import joblib from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report, accuracy_score import time mlp = joblib.load('mlp_model.joblib') X_test = joblib.load('X_test.joblib') y_test = joblib.load('y_test.joblib') label_encoder = joblib.load('label_encoder.joblib') # Perform prediction start = time.time() y_pred = mlp.predict(X_test) print(f"Prediction time: {time.time()-start:.2f} seconds") # Evaluate the model accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred, target_names=label_encoder.classes_) # Print the results print(f"Accuracy: {accuracy:.4f}") print("\nClassification Report:") print(report)