr.flush()
- encoder, decoder, autoencoder = compile_autoencoder()
- else:
- encoder, decoder, autoencoder = compile_autoencoder()
- decoder.summary()
- encoder.summary()
+ encoder, decoder, autoencoder = get_autoencoder()
autoencoder.summary()
shared_training_event.clear()
@@ -147,12 +169,17 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
shared_training_event.set()
print('\nGot {} packets, training..'.format(len(packets)))
tmp = np.array(packets)
- x_test_encoded = encoder.predict(tmp, batch_size=BATCH_SIZE)
history = autoencoder.fit(
tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
validation_split=0.2,
shuffle=True
)
+ reconstructed_data = autoencoder.predict(tmp)
+ mse = np.mean(np.square(tmp - reconstructed_data))
+ reconstruction_accuracy = (1.0 / mse)
+ encoded_data = encoder.predict(tmp)
+ latent_activations = encoder.predict(tmp)
+ shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
packets.clear()
shared_training_event.clear()
except KeyboardInterrupt:
@@ -166,13 +193,80 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
if save_model is not None:
sys.stderr.write('Saving model to {}\n'.format(save_model))
sys.stderr.flush()
- joblib.dump([encoder, decoder, autoencoder], save_model)
+ autoencoder.save(save_model)
try:
shared_shutdown_event.set()
except:
pass
+def plot_animate(i, shared_plot_queue, ax, xs, ys):
+ if not shared_plot_queue.empty():
+ accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
+ epochs = len(loss)
+ loss_mean = sum(loss) / epochs
+ else:
+ return
+
+ (ax1, ax2, ax3, ax4) = ax
+ (ys1, ys2, ys3, ys4) = ys
+
+ if len(xs) == 0:
+ xs.append(epochs)
+ else:
+ xs.append(xs[-1] + epochs)
+ ys1.append(accuracy)
+ ys2.append(loss_mean)
+
+ xs = xs[-PLOT_HISTORY:]
+ ys1 = ys1[-PLOT_HISTORY:]
+ ys2 = ys2[-PLOT_HISTORY:]
+
+ ax1.clear()
+ ax1.plot(xs, ys1, '-')
+ ax2.clear()
+ ax2.plot(xs, ys2, '-')
+ ax3.clear()
+ ax3.scatter(encoded_data0, encoded_data1, marker='.')
+ ax4.clear()
+ ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
+
+ ax1.set_xlabel('Epoch Count')
+ ax1.set_ylabel('Accuracy')
+ ax2.set_xlabel('Epoch Count')
+ ax2.set_ylabel('Loss')
+ ax3.set_title('Latent Space')
+ ax4.set_title('Latent Space Heatmap')
+ ax4.set_xlabel('Latent Dimensions')
+ ax4.set_ylabel('Datapoints')
+
+def plot_worker(shared_shutdown_event, shared_plot_queue):
+ try:
+ fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
+ fig.tight_layout()
+ ax1.set_xlabel('Epoch Count')
+ ax1.set_ylabel('Accuracy')
+ ax2.set_xlabel('Epoch Count')
+ ax2.set_ylabel('Loss')
+ ax3.set_title('Latent Space')
+ ax4.set_title('Latent Space Heatmap')
+ ax4.set_xlabel('Latent Dimensions')
+ ax4.set_ylabel('Datapoints')
+ xs = []
+ ys1 = []
+ ys2 = []
+ ys3 = []
+ ys4 = []
+ x = 0
+ ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
+ plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
+ plt.show()
+ except Exception as err:
+ sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
+ sys.stderr.flush()
+ shared_shutdown_event.set()
+ return
+
if __name__ == '__main__':
sys.stderr.write('\b\n***************\n')
sys.stderr.write('*** WARNING ***\n')
@@ -189,21 +283,25 @@ if __name__ == '__main__':
help='Set the amount of captured packets required to start the training phase.')
argparser.add_argument('--batch-size', action='store', type=int,
help='Set the batch size used for the training phase.')
+ argparser.add_argument('--learning-rate', action='store', type=float,
+ help='Set the (initial!) learning rate for the Adam optimizer.')
+ argparser.add_argument('--plot', action='store_true', default=False,
+ help='Show some model metrics using pyplot.')
+ argparser.add_argument('--plot-history', action='store', type=int,
+ help='Set the history size of Line plots. Requires --plot')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
+ LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
+ if args.plot is False and args.plot_history is not None:
+ raise RuntimeError('--plot-history requires --plot')
+ PLOT_HISTORY = args.plot_history if args.plot_history is not None else PLOT_HISTORY
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
- sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE))
-
- import tensorflow as tf
- from tensorflow.keras import layers, preprocessing
- from tensorflow.keras.layers import Embedding, Input, Dense
- from tensorflow.keras.models import Model, Sequential
- from tensorflow.keras.utils import plot_model
+ sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
mgr = mp.Manager()
@@ -214,6 +312,7 @@ if __name__ == '__main__':
shared_shutdown_event.clear()
shared_packet_queue = mgr.JoinableQueue()
+ shared_plot_queue = mgr.JoinableQueue()
nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=(
address,
@@ -228,15 +327,23 @@ if __name__ == '__main__':
args.save_model,
shared_shutdown_event,
shared_training_event,
- shared_packet_queue
+ shared_packet_queue,
+ shared_plot_queue
))
keras_job.start()
+ if args.plot is True:
+ plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
+ plot_job.start()
+
try:
shared_shutdown_event.wait()
except KeyboardInterrupt:
print('\nShutting down worker processess..')
+ if args.plot is True:
+ plot_job.terminate()
+ plot_job.join()
nDPIsrvd_job.terminate()
nDPIsrvd_job.join()
keras_job.join()