diff options
author | Toni Uhlig <matzeton@googlemail.com> | 2023-08-20 23:05:08 +0200 |
---|---|---|
committer | Toni Uhlig <matzeton@googlemail.com> | 2023-08-20 23:05:08 +0200 |
commit | 86ac09a8db9d6749adf6e29adc010d6eebc1d88c (patch) | |
tree | b603e4ee4c0a31ca9c2bd7738f1551b8bbf8246a | |
parent | 4b3031245dcf78741c83664fee886825d73f1cb1 (diff) |
keras-autoencoder.py: Improved Model
* added initial learning rate for Adam
* plot some metrics using pyplot
Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
-rwxr-xr-x | examples/py-machine-learning/keras-autoencoder.py | 189 |
1 files changed, 148 insertions, 41 deletions
diff --git a/examples/py-machine-learning/keras-autoencoder.py b/examples/py-machine-learning/keras-autoencoder.py index bcb63f30a..4f9307a6d 100755 --- a/examples/py-machine-learning/keras-autoencoder.py +++ b/examples/py-machine-learning/keras-autoencoder.py @@ -2,13 +2,23 @@ import base64 import binascii -import joblib +import datetime as dt +import math +import matplotlib.animation as animation +import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import os import queue import sys +import tensorflow as tf +from tensorflow.keras import models, layers, preprocessing +from tensorflow.keras.layers import Embedding, Masking, Input, Dense +from tensorflow.keras.models import Model +from tensorflow.keras.utils import plot_model +from tensorflow.keras.optimizers import Adam + sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') sys.path.append(os.path.dirname(sys.argv[0])) @@ -16,21 +26,29 @@ sys.path.append(sys.base_prefix + '/share/nDPId') import nDPIsrvd from nDPIsrvd import nDPIsrvdSocket, TermColor -INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX -LATENT_SIZE = 8 -TRAINING_SIZE = 500 -EPOCH_COUNT = 5 -BATCH_SIZE = 10 +INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX +LATENT_SIZE = 16 +TRAINING_SIZE = 1024 +EPOCH_COUNT = 50 +BATCH_SIZE = 256 +LEARNING_RATE = 0.0000001 +PLOT_HISTORY = 100 def generate_autoencoder(): + # TODO: The current model does handle *each* packet separatly. + # But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other. + # The accuracy may (or may not) improve significantly, but some of changes in the code are required. input_i = Input(shape=(), name='input_i') input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i) - encoded_h1 = Dense(1024, activation='relu', name='encoded_h1')(input_e) - encoded_h2 = Dense(512, activation='relu', name='encoded_h2')(encoded_h1) - encoded_h3 = Dense(128, activation='relu', name='encoded_h3')(encoded_h2) - encoded_h4 = Dense(64, activation='relu', name='encoded_h4')(encoded_h3) - encoded_h5 = Dense(32, activation='relu', name='encoded_h5')(encoded_h4) - latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h5) + masked_e = Masking(mask_value=0.0, name='masked_e')(input_e) + encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e) + encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1) + encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2) + encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3) + encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4) + encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5) + encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6) + latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7) input_l = Input(shape=(LATENT_SIZE), name='input_l') decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l) @@ -38,16 +56,28 @@ def generate_autoencoder(): decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2) decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3) decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4) - output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h5) + decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5) + decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6) + output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7) encoder = Model(input_e, latent, name='encoder') decoder = Model(input_l, output_i, name='decoder') - return encoder, decoder, Model(input_e, decoder(encoder(input_e)), name='VAE') + return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE') def compile_autoencoder(): - encoder, decoder, autoencoder = generate_autoencoder() - autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()]) - return encoder, decoder, autoencoder + optimizer, autoencoder = generate_autoencoder() + autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[]) + return autoencoder + +def get_autoencoder(load_from_file=None): + if load_from_file is None: + autoencoder = compile_autoencoder() + else: + autoencoder = models.load_model(load_from_file) + + encoder_submodel = autoencoder.layers[1] + decoder_submodel = autoencoder.layers[2] + return encoder_submodel, decoder_submodel, autoencoder def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): if 'packet_event_name' not in json_dict: @@ -112,22 +142,14 @@ def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, share shared_shutdown_event.set() -def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue): +def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue): shared_training_event.set() - if load_model is not None: - sys.stderr.write('Loading model from {}\n'.format(load_model)) + try: + encoder, decoder, autoencoder = get_autoencoder(load_model) + except Exception as err: + sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err))) sys.stderr.flush() - try: - encoder, decoder, autoencoder = joblib.load(load_model) - except: - sys.stderr.write('Could not load model from {}\n'.format(load_model)) - sys.stderr.write('Compiling new Autoencoder..\n') - sys.stderr.flush() - encoder, decoder, autoencoder = compile_autoencoder() - else: - encoder, decoder, autoencoder = compile_autoencoder() - decoder.summary() - encoder.summary() + encoder, decoder, autoencoder = get_autoencoder() autoencoder.summary() shared_training_event.clear() @@ -147,12 +169,17 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_ shared_training_event.set() print('\nGot {} packets, training..'.format(len(packets))) tmp = np.array(packets) - x_test_encoded = encoder.predict(tmp, batch_size=BATCH_SIZE) history = autoencoder.fit( tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE, validation_split=0.2, shuffle=True ) + reconstructed_data = autoencoder.predict(tmp) + mse = np.mean(np.square(tmp - reconstructed_data)) + reconstruction_accuracy = (1.0 / mse) + encoded_data = encoder.predict(tmp) + latent_activations = encoder.predict(tmp) + shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations)) packets.clear() shared_training_event.clear() except KeyboardInterrupt: @@ -166,13 +193,80 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_ if save_model is not None: sys.stderr.write('Saving model to {}\n'.format(save_model)) sys.stderr.flush() - joblib.dump([encoder, decoder, autoencoder], save_model) + autoencoder.save(save_model) try: shared_shutdown_event.set() except: pass +def plot_animate(i, shared_plot_queue, ax, xs, ys): + if not shared_plot_queue.empty(): + accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1) + epochs = len(loss) + loss_mean = sum(loss) / epochs + else: + return + + (ax1, ax2, ax3, ax4) = ax + (ys1, ys2, ys3, ys4) = ys + + if len(xs) == 0: + xs.append(epochs) + else: + xs.append(xs[-1] + epochs) + ys1.append(accuracy) + ys2.append(loss_mean) + + xs = xs[-PLOT_HISTORY:] + ys1 = ys1[-PLOT_HISTORY:] + ys2 = ys2[-PLOT_HISTORY:] + + ax1.clear() + ax1.plot(xs, ys1, '-') + ax2.clear() + ax2.plot(xs, ys2, '-') + ax3.clear() + ax3.scatter(encoded_data0, encoded_data1, marker='.') + ax4.clear() + ax4.imshow(latent_activations, cmap='viridis', aspect='auto') + + ax1.set_xlabel('Epoch Count') + ax1.set_ylabel('Accuracy') + ax2.set_xlabel('Epoch Count') + ax2.set_ylabel('Loss') + ax3.set_title('Latent Space') + ax4.set_title('Latent Space Heatmap') + ax4.set_xlabel('Latent Dimensions') + ax4.set_ylabel('Datapoints') + +def plot_worker(shared_shutdown_event, shared_plot_queue): + try: + fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) + fig.tight_layout() + ax1.set_xlabel('Epoch Count') + ax1.set_ylabel('Accuracy') + ax2.set_xlabel('Epoch Count') + ax2.set_ylabel('Loss') + ax3.set_title('Latent Space') + ax4.set_title('Latent Space Heatmap') + ax4.set_xlabel('Latent Dimensions') + ax4.set_ylabel('Datapoints') + xs = [] + ys1 = [] + ys2 = [] + ys3 = [] + ys4 = [] + x = 0 + ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False) + plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) + plt.show() + except Exception as err: + sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err))) + sys.stderr.flush() + shared_shutdown_event.set() + return + if __name__ == '__main__': sys.stderr.write('\b\n***************\n') sys.stderr.write('*** WARNING ***\n') @@ -189,21 +283,25 @@ if __name__ == '__main__': help='Set the amount of captured packets required to start the training phase.') argparser.add_argument('--batch-size', action='store', type=int, help='Set the batch size used for the training phase.') + argparser.add_argument('--learning-rate', action='store', type=float, + help='Set the (initial!) learning rate for the Adam optimizer.') + argparser.add_argument('--plot', action='store_true', default=False, + help='Show some model metrics using pyplot.') + argparser.add_argument('--plot-history', action='store', type=int, + help='Set the history size of Line plots. Requires --plot') args = argparser.parse_args() address = nDPIsrvd.validateAddress(args) + LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE + if args.plot is False and args.plot_history is not None: + raise RuntimeError('--plot-history requires --plot') + PLOT_HISTORY = args.plot_history if args.plot_history is not None else PLOT_HISTORY sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) - sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE)) - - import tensorflow as tf - from tensorflow.keras import layers, preprocessing - from tensorflow.keras.layers import Embedding, Input, Dense - from tensorflow.keras.models import Model, Sequential - from tensorflow.keras.utils import plot_model + sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE)) mgr = mp.Manager() @@ -214,6 +312,7 @@ if __name__ == '__main__': shared_shutdown_event.clear() shared_packet_queue = mgr.JoinableQueue() + shared_plot_queue = mgr.JoinableQueue() nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=( address, @@ -228,15 +327,23 @@ if __name__ == '__main__': args.save_model, shared_shutdown_event, shared_training_event, - shared_packet_queue + shared_packet_queue, + shared_plot_queue )) keras_job.start() + if args.plot is True: + plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue)) + plot_job.start() + try: shared_shutdown_event.wait() except KeyboardInterrupt: print('\nShutting down worker processess..') + if args.plot is True: + plot_job.terminate() + plot_job.join() nDPIsrvd_job.terminate() nDPIsrvd_job.join() keras_job.join() |