import tensorflow as tf import joblib import numpy as np from sklearn.metrics import classification_report, accuracy_score # Load the model model = tf.keras.models.load_model("dga_model.keras") X_test, y_test = joblib.load("test_data.pkl") label_encoder = joblib.load("label_encoder.pkl") tokenizer = joblib.load("tokenizer.pkl") # Make predictions on the test set y_pred = (model.predict(X_test) > 0.5).astype("int32").flatten() # Calculate accuracy accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy:.4f}") # Generate the classification report report = classification_report(y_test, y_pred, target_names=label_encoder.classes_) print("\nClassification Report:") print(report)