/* * sha1.c * * Description: * This file implements the Secure Hashing Algorithm 1 as * defined in FIPS PUB 180-1 published April 17, 1995. * * The SHA-1, produces a 160-bit message digest for a given * data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. Although SHA-1 allows a message digest to be generated * for messages of any number of bits less than 2^64, this * implementation only works with messages with a length that is * a multiple of the size of an 8-bit character. * */ #include "sha1.h" /* Local Function Prototyptes */ static void _pad_block(struct sha1*); static void _process_block(struct sha1*); /* SHA1 circular left shift */ static uint32_t _circular_shift(const uint32_t nbits, const uint32_t word) { return ((word << nbits) | (word >> (32 - nbits))); } /* * sha1_reset * * Description: * This function will initialize the SHA1-context in preparation * for computing a new SHA1 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ int sha1_reset(struct sha1* context) { if (context == 0) { return shaNull; } context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0; context->flags = 0; return shaSuccess; } /* * sha1_result * * Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. * */ int sha1_result(struct sha1* context, uint8_t Message_Digest[SHA1HashSize]) { int i; if ( (context == 0) || (Message_Digest == 0)) { return shaNull; } if ((context->flags & FLAG_CORRUPTED) != 0) { return shaStateError; } if ((context->flags & FLAG_COMPUTED) == 0) { _pad_block(context); for (i = 0; i < 64; ++i) { /* message may be sensitive, clear it out */ context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->flags |= FLAG_COMPUTED; } for (i = 0; i < SHA1HashSize; ++i) { Message_Digest[i] = (context->Intermediate_Hash[i >> 2] >> (8 * (3 - (i & 0x03)))); } return shaSuccess; } /* * sha1_input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ int sha1_input(struct sha1* context, const uint8_t* message_array, unsigned length) { if (length == 0) { return shaSuccess; } if ( (context == 0) || (message_array == 0)) { return shaNull; } if ((context->flags & FLAG_COMPUTED) != 0) { context->flags |= FLAG_CORRUPTED; return shaStateError; } if ((context->flags & FLAG_CORRUPTED) != 0) { return shaStateError; } while ( (length != 0) && (context->flags == 0)) { context->Message_Block[context->Message_Block_Index] = (*message_array); context->Message_Block_Index += 1; context->Length_Low += 8; if (context->Length_Low == 0) { context->Length_High += 1; if (context->Length_High == 0) { /* Message is too long */ context->flags |= FLAG_CORRUPTED; } } if (context->Message_Block_Index == 64) { _process_block(context); } message_array += 1; length -= 1; } return shaSuccess; } /* * _process_block * * Description: * This function will process the next 512 bits of the message * stored in the Message_Block array. * * Parameters: * None. * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ #if 0 // original code static void _process_block(struct sha1 *context) { const uint32_t K[] = /* Constants defined in SHA-1 */ { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; uint32_t t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = 0; t < 16; ++t) { W[t] = context->Message_Block[(t * 4) + 0] << 24; W[t] |= context->Message_Block[(t * 4) + 1] << 16; W[t] |= context->Message_Block[(t * 4) + 2] << 8; W[t] |= context->Message_Block[(t * 4) + 3] << 0; } for (t = 16; t < 80; ++t) { W[t] = _circular_shift(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]); } A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for (t = 0; t < 20; ++t) { temp = _circular_shift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (; t < 40; ++t) { temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (; t < 60; ++t) { temp = _circular_shift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (; t < 80; ++t) { temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } #else //#define METHOD2 void _process_block(struct sha1 *context) { const uint32_t K[] = /* Constants defined in SHA-1 */ { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; uint8_t t; /* Loop counter */ uint32_t temp; /* Temporary word value */ #ifdef METHOD2 uint8_t s; uint32_t W[16]; #else uint32_t W[80]; /* Word sequence */ #endif uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = 0; t < 16; ++t) { W[t] = ((uint32_t)context->Message_Block[t * 4 + 0]) << 24; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 1]) << 16; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 2]) << 8; W[t] |= ((uint32_t)context->Message_Block[t * 4 + 3]) << 0; } #ifndef METHOD2 for (t = 16; t < 80; ++t) { W[t] = _circular_shift(1, (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16])); } #endif A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for (t = 0; t < 20; ++t) { #ifdef METHOD2 s = t & 0x0f; if (t >= 16) { W[s] = _circular_shift(1, (W[(s + 13) & 0x0f] ^ W[(s + 8) & 0x0f] ^ W[(s + 2) & 0x0f] ^ W[s])); } temp = _circular_shift(5, A) + ((B & C) | ((~B) & D)) + E + W[s] + K[0]; #else temp = _circular_shift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; #endif E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (t = 20; t < 40; ++t) { #ifdef METHOD2 s = (t & 0x0f); W[s] = _circular_shift(1, (W[(s + 13) & 0x0f] ^ W[(s + 8) & 0x0f] ^ W[(s + 2) & 0x0f] ^ W[s])); temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[s] + K[1]; #else temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[t] + K[1]; #endif E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (t = 40; t < 60; ++t) { #ifdef METHOD2 s = (t & 0x0f); W[s] = _circular_shift(1, (W[(s + 13) & 0x0f] ^ W[(s + 8) & 0x0f] ^ W[(s + 2) & 0x0f] ^ W[s])); temp = _circular_shift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[s] + K[2]; #else temp = _circular_shift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; #endif E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } for (t = 60; t < 80; ++t) { #ifdef METHOD2 s = (t & 0x0f); W[s] = _circular_shift(1, (W[(s + 13) & 0x0f] ^ W[(s + 8) & 0x0f] ^ W[(s + 2) & 0x0f] ^ W[s])); temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[s] + K[3]; #else temp = _circular_shift(5, A) + (B ^ C ^ D) + E + W[t] + K[3]; #endif E = D; D = C; C = _circular_shift(30, B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } #endif /* * _pad_block * * Description: * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * ProcessMessageBlock: [in] * The appropriate SHA*ProcessMessageBlock function * Returns: * Nothing. * */ static void _pad_block(struct sha1* context) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index] = 0x80; context->Message_Block_Index += 1; while (context->Message_Block_Index < 64) { context->Message_Block[context->Message_Block_Index] = 0; context->Message_Block_Index += 1; } _process_block(context); while (context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index] = 0; context->Message_Block_Index += 1; } } else { context->Message_Block[context->Message_Block_Index] = 0x80; context->Message_Block_Index += 1; while (context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index] = 0; context->Message_Block_Index += 1; } } /* * Store the message length as the last 8 bytes */ context->Message_Block[56] = context->Length_High >> 24; context->Message_Block[57] = context->Length_High >> 16; context->Message_Block[58] = context->Length_High >> 8; context->Message_Block[59] = context->Length_High >> 0; context->Message_Block[60] = context->Length_Low >> 24; context->Message_Block[61] = context->Length_Low >> 16; context->Message_Block[62] = context->Length_Low >> 8; context->Message_Block[63] = context->Length_Low >> 0; _process_block(context); }