aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/compress/flate
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/klauspost/compress/flate')
-rw-r--r--vendor/github.com/klauspost/compress/flate/copy.go32
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_amd64.go41
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_amd64.s213
-rw-r--r--vendor/github.com/klauspost/compress/flate/crc32_noasm.go35
-rw-r--r--vendor/github.com/klauspost/compress/flate/deflate.go1351
-rw-r--r--vendor/github.com/klauspost/compress/flate/dict_decoder.go184
-rw-r--r--vendor/github.com/klauspost/compress/flate/gen.go265
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go701
-rw-r--r--vendor/github.com/klauspost/compress/flate/huffman_code.go344
-rw-r--r--vendor/github.com/klauspost/compress/flate/inflate.go846
-rw-r--r--vendor/github.com/klauspost/compress/flate/reverse_bits.go48
-rw-r--r--vendor/github.com/klauspost/compress/flate/snappy.go900
-rw-r--r--vendor/github.com/klauspost/compress/flate/token.go115
13 files changed, 0 insertions, 5075 deletions
diff --git a/vendor/github.com/klauspost/compress/flate/copy.go b/vendor/github.com/klauspost/compress/flate/copy.go
deleted file mode 100644
index a3200a8f..00000000
--- a/vendor/github.com/klauspost/compress/flate/copy.go
+++ /dev/null
@@ -1,32 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-// forwardCopy is like the built-in copy function except that it always goes
-// forward from the start, even if the dst and src overlap.
-// It is equivalent to:
-// for i := 0; i < n; i++ {
-// mem[dst+i] = mem[src+i]
-// }
-func forwardCopy(mem []byte, dst, src, n int) {
- if dst <= src {
- copy(mem[dst:dst+n], mem[src:src+n])
- return
- }
- for {
- if dst >= src+n {
- copy(mem[dst:dst+n], mem[src:src+n])
- return
- }
- // There is some forward overlap. The destination
- // will be filled with a repeated pattern of mem[src:src+k].
- // We copy one instance of the pattern here, then repeat.
- // Each time around this loop k will double.
- k := dst - src
- copy(mem[dst:dst+k], mem[src:src+k])
- n -= k
- dst += k
- }
-}
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_amd64.go b/vendor/github.com/klauspost/compress/flate/crc32_amd64.go
deleted file mode 100644
index 70a6095e..00000000
--- a/vendor/github.com/klauspost/compress/flate/crc32_amd64.go
+++ /dev/null
@@ -1,41 +0,0 @@
-//+build !noasm
-//+build !appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-package flate
-
-import (
- "github.com/klauspost/cpuid"
-)
-
-// crc32sse returns a hash for the first 4 bytes of the slice
-// len(a) must be >= 4.
-//go:noescape
-func crc32sse(a []byte) uint32
-
-// crc32sseAll calculates hashes for each 4-byte set in a.
-// dst must be east len(a) - 4 in size.
-// The size is not checked by the assembly.
-//go:noescape
-func crc32sseAll(a []byte, dst []uint32)
-
-// matchLenSSE4 returns the number of matching bytes in a and b
-// up to length 'max'. Both slices must be at least 'max'
-// bytes in size.
-//
-// TODO: drop the "SSE4" name, since it doesn't use any SSE instructions.
-//
-//go:noescape
-func matchLenSSE4(a, b []byte, max int) int
-
-// histogram accumulates a histogram of b in h.
-// h must be at least 256 entries in length,
-// and must be cleared before calling this function.
-//go:noescape
-func histogram(b []byte, h []int32)
-
-// Detect SSE 4.2 feature.
-func init() {
- useSSE42 = cpuid.CPU.SSE42()
-}
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_amd64.s b/vendor/github.com/klauspost/compress/flate/crc32_amd64.s
deleted file mode 100644
index 2fb2079b..00000000
--- a/vendor/github.com/klauspost/compress/flate/crc32_amd64.s
+++ /dev/null
@@ -1,213 +0,0 @@
-//+build !noasm
-//+build !appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-// func crc32sse(a []byte) uint32
-TEXT ·crc32sse(SB), 4, $0
- MOVQ a+0(FP), R10
- XORQ BX, BX
-
- // CRC32 dword (R10), EBX
- BYTE $0xF2; BYTE $0x41; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0x1a
-
- MOVL BX, ret+24(FP)
- RET
-
-// func crc32sseAll(a []byte, dst []uint32)
-TEXT ·crc32sseAll(SB), 4, $0
- MOVQ a+0(FP), R8 // R8: src
- MOVQ a_len+8(FP), R10 // input length
- MOVQ dst+24(FP), R9 // R9: dst
- SUBQ $4, R10
- JS end
- JZ one_crc
- MOVQ R10, R13
- SHRQ $2, R10 // len/4
- ANDQ $3, R13 // len&3
- XORQ BX, BX
- ADDQ $1, R13
- TESTQ R10, R10
- JZ rem_loop
-
-crc_loop:
- MOVQ (R8), R11
- XORQ BX, BX
- XORQ DX, DX
- XORQ DI, DI
- MOVQ R11, R12
- SHRQ $8, R11
- MOVQ R12, AX
- MOVQ R11, CX
- SHRQ $16, R12
- SHRQ $16, R11
- MOVQ R12, SI
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
-
- // CRC32 ECX, EDX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd1
-
- // CRC32 ESI, EDI
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xfe
- MOVL BX, (R9)
- MOVL DX, 4(R9)
- MOVL DI, 8(R9)
-
- XORQ BX, BX
- MOVL R11, AX
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
- MOVL BX, 12(R9)
-
- ADDQ $16, R9
- ADDQ $4, R8
- XORQ BX, BX
- SUBQ $1, R10
- JNZ crc_loop
-
-rem_loop:
- MOVL (R8), AX
-
- // CRC32 EAX, EBX
- BYTE $0xF2; BYTE $0x0f
- BYTE $0x38; BYTE $0xf1; BYTE $0xd8
-
- MOVL BX, (R9)
- ADDQ $4, R9
- ADDQ $1, R8
- XORQ BX, BX
- SUBQ $1, R13
- JNZ rem_loop
-
-end:
- RET
-
-one_crc:
- MOVQ $1, R13
- XORQ BX, BX
- JMP rem_loop
-
-// func matchLenSSE4(a, b []byte, max int) int
-TEXT ·matchLenSSE4(SB), 4, $0
- MOVQ a_base+0(FP), SI
- MOVQ b_base+24(FP), DI
- MOVQ DI, DX
- MOVQ max+48(FP), CX
-
-cmp8:
- // As long as we are 8 or more bytes before the end of max, we can load and
- // compare 8 bytes at a time. If those 8 bytes are equal, repeat.
- CMPQ CX, $8
- JLT cmp1
- MOVQ (SI), AX
- MOVQ (DI), BX
- CMPQ AX, BX
- JNE bsf
- ADDQ $8, SI
- ADDQ $8, DI
- SUBQ $8, CX
- JMP cmp8
-
-bsf:
- // If those 8 bytes were not equal, XOR the two 8 byte values, and return
- // the index of the first byte that differs. The BSF instruction finds the
- // least significant 1 bit, the amd64 architecture is little-endian, and
- // the shift by 3 converts a bit index to a byte index.
- XORQ AX, BX
- BSFQ BX, BX
- SHRQ $3, BX
- ADDQ BX, DI
-
- // Subtract off &b[0] to convert from &b[ret] to ret, and return.
- SUBQ DX, DI
- MOVQ DI, ret+56(FP)
- RET
-
-cmp1:
- // In the slices' tail, compare 1 byte at a time.
- CMPQ CX, $0
- JEQ matchLenEnd
- MOVB (SI), AX
- MOVB (DI), BX
- CMPB AX, BX
- JNE matchLenEnd
- ADDQ $1, SI
- ADDQ $1, DI
- SUBQ $1, CX
- JMP cmp1
-
-matchLenEnd:
- // Subtract off &b[0] to convert from &b[ret] to ret, and return.
- SUBQ DX, DI
- MOVQ DI, ret+56(FP)
- RET
-
-// func histogram(b []byte, h []int32)
-TEXT ·histogram(SB), 4, $0
- MOVQ b+0(FP), SI // SI: &b
- MOVQ b_len+8(FP), R9 // R9: len(b)
- MOVQ h+24(FP), DI // DI: Histogram
- MOVQ R9, R8
- SHRQ $3, R8
- JZ hist1
- XORQ R11, R11
-
-loop_hist8:
- MOVQ (SI), R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- MOVB R10, R11
- INCL (DI)(R11*4)
- SHRQ $8, R10
-
- INCL (DI)(R10*4)
-
- ADDQ $8, SI
- DECQ R8
- JNZ loop_hist8
-
-hist1:
- ANDQ $7, R9
- JZ end_hist
- XORQ R10, R10
-
-loop_hist1:
- MOVB (SI), R10
- INCL (DI)(R10*4)
- INCQ SI
- DECQ R9
- JNZ loop_hist1
-
-end_hist:
- RET
diff --git a/vendor/github.com/klauspost/compress/flate/crc32_noasm.go b/vendor/github.com/klauspost/compress/flate/crc32_noasm.go
deleted file mode 100644
index bd98bd59..00000000
--- a/vendor/github.com/klauspost/compress/flate/crc32_noasm.go
+++ /dev/null
@@ -1,35 +0,0 @@
-//+build !amd64 noasm appengine
-
-// Copyright 2015, Klaus Post, see LICENSE for details.
-
-package flate
-
-func init() {
- useSSE42 = false
-}
-
-// crc32sse should never be called.
-func crc32sse(a []byte) uint32 {
- panic("no assembler")
-}
-
-// crc32sseAll should never be called.
-func crc32sseAll(a []byte, dst []uint32) {
- panic("no assembler")
-}
-
-// matchLenSSE4 should never be called.
-func matchLenSSE4(a, b []byte, max int) int {
- panic("no assembler")
- return 0
-}
-
-// histogram accumulates a histogram of b in h.
-//
-// len(h) must be >= 256, and h's elements must be all zeroes.
-func histogram(b []byte, h []int32) {
- h = h[:256]
- for _, t := range b {
- h[t]++
- }
-}
diff --git a/vendor/github.com/klauspost/compress/flate/deflate.go b/vendor/github.com/klauspost/compress/flate/deflate.go
deleted file mode 100644
index 76e9682f..00000000
--- a/vendor/github.com/klauspost/compress/flate/deflate.go
+++ /dev/null
@@ -1,1351 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Copyright (c) 2015 Klaus Post
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-import (
- "fmt"
- "io"
- "math"
-)
-
-const (
- NoCompression = 0
- BestSpeed = 1
- BestCompression = 9
- DefaultCompression = -1
-
- // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
- // entropy encoding. This mode is useful in compressing data that has
- // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
- // that lacks an entropy encoder. Compression gains are achieved when
- // certain bytes in the input stream occur more frequently than others.
- //
- // Note that HuffmanOnly produces a compressed output that is
- // RFC 1951 compliant. That is, any valid DEFLATE decompressor will
- // continue to be able to decompress this output.
- HuffmanOnly = -2
- ConstantCompression = HuffmanOnly // compatibility alias.
-
- logWindowSize = 15
- windowSize = 1 << logWindowSize
- windowMask = windowSize - 1
- logMaxOffsetSize = 15 // Standard DEFLATE
- minMatchLength = 4 // The smallest match that the compressor looks for
- maxMatchLength = 258 // The longest match for the compressor
- minOffsetSize = 1 // The shortest offset that makes any sense
-
- // The maximum number of tokens we put into a single flat block, just too
- // stop things from getting too large.
- maxFlateBlockTokens = 1 << 14
- maxStoreBlockSize = 65535
- hashBits = 17 // After 17 performance degrades
- hashSize = 1 << hashBits
- hashMask = (1 << hashBits) - 1
- hashShift = (hashBits + minMatchLength - 1) / minMatchLength
- maxHashOffset = 1 << 24
-
- skipNever = math.MaxInt32
-)
-
-var useSSE42 bool
-
-type compressionLevel struct {
- good, lazy, nice, chain, fastSkipHashing, level int
-}
-
-// Compression levels have been rebalanced from zlib deflate defaults
-// to give a bigger spread in speed and compression.
-// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
-var levels = []compressionLevel{
- {}, // 0
- // Level 1-4 uses specialized algorithm - values not used
- {0, 0, 0, 0, 0, 1},
- {0, 0, 0, 0, 0, 2},
- {0, 0, 0, 0, 0, 3},
- {0, 0, 0, 0, 0, 4},
- // For levels 5-6 we don't bother trying with lazy matches.
- // Lazy matching is at least 30% slower, with 1.5% increase.
- {6, 0, 12, 8, 12, 5},
- {8, 0, 24, 16, 16, 6},
- // Levels 7-9 use increasingly more lazy matching
- // and increasingly stringent conditions for "good enough".
- {8, 8, 24, 16, skipNever, 7},
- {10, 16, 24, 64, skipNever, 8},
- {32, 258, 258, 4096, skipNever, 9},
-}
-
-type compressor struct {
- compressionLevel
-
- w *huffmanBitWriter
- bulkHasher func([]byte, []uint32)
-
- // compression algorithm
- fill func(*compressor, []byte) int // copy data to window
- step func(*compressor) // process window
- sync bool // requesting flush
-
- // Input hash chains
- // hashHead[hashValue] contains the largest inputIndex with the specified hash value
- // If hashHead[hashValue] is within the current window, then
- // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
- // with the same hash value.
- chainHead int
- hashHead [hashSize]uint32
- hashPrev [windowSize]uint32
- hashOffset int
-
- // input window: unprocessed data is window[index:windowEnd]
- index int
- window []byte
- windowEnd int
- blockStart int // window index where current tokens start
- byteAvailable bool // if true, still need to process window[index-1].
-
- // queued output tokens
- tokens tokens
-
- // deflate state
- length int
- offset int
- hash uint32
- maxInsertIndex int
- err error
- ii uint16 // position of last match, intended to overflow to reset.
-
- snap snappyEnc
- hashMatch [maxMatchLength + minMatchLength]uint32
-}
-
-func (d *compressor) fillDeflate(b []byte) int {
- if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
- // shift the window by windowSize
- copy(d.window[:], d.window[windowSize:2*windowSize])
- d.index -= windowSize
- d.windowEnd -= windowSize
- if d.blockStart >= windowSize {
- d.blockStart -= windowSize
- } else {
- d.blockStart = math.MaxInt32
- }
- d.hashOffset += windowSize
- if d.hashOffset > maxHashOffset {
- delta := d.hashOffset - 1
- d.hashOffset -= delta
- d.chainHead -= delta
- for i, v := range d.hashPrev {
- if int(v) > delta {
- d.hashPrev[i] = uint32(int(v) - delta)
- } else {
- d.hashPrev[i] = 0
- }
- }
- for i, v := range d.hashHead {
- if int(v) > delta {
- d.hashHead[i] = uint32(int(v) - delta)
- } else {
- d.hashHead[i] = 0
- }
- }
- }
- }
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
-}
-
-func (d *compressor) writeBlock(tok tokens, index int, eof bool) error {
- if index > 0 || eof {
- var window []byte
- if d.blockStart <= index {
- window = d.window[d.blockStart:index]
- }
- d.blockStart = index
- d.w.writeBlock(tok.tokens[:tok.n], eof, window)
- return d.w.err
- }
- return nil
-}
-
-// writeBlockSkip writes the current block and uses the number of tokens
-// to determine if the block should be stored on no matches, or
-// only huffman encoded.
-func (d *compressor) writeBlockSkip(tok tokens, index int, eof bool) error {
- if index > 0 || eof {
- if d.blockStart <= index {
- window := d.window[d.blockStart:index]
- // If we removed less than a 64th of all literals
- // we huffman compress the block.
- if int(tok.n) > len(window)-int(tok.n>>6) {
- d.w.writeBlockHuff(eof, window)
- } else {
- // Write a dynamic huffman block.
- d.w.writeBlockDynamic(tok.tokens[:tok.n], eof, window)
- }
- } else {
- d.w.writeBlock(tok.tokens[:tok.n], eof, nil)
- }
- d.blockStart = index
- return d.w.err
- }
- return nil
-}
-
-// fillWindow will fill the current window with the supplied
-// dictionary and calculate all hashes.
-// This is much faster than doing a full encode.
-// Should only be used after a start/reset.
-func (d *compressor) fillWindow(b []byte) {
- // Do not fill window if we are in store-only mode,
- // use constant or Snappy compression.
- switch d.compressionLevel.level {
- case 0, 1, 2:
- return
- }
- // If we are given too much, cut it.
- if len(b) > windowSize {
- b = b[len(b)-windowSize:]
- }
- // Add all to window.
- n := copy(d.window[d.windowEnd:], b)
-
- // Calculate 256 hashes at the time (more L1 cache hits)
- loops := (n + 256 - minMatchLength) / 256
- for j := 0; j < loops; j++ {
- startindex := j * 256
- end := startindex + 256 + minMatchLength - 1
- if end > n {
- end = n
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
-
- if dstSize <= 0 {
- continue
- }
-
- dst := d.hashMatch[:dstSize]
- d.bulkHasher(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- // Update window information.
- d.windowEnd += n
- d.index = n
-}
-
-// Try to find a match starting at index whose length is greater than prevSize.
-// We only look at chainCount possibilities before giving up.
-// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
-func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
-
- win := d.window[0 : pos+minMatchLook]
-
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
-
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = prevLength
- if length >= d.good {
- tries >>= 2
- }
-
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
-
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLen(win[i:], wPos, minMatchLook)
-
- if n > length && (n > minMatchLength || pos-i <= 4096) {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i == minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
- if i < minIndex || i < 0 {
- break
- }
- }
- return
-}
-
-// Try to find a match starting at index whose length is greater than prevSize.
-// We only look at chainCount possibilities before giving up.
-// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
-func (d *compressor) findMatchSSE(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
-
- win := d.window[0 : pos+minMatchLook]
-
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
-
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = prevLength
- if length >= d.good {
- tries >>= 2
- }
-
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
-
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLenSSE4(win[i:], wPos, minMatchLook)
-
- if n > length && (n > minMatchLength || pos-i <= 4096) {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i == minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
- if i < minIndex || i < 0 {
- break
- }
- }
- return
-}
-
-func (d *compressor) writeStoredBlock(buf []byte) error {
- if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
- return d.w.err
- }
- d.w.writeBytes(buf)
- return d.w.err
-}
-
-const hashmul = 0x1e35a7bd
-
-// hash4 returns a hash representation of the first 4 bytes
-// of the supplied slice.
-// The caller must ensure that len(b) >= 4.
-func hash4(b []byte) uint32 {
- return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
-}
-
-// bulkHash4 will compute hashes using the same
-// algorithm as hash4
-func bulkHash4(b []byte, dst []uint32) {
- if len(b) < minMatchLength {
- return
- }
- hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
- dst[0] = (hb * hashmul) >> (32 - hashBits)
- end := len(b) - minMatchLength + 1
- for i := 1; i < end; i++ {
- hb = (hb << 8) | uint32(b[i+3])
- dst[i] = (hb * hashmul) >> (32 - hashBits)
- }
-}
-
-// matchLen returns the number of matching bytes in a and b
-// up to length 'max'. Both slices must be at least 'max'
-// bytes in size.
-func matchLen(a, b []byte, max int) int {
- a = a[:max]
- b = b[:len(a)]
- for i, av := range a {
- if b[i] != av {
- return i
- }
- }
- return max
-}
-
-func (d *compressor) initDeflate() {
- d.window = make([]byte, 2*windowSize)
- d.hashOffset = 1
- d.length = minMatchLength - 1
- d.offset = 0
- d.byteAvailable = false
- d.index = 0
- d.hash = 0
- d.chainHead = -1
- d.bulkHasher = bulkHash4
- if useSSE42 {
- d.bulkHasher = crc32sseAll
- }
-}
-
-// Assumes that d.fastSkipHashing != skipNever,
-// otherwise use deflateLazy
-func (d *compressor) deflate() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>uint(d.fastSkipHashing)) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
-}
-
-// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
-// meaning it always has lazy matching on.
-func (d *compressor) deflateLazy() {
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && d.length <= prevLength {
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
-
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- var newIndex int
- newIndex = d.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
-
- d.index = newIndex
- d.byteAvailable = false
- d.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- // Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
-
- // If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 5)
- for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
- break
- }
-
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
- }
- // Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- } else {
- d.index++
- d.byteAvailable = true
- }
- }
- }
-}
-
-// Assumes that d.fastSkipHashing != skipNever,
-// otherwise use deflateLazySSE
-func (d *compressor) deflateSSE() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
-
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>5) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
-}
-
-// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
-// meaning it always has lazy matching on.
-func (d *compressor) deflateLazySSE() {
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && d.length <= prevLength {
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
-
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- var newIndex int
- newIndex = d.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
-
- d.index = newIndex
- d.byteAvailable = false
- d.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- // Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
-
- // If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 6)
- for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
- break
- }
-
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
- }
- // Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- } else {
- d.index++
- d.byteAvailable = true
- }
- }
- }
-}
-
-func (d *compressor) store() {
- if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.windowEnd = 0
- }
-}
-
-// fillWindow will fill the buffer with data for huffman-only compression.
-// The number of bytes copied is returned.
-func (d *compressor) fillBlock(b []byte) int {
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
-}
-
-// storeHuff will compress and store the currently added data,
-// if enough has been accumulated or we at the end of the stream.
-// Any error that occurred will be in d.err
-func (d *compressor) storeHuff() {
- if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
- return
- }
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- d.windowEnd = 0
-}
-
-// storeHuff will compress and store the currently added data,
-// if enough has been accumulated or we at the end of the stream.
-// Any error that occurred will be in d.err
-func (d *compressor) storeSnappy() {
- // We only compress if we have maxStoreBlockSize.
- if d.windowEnd < maxStoreBlockSize {
- if !d.sync {
- return
- }
- // Handle extremely small sizes.
- if d.windowEnd < 128 {
- if d.windowEnd == 0 {
- return
- }
- if d.windowEnd <= 32 {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.tokens.n = 0
- d.windowEnd = 0
- } else {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- }
- d.tokens.n = 0
- d.windowEnd = 0
- d.snap.Reset()
- return
- }
- }
-
- d.snap.Encode(&d.tokens, d.window[:d.windowEnd])
- // If we made zero matches, store the block as is.
- if int(d.tokens.n) == d.windowEnd {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- // If we removed less than 1/16th, huffman compress the block.
- } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- } else {
- d.w.writeBlockDynamic(d.tokens.tokens[:d.tokens.n], false, d.window[:d.windowEnd])
- d.err = d.w.err
- }
- d.tokens.n = 0
- d.windowEnd = 0
-}
-
-// write will add input byte to the stream.
-// Unless an error occurs all bytes will be consumed.
-func (d *compressor) write(b []byte) (n int, err error) {
- if d.err != nil {
- return 0, d.err
- }
- n = len(b)
- for len(b) > 0 {
- d.step(d)
- b = b[d.fill(d, b):]
- if d.err != nil {
- return 0, d.err
- }
- }
- return n, d.err
-}
-
-func (d *compressor) syncFlush() error {
- d.sync = true
- if d.err != nil {
- return d.err
- }
- d.step(d)
- if d.err == nil {
- d.w.writeStoredHeader(0, false)
- d.w.flush()
- d.err = d.w.err
- }
- d.sync = false
- return d.err
-}
-
-func (d *compressor) init(w io.Writer, level int) (err error) {
- d.w = newHuffmanBitWriter(w)
-
- switch {
- case level == NoCompression:
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).store
- case level == ConstantCompression:
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeHuff
- case level >= 1 && level <= 4:
- d.snap = newSnappy(level)
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeSnappy
- case level == DefaultCompression:
- level = 5
- fallthrough
- case 5 <= level && level <= 9:
- d.compressionLevel = levels[level]
- d.initDeflate()
- d.fill = (*compressor).fillDeflate
- if d.fastSkipHashing == skipNever {
- if useSSE42 {
- d.step = (*compressor).deflateLazySSE
- } else {
- d.step = (*compressor).deflateLazy
- }
- } else {
- if useSSE42 {
- d.step = (*compressor).deflateSSE
- } else {
- d.step = (*compressor).deflate
-
- }
- }
- default:
- return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
- }
- return nil
-}
-
-// reset the state of the compressor.
-func (d *compressor) reset(w io.Writer) {
- d.w.reset(w)
- d.sync = false
- d.err = nil
- // We only need to reset a few things for Snappy.
- if d.snap != nil {
- d.snap.Reset()
- d.windowEnd = 0
- d.tokens.n = 0
- return
- }
- switch d.compressionLevel.chain {
- case 0:
- // level was NoCompression or ConstantCompresssion.
- d.windowEnd = 0
- default:
- d.chainHead = -1
- for i := range d.hashHead {
- d.hashHead[i] = 0
- }
- for i := range d.hashPrev {
- d.hashPrev[i] = 0
- }
- d.hashOffset = 1
- d.index, d.windowEnd = 0, 0
- d.blockStart, d.byteAvailable = 0, false
- d.tokens.n = 0
- d.length = minMatchLength - 1
- d.offset = 0
- d.hash = 0
- d.ii = 0
- d.maxInsertIndex = 0
- }
-}
-
-func (d *compressor) close() error {
- if d.err != nil {
- return d.err
- }
- d.sync = true
- d.step(d)
- if d.err != nil {
- return d.err
- }
- if d.w.writeStoredHeader(0, true); d.w.err != nil {
- return d.w.err
- }
- d.w.flush()
- return d.w.err
-}
-
-// NewWriter returns a new Writer compressing data at the given level.
-// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
-// higher levels typically run slower but compress more.
-// Level 0 (NoCompression) does not attempt any compression; it only adds the
-// necessary DEFLATE framing.
-// Level -1 (DefaultCompression) uses the default compression level.
-// Level -2 (ConstantCompression) will use Huffman compression only, giving
-// a very fast compression for all types of input, but sacrificing considerable
-// compression efficiency.
-//
-// If level is in the range [-2, 9] then the error returned will be nil.
-// Otherwise the error returned will be non-nil.
-func NewWriter(w io.Writer, level int) (*Writer, error) {
- var dw Writer
- if err := dw.d.init(w, level); err != nil {
- return nil, err
- }
- return &dw, nil
-}
-
-// NewWriterDict is like NewWriter but initializes the new
-// Writer with a preset dictionary. The returned Writer behaves
-// as if the dictionary had been written to it without producing
-// any compressed output. The compressed data written to w
-// can only be decompressed by a Reader initialized with the
-// same dictionary.
-func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
- dw := &dictWriter{w}
- zw, err := NewWriter(dw, level)
- if err != nil {
- return nil, err
- }
- zw.d.fillWindow(dict)
- zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
- return zw, err
-}
-
-type dictWriter struct {
- w io.Writer
-}
-
-func (w *dictWriter) Write(b []byte) (n int, err error) {
- return w.w.Write(b)
-}
-
-// A Writer takes data written to it and writes the compressed
-// form of that data to an underlying writer (see NewWriter).
-type Writer struct {
- d compressor
- dict []byte
-}
-
-// Write writes data to w, which will eventually write the
-// compressed form of data to its underlying writer.
-func (w *Writer) Write(data []byte) (n int, err error) {
- return w.d.write(data)
-}
-
-// Flush flushes any pending data to the underlying writer.
-// It is useful mainly in compressed network protocols, to ensure that
-// a remote reader has enough data to reconstruct a packet.
-// Flush does not return until the data has been written.
-// Calling Flush when there is no pending data still causes the Writer
-// to emit a sync marker of at least 4 bytes.
-// If the underlying writer returns an error, Flush returns that error.
-//
-// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
-func (w *Writer) Flush() error {
- // For more about flushing:
- // http://www.bolet.org/~pornin/deflate-flush.html
- return w.d.syncFlush()
-}
-
-// Close flushes and closes the writer.
-func (w *Writer) Close() error {
- return w.d.close()
-}
-
-// Reset discards the writer's state and makes it equivalent to
-// the result of NewWriter or NewWriterDict called with dst
-// and w's level and dictionary.
-func (w *Writer) Reset(dst io.Writer) {
- if dw, ok := w.d.w.writer.(*dictWriter); ok {
- // w was created with NewWriterDict
- dw.w = dst
- w.d.reset(dw)
- w.d.fillWindow(w.dict)
- } else {
- // w was created with NewWriter
- w.d.reset(dst)
- }
-}
-
-// ResetDict discards the writer's state and makes it equivalent to
-// the result of NewWriter or NewWriterDict called with dst
-// and w's level, but sets a specific dictionary.
-func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
- w.dict = dict
- w.d.reset(dst)
- w.d.fillWindow(w.dict)
-}
diff --git a/vendor/github.com/klauspost/compress/flate/dict_decoder.go b/vendor/github.com/klauspost/compress/flate/dict_decoder.go
deleted file mode 100644
index 71c75a06..00000000
--- a/vendor/github.com/klauspost/compress/flate/dict_decoder.go
+++ /dev/null
@@ -1,184 +0,0 @@
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-// dictDecoder implements the LZ77 sliding dictionary as used in decompression.
-// LZ77 decompresses data through sequences of two forms of commands:
-//
-// * Literal insertions: Runs of one or more symbols are inserted into the data
-// stream as is. This is accomplished through the writeByte method for a
-// single symbol, or combinations of writeSlice/writeMark for multiple symbols.
-// Any valid stream must start with a literal insertion if no preset dictionary
-// is used.
-//
-// * Backward copies: Runs of one or more symbols are copied from previously
-// emitted data. Backward copies come as the tuple (dist, length) where dist
-// determines how far back in the stream to copy from and length determines how
-// many bytes to copy. Note that it is valid for the length to be greater than
-// the distance. Since LZ77 uses forward copies, that situation is used to
-// perform a form of run-length encoding on repeated runs of symbols.
-// The writeCopy and tryWriteCopy are used to implement this command.
-//
-// For performance reasons, this implementation performs little to no sanity
-// checks about the arguments. As such, the invariants documented for each
-// method call must be respected.
-type dictDecoder struct {
- hist []byte // Sliding window history
-
- // Invariant: 0 <= rdPos <= wrPos <= len(hist)
- wrPos int // Current output position in buffer
- rdPos int // Have emitted hist[:rdPos] already
- full bool // Has a full window length been written yet?
-}
-
-// init initializes dictDecoder to have a sliding window dictionary of the given
-// size. If a preset dict is provided, it will initialize the dictionary with
-// the contents of dict.
-func (dd *dictDecoder) init(size int, dict []byte) {
- *dd = dictDecoder{hist: dd.hist}
-
- if cap(dd.hist) < size {
- dd.hist = make([]byte, size)
- }
- dd.hist = dd.hist[:size]
-
- if len(dict) > len(dd.hist) {
- dict = dict[len(dict)-len(dd.hist):]
- }
- dd.wrPos = copy(dd.hist, dict)
- if dd.wrPos == len(dd.hist) {
- dd.wrPos = 0
- dd.full = true
- }
- dd.rdPos = dd.wrPos
-}
-
-// histSize reports the total amount of historical data in the dictionary.
-func (dd *dictDecoder) histSize() int {
- if dd.full {
- return len(dd.hist)
- }
- return dd.wrPos
-}
-
-// availRead reports the number of bytes that can be flushed by readFlush.
-func (dd *dictDecoder) availRead() int {
- return dd.wrPos - dd.rdPos
-}
-
-// availWrite reports the available amount of output buffer space.
-func (dd *dictDecoder) availWrite() int {
- return len(dd.hist) - dd.wrPos
-}
-
-// writeSlice returns a slice of the available buffer to write data to.
-//
-// This invariant will be kept: len(s) <= availWrite()
-func (dd *dictDecoder) writeSlice() []byte {
- return dd.hist[dd.wrPos:]
-}
-
-// writeMark advances the writer pointer by cnt.
-//
-// This invariant must be kept: 0 <= cnt <= availWrite()
-func (dd *dictDecoder) writeMark(cnt int) {
- dd.wrPos += cnt
-}
-
-// writeByte writes a single byte to the dictionary.
-//
-// This invariant must be kept: 0 < availWrite()
-func (dd *dictDecoder) writeByte(c byte) {
- dd.hist[dd.wrPos] = c
- dd.wrPos++
-}
-
-// writeCopy copies a string at a given (dist, length) to the output.
-// This returns the number of bytes copied and may be less than the requested
-// length if the available space in the output buffer is too small.
-//
-// This invariant must be kept: 0 < dist <= histSize()
-func (dd *dictDecoder) writeCopy(dist, length int) int {
- dstBase := dd.wrPos
- dstPos := dstBase
- srcPos := dstPos - dist
- endPos := dstPos + length
- if endPos > len(dd.hist) {
- endPos = len(dd.hist)
- }
-
- // Copy non-overlapping section after destination position.
- //
- // This section is non-overlapping in that the copy length for this section
- // is always less than or equal to the backwards distance. This can occur
- // if a distance refers to data that wraps-around in the buffer.
- // Thus, a backwards copy is performed here; that is, the exact bytes in
- // the source prior to the copy is placed in the destination.
- if srcPos < 0 {
- srcPos += len(dd.hist)
- dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:])
- srcPos = 0
- }
-
- // Copy possibly overlapping section before destination position.
- //
- // This section can overlap if the copy length for this section is larger
- // than the backwards distance. This is allowed by LZ77 so that repeated
- // strings can be succinctly represented using (dist, length) pairs.
- // Thus, a forwards copy is performed here; that is, the bytes copied is
- // possibly dependent on the resulting bytes in the destination as the copy
- // progresses along. This is functionally equivalent to the following:
- //
- // for i := 0; i < endPos-dstPos; i++ {
- // dd.hist[dstPos+i] = dd.hist[srcPos+i]
- // }
- // dstPos = endPos
- //
- for dstPos < endPos {
- dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
- }
-
- dd.wrPos = dstPos
- return dstPos - dstBase
-}
-
-// tryWriteCopy tries to copy a string at a given (distance, length) to the
-// output. This specialized version is optimized for short distances.
-//
-// This method is designed to be inlined for performance reasons.
-//
-// This invariant must be kept: 0 < dist <= histSize()
-func (dd *dictDecoder) tryWriteCopy(dist, length int) int {
- dstPos := dd.wrPos
- endPos := dstPos + length
- if dstPos < dist || endPos > len(dd.hist) {
- return 0
- }
- dstBase := dstPos
- srcPos := dstPos - dist
-
- // Copy possibly overlapping section before destination position.
-loop:
- dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
- if dstPos < endPos {
- goto loop // Avoid for-loop so that this function can be inlined
- }
-
- dd.wrPos = dstPos
- return dstPos - dstBase
-}
-
-// readFlush returns a slice of the historical buffer that is ready to be
-// emitted to the user. The data returned by readFlush must be fully consumed
-// before calling any other dictDecoder methods.
-func (dd *dictDecoder) readFlush() []byte {
- toRead := dd.hist[dd.rdPos:dd.wrPos]
- dd.rdPos = dd.wrPos
- if dd.wrPos == len(dd.hist) {
- dd.wrPos, dd.rdPos = 0, 0
- dd.full = true
- }
- return toRead
-}
diff --git a/vendor/github.com/klauspost/compress/flate/gen.go b/vendor/github.com/klauspost/compress/flate/gen.go
deleted file mode 100644
index 154c89a4..00000000
--- a/vendor/github.com/klauspost/compress/flate/gen.go
+++ /dev/null
@@ -1,265 +0,0 @@
-// Copyright 2012 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build ignore
-
-// This program generates fixedhuff.go
-// Invoke as
-//
-// go run gen.go -output fixedhuff.go
-
-package main
-
-import (
- "bytes"
- "flag"
- "fmt"
- "go/format"
- "io/ioutil"
- "log"
-)
-
-var filename = flag.String("output", "fixedhuff.go", "output file name")
-
-const maxCodeLen = 16
-
-// Note: the definition of the huffmanDecoder struct is copied from
-// inflate.go, as it is private to the implementation.
-
-// chunk & 15 is number of bits
-// chunk >> 4 is value, including table link
-
-const (
- huffmanChunkBits = 9
- huffmanNumChunks = 1 << huffmanChunkBits
- huffmanCountMask = 15
- huffmanValueShift = 4
-)
-
-type huffmanDecoder struct {
- min int // the minimum code length
- chunks [huffmanNumChunks]uint32 // chunks as described above
- links [][]uint32 // overflow links
- linkMask uint32 // mask the width of the link table
-}
-
-// Initialize Huffman decoding tables from array of code lengths.
-// Following this function, h is guaranteed to be initialized into a complete
-// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
-// degenerate case where the tree has only a single symbol with length 1. Empty
-// trees are permitted.
-func (h *huffmanDecoder) init(bits []int) bool {
- // Sanity enables additional runtime tests during Huffman
- // table construction. It's intended to be used during
- // development to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if h.min != 0 {
- *h = huffmanDecoder{}
- }
-
- // Count number of codes of each length,
- // compute min and max length.
- var count [maxCodeLen]int
- var min, max int
- for _, n := range bits {
- if n == 0 {
- continue
- }
- if min == 0 || n < min {
- min = n
- }
- if n > max {
- max = n
- }
- count[n]++
- }
-
- // Empty tree. The decompressor.huffSym function will fail later if the tree
- // is used. Technically, an empty tree is only valid for the HDIST tree and
- // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
- // is guaranteed to fail since it will attempt to use the tree to decode the
- // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
- // guaranteed to fail later since the compressed data section must be
- // composed of at least one symbol (the end-of-block marker).
- if max == 0 {
- return true
- }
-
- code := 0
- var nextcode [maxCodeLen]int
- for i := min; i <= max; i++ {
- code <<= 1
- nextcode[i] = code
- code += count[i]
- }
-
- // Check that the coding is complete (i.e., that we've
- // assigned all 2-to-the-max possible bit sequences).
- // Exception: To be compatible with zlib, we also need to
- // accept degenerate single-code codings. See also
- // TestDegenerateHuffmanCoding.
- if code != 1<<uint(max) && !(code == 1 && max == 1) {
- return false
- }
-
- h.min = min
- if max > huffmanChunkBits {
- numLinks := 1 << (uint(max) - huffmanChunkBits)
- h.linkMask = uint32(numLinks - 1)
-
- // create link tables
- link := nextcode[huffmanChunkBits+1] >> 1
- h.links = make([][]uint32, huffmanNumChunks-link)
- for j := uint(link); j < huffmanNumChunks; j++ {
- reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
- reverse >>= uint(16 - huffmanChunkBits)
- off := j - uint(link)
- if sanity && h.chunks[reverse] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
- h.links[off] = make([]uint32, numLinks)
- }
- }
-
- for i, n := range bits {
- if n == 0 {
- continue
- }
- code := nextcode[n]
- nextcode[n]++
- chunk := uint32(i<<huffmanValueShift | n)
- reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
- reverse >>= uint(16 - n)
- if n <= huffmanChunkBits {
- for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
- // We should never need to overwrite
- // an existing chunk. Also, 0 is
- // never a valid chunk, because the
- // lower 4 "count" bits should be
- // between 1 and 15.
- if sanity && h.chunks[off] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- h.chunks[off] = chunk
- }
- } else {
- j := reverse & (huffmanNumChunks - 1)
- if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
- // Longer codes should have been
- // associated with a link table above.
- panic("impossible: not an indirect chunk")
- }
- value := h.chunks[j] >> huffmanValueShift
- linktab := h.links[value]
- reverse >>= huffmanChunkBits
- for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
- if sanity && linktab[off] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- linktab[off] = chunk
- }
- }
- }
-
- if sanity {
- // Above we've sanity checked that we never overwrote
- // an existing entry. Here we additionally check that
- // we filled the tables completely.
- for i, chunk := range h.chunks {
- if chunk == 0 {
- // As an exception, in the degenerate
- // single-code case, we allow odd
- // chunks to be missing.
- if code == 1 && i%2 == 1 {
- continue
- }
- panic("impossible: missing chunk")
- }
- }
- for _, linktab := range h.links {
- for _, chunk := range linktab {
- if chunk == 0 {
- panic("impossible: missing chunk")
- }
- }
- }
- }
-
- return true
-}
-
-func main() {
- flag.Parse()
-
- var h huffmanDecoder
- var bits [288]int
- initReverseByte()
- for i := 0; i < 144; i++ {
- bits[i] = 8
- }
- for i := 144; i < 256; i++ {
- bits[i] = 9
- }
- for i := 256; i < 280; i++ {
- bits[i] = 7
- }
- for i := 280; i < 288; i++ {
- bits[i] = 8
- }
- h.init(bits[:])
- if h.links != nil {
- log.Fatal("Unexpected links table in fixed Huffman decoder")
- }
-
- var buf bytes.Buffer
-
- fmt.Fprintf(&buf, `// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.`+"\n\n")
-
- fmt.Fprintln(&buf, "package flate")
- fmt.Fprintln(&buf)
- fmt.Fprintln(&buf, "// autogenerated by go run gen.go -output fixedhuff.go, DO NOT EDIT")
- fmt.Fprintln(&buf)
- fmt.Fprintln(&buf, "var fixedHuffmanDecoder = huffmanDecoder{")
- fmt.Fprintf(&buf, "\t%d,\n", h.min)
- fmt.Fprintln(&buf, "\t[huffmanNumChunks]uint32{")
- for i := 0; i < huffmanNumChunks; i++ {
- if i&7 == 0 {
- fmt.Fprintf(&buf, "\t\t")
- } else {
- fmt.Fprintf(&buf, " ")
- }
- fmt.Fprintf(&buf, "0x%04x,", h.chunks[i])
- if i&7 == 7 {
- fmt.Fprintln(&buf)
- }
- }
- fmt.Fprintln(&buf, "\t},")
- fmt.Fprintln(&buf, "\tnil, 0,")
- fmt.Fprintln(&buf, "}")
-
- data, err := format.Source(buf.Bytes())
- if err != nil {
- log.Fatal(err)
- }
- err = ioutil.WriteFile(*filename, data, 0644)
- if err != nil {
- log.Fatal(err)
- }
-}
-
-var reverseByte [256]byte
-
-func initReverseByte() {
- for x := 0; x < 256; x++ {
- var result byte
- for i := uint(0); i < 8; i++ {
- result |= byte(((x >> i) & 1) << (7 - i))
- }
- reverseByte[x] = result
- }
-}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go b/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
deleted file mode 100644
index f9b2a699..00000000
--- a/vendor/github.com/klauspost/compress/flate/huffman_bit_writer.go
+++ /dev/null
@@ -1,701 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-import (
- "io"
-)
-
-const (
- // The largest offset code.
- offsetCodeCount = 30
-
- // The special code used to mark the end of a block.
- endBlockMarker = 256
-
- // The first length code.
- lengthCodesStart = 257
-
- // The number of codegen codes.
- codegenCodeCount = 19
- badCode = 255
-
- // bufferFlushSize indicates the buffer size
- // after which bytes are flushed to the writer.
- // Should preferably be a multiple of 6, since
- // we accumulate 6 bytes between writes to the buffer.
- bufferFlushSize = 240
-
- // bufferSize is the actual output byte buffer size.
- // It must have additional headroom for a flush
- // which can contain up to 8 bytes.
- bufferSize = bufferFlushSize + 8
-)
-
-// The number of extra bits needed by length code X - LENGTH_CODES_START.
-var lengthExtraBits = []int8{
- /* 257 */ 0, 0, 0,
- /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
- /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
- /* 280 */ 4, 5, 5, 5, 5, 0,
-}
-
-// The length indicated by length code X - LENGTH_CODES_START.
-var lengthBase = []uint32{
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
- 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
- 64, 80, 96, 112, 128, 160, 192, 224, 255,
-}
-
-// offset code word extra bits.
-var offsetExtraBits = []int8{
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
- 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
- 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
- /* extended window */
- 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
-}
-
-var offsetBase = []uint32{
- /* normal deflate */
- 0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
- 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
- 0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
- 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
- 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
- 0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
-
- /* extended window */
- 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
- 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
- 0x100000, 0x180000, 0x200000, 0x300000,
-}
-
-// The odd order in which the codegen code sizes are written.
-var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
-
-type huffmanBitWriter struct {
- // writer is the underlying writer.
- // Do not use it directly; use the write method, which ensures
- // that Write errors are sticky.
- writer io.Writer
-
- // Data waiting to be written is bytes[0:nbytes]
- // and then the low nbits of bits.
- bits uint64
- nbits uint
- bytes [bufferSize]byte
- codegenFreq [codegenCodeCount]int32
- nbytes int
- literalFreq []int32
- offsetFreq []int32
- codegen []uint8
- literalEncoding *huffmanEncoder
- offsetEncoding *huffmanEncoder
- codegenEncoding *huffmanEncoder
- err error
-}
-
-func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
- return &huffmanBitWriter{
- writer: w,
- literalFreq: make([]int32, maxNumLit),
- offsetFreq: make([]int32, offsetCodeCount),
- codegen: make([]uint8, maxNumLit+offsetCodeCount+1),
- literalEncoding: newHuffmanEncoder(maxNumLit),
- codegenEncoding: newHuffmanEncoder(codegenCodeCount),
- offsetEncoding: newHuffmanEncoder(offsetCodeCount),
- }
-}
-
-func (w *huffmanBitWriter) reset(writer io.Writer) {
- w.writer = writer
- w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
- w.bytes = [bufferSize]byte{}
-}
-
-func (w *huffmanBitWriter) flush() {
- if w.err != nil {
- w.nbits = 0
- return
- }
- n := w.nbytes
- for w.nbits != 0 {
- w.bytes[n] = byte(w.bits)
- w.bits >>= 8
- if w.nbits > 8 { // Avoid underflow
- w.nbits -= 8
- } else {
- w.nbits = 0
- }
- n++
- }
- w.bits = 0
- w.write(w.bytes[:n])
- w.nbytes = 0
-}
-
-func (w *huffmanBitWriter) write(b []byte) {
- if w.err != nil {
- return
- }
- _, w.err = w.writer.Write(b)
-}
-
-func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
- if w.err != nil {
- return
- }
- w.bits |= uint64(b) << w.nbits
- w.nbits += nb
- if w.nbits >= 48 {
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- n := w.nbytes
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n >= bufferFlushSize {
- w.write(w.bytes[:n])
- n = 0
- }
- w.nbytes = n
- }
-}
-
-func (w *huffmanBitWriter) writeBytes(bytes []byte) {
- if w.err != nil {
- return
- }
- n := w.nbytes
- if w.nbits&7 != 0 {
- w.err = InternalError("writeBytes with unfinished bits")
- return
- }
- for w.nbits != 0 {
- w.bytes[n] = byte(w.bits)
- w.bits >>= 8
- w.nbits -= 8
- n++
- }
- if n != 0 {
- w.write(w.bytes[:n])
- }
- w.nbytes = 0
- w.write(bytes)
-}
-
-// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
-// the literal and offset lengths arrays (which are concatenated into a single
-// array). This method generates that run-length encoding.
-//
-// The result is written into the codegen array, and the frequencies
-// of each code is written into the codegenFreq array.
-// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
-// information. Code badCode is an end marker
-//
-// numLiterals The number of literals in literalEncoding
-// numOffsets The number of offsets in offsetEncoding
-// litenc, offenc The literal and offset encoder to use
-func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
- for i := range w.codegenFreq {
- w.codegenFreq[i] = 0
- }
- // Note that we are using codegen both as a temporary variable for holding
- // a copy of the frequencies, and as the place where we put the result.
- // This is fine because the output is always shorter than the input used
- // so far.
- codegen := w.codegen // cache
- // Copy the concatenated code sizes to codegen. Put a marker at the end.
- cgnl := codegen[:numLiterals]
- for i := range cgnl {
- cgnl[i] = uint8(litEnc.codes[i].len)
- }
-
- cgnl = codegen[numLiterals : numLiterals+numOffsets]
- for i := range cgnl {
- cgnl[i] = uint8(offEnc.codes[i].len)
- }
- codegen[numLiterals+numOffsets] = badCode
-
- size := codegen[0]
- count := 1
- outIndex := 0
- for inIndex := 1; size != badCode; inIndex++ {
- // INVARIANT: We have seen "count" copies of size that have not yet
- // had output generated for them.
- nextSize := codegen[inIndex]
- if nextSize == size {
- count++
- continue
- }
- // We need to generate codegen indicating "count" of size.
- if size != 0 {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- count--
- for count >= 3 {
- n := 6
- if n > count {
- n = count
- }
- codegen[outIndex] = 16
- outIndex++
- codegen[outIndex] = uint8(n - 3)
- outIndex++
- w.codegenFreq[16]++
- count -= n
- }
- } else {
- for count >= 11 {
- n := 138
- if n > count {
- n = count
- }
- codegen[outIndex] = 18
- outIndex++
- codegen[outIndex] = uint8(n - 11)
- outIndex++
- w.codegenFreq[18]++
- count -= n
- }
- if count >= 3 {
- // count >= 3 && count <= 10
- codegen[outIndex] = 17
- outIndex++
- codegen[outIndex] = uint8(count - 3)
- outIndex++
- w.codegenFreq[17]++
- count = 0
- }
- }
- count--
- for ; count >= 0; count-- {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- }
- // Set up invariant for next time through the loop.
- size = nextSize
- count = 1
- }
- // Marker indicating the end of the codegen.
- codegen[outIndex] = badCode
-}
-
-// dynamicSize returns the size of dynamically encoded data in bits.
-func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
- numCodegens = len(w.codegenFreq)
- for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
- numCodegens--
- }
- header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
- w.codegenEncoding.bitLength(w.codegenFreq[:]) +
- int(w.codegenFreq[16])*2 +
- int(w.codegenFreq[17])*3 +
- int(w.codegenFreq[18])*7
- size = header +
- litEnc.bitLength(w.literalFreq) +
- offEnc.bitLength(w.offsetFreq) +
- extraBits
-
- return size, numCodegens
-}
-
-// fixedSize returns the size of dynamically encoded data in bits.
-func (w *huffmanBitWriter) fixedSize(extraBits int) int {
- return 3 +
- fixedLiteralEncoding.bitLength(w.literalFreq) +
- fixedOffsetEncoding.bitLength(w.offsetFreq) +
- extraBits
-}
-
-// storedSize calculates the stored size, including header.
-// The function returns the size in bits and whether the block
-// fits inside a single block.
-func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
- if in == nil {
- return 0, false
- }
- if len(in) <= maxStoreBlockSize {
- return (len(in) + 5) * 8, true
- }
- return 0, false
-}
-
-func (w *huffmanBitWriter) writeCode(c hcode) {
- if w.err != nil {
- return
- }
- w.bits |= uint64(c.code) << w.nbits
- w.nbits += uint(c.len)
- if w.nbits >= 48 {
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- n := w.nbytes
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n >= bufferFlushSize {
- w.write(w.bytes[:n])
- n = 0
- }
- w.nbytes = n
- }
-}
-
-// Write the header of a dynamic Huffman block to the output stream.
-//
-// numLiterals The number of literals specified in codegen
-// numOffsets The number of offsets specified in codegen
-// numCodegens The number of codegens used in codegen
-func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
- if w.err != nil {
- return
- }
- var firstBits int32 = 4
- if isEof {
- firstBits = 5
- }
- w.writeBits(firstBits, 3)
- w.writeBits(int32(numLiterals-257), 5)
- w.writeBits(int32(numOffsets-1), 5)
- w.writeBits(int32(numCodegens-4), 4)
-
- for i := 0; i < numCodegens; i++ {
- value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
- w.writeBits(int32(value), 3)
- }
-
- i := 0
- for {
- var codeWord int = int(w.codegen[i])
- i++
- if codeWord == badCode {
- break
- }
- w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
-
- switch codeWord {
- case 16:
- w.writeBits(int32(w.codegen[i]), 2)
- i++
- break
- case 17:
- w.writeBits(int32(w.codegen[i]), 3)
- i++
- break
- case 18:
- w.writeBits(int32(w.codegen[i]), 7)
- i++
- break
- }
- }
-}
-
-func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
- if w.err != nil {
- return
- }
- var flag int32
- if isEof {
- flag = 1
- }
- w.writeBits(flag, 3)
- w.flush()
- w.writeBits(int32(length), 16)
- w.writeBits(int32(^uint16(length)), 16)
-}
-
-func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
- if w.err != nil {
- return
- }
- // Indicate that we are a fixed Huffman block
- var value int32 = 2
- if isEof {
- value = 3
- }
- w.writeBits(value, 3)
-}
-
-// writeBlock will write a block of tokens with the smallest encoding.
-// The original input can be supplied, and if the huffman encoded data
-// is larger than the original bytes, the data will be written as a
-// stored block.
-// If the input is nil, the tokens will always be Huffman encoded.
-func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
- if w.err != nil {
- return
- }
-
- tokens = append(tokens, endBlockMarker)
- numLiterals, numOffsets := w.indexTokens(tokens)
-
- var extraBits int
- storedSize, storable := w.storedSize(input)
- if storable {
- // We only bother calculating the costs of the extra bits required by
- // the length of offset fields (which will be the same for both fixed
- // and dynamic encoding), if we need to compare those two encodings
- // against stored encoding.
- for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
- // First eight length codes have extra size = 0.
- extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
- }
- for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
- // First four offset codes have extra size = 0.
- extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
- }
- }
-
- // Figure out smallest code.
- // Fixed Huffman baseline.
- var literalEncoding = fixedLiteralEncoding
- var offsetEncoding = fixedOffsetEncoding
- var size = w.fixedSize(extraBits)
-
- // Dynamic Huffman?
- var numCodegens int
-
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
-
- if dynamicSize < size {
- size = dynamicSize
- literalEncoding = w.literalEncoding
- offsetEncoding = w.offsetEncoding
- }
-
- // Stored bytes?
- if storable && storedSize < size {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
-
- // Huffman.
- if literalEncoding == fixedLiteralEncoding {
- w.writeFixedHeader(eof)
- } else {
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- }
-
- // Write the tokens.
- w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
-}
-
-// writeBlockDynamic encodes a block using a dynamic Huffman table.
-// This should be used if the symbols used have a disproportionate
-// histogram distribution.
-// If input is supplied and the compression savings are below 1/16th of the
-// input size the block is stored.
-func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
- if w.err != nil {
- return
- }
-
- tokens = append(tokens, endBlockMarker)
- numLiterals, numOffsets := w.indexTokens(tokens)
-
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
-
- // Store bytes, if we don't get a reasonable improvement.
- if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
-
- // Write Huffman table.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
-
- // Write the tokens.
- w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
-}
-
-// indexTokens indexes a slice of tokens, and updates
-// literalFreq and offsetFreq, and generates literalEncoding
-// and offsetEncoding.
-// The number of literal and offset tokens is returned.
-func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
- for i := range w.literalFreq {
- w.literalFreq[i] = 0
- }
- for i := range w.offsetFreq {
- w.offsetFreq[i] = 0
- }
-
- for _, t := range tokens {
- if t < matchType {
- w.literalFreq[t.literal()]++
- continue
- }
- length := t.length()
- offset := t.offset()
- w.literalFreq[lengthCodesStart+lengthCode(length)]++
- w.offsetFreq[offsetCode(offset)]++
- }
-
- // get the number of literals
- numLiterals = len(w.literalFreq)
- for w.literalFreq[numLiterals-1] == 0 {
- numLiterals--
- }
- // get the number of offsets
- numOffsets = len(w.offsetFreq)
- for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
- numOffsets--
- }
- if numOffsets == 0 {
- // We haven't found a single match. If we want to go with the dynamic encoding,
- // we should count at least one offset to be sure that the offset huffman tree could be encoded.
- w.offsetFreq[0] = 1
- numOffsets = 1
- }
- w.literalEncoding.generate(w.literalFreq, 15)
- w.offsetEncoding.generate(w.offsetFreq, 15)
- return
-}
-
-// writeTokens writes a slice of tokens to the output.
-// codes for literal and offset encoding must be supplied.
-func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
- if w.err != nil {
- return
- }
- for _, t := range tokens {
- if t < matchType {
- w.writeCode(leCodes[t.literal()])
- continue
- }
- // Write the length
- length := t.length()
- lengthCode := lengthCode(length)
- w.writeCode(leCodes[lengthCode+lengthCodesStart])
- extraLengthBits := uint(lengthExtraBits[lengthCode])
- if extraLengthBits > 0 {
- extraLength := int32(length - lengthBase[lengthCode])
- w.writeBits(extraLength, extraLengthBits)
- }
- // Write the offset
- offset := t.offset()
- offsetCode := offsetCode(offset)
- w.writeCode(oeCodes[offsetCode])
- extraOffsetBits := uint(offsetExtraBits[offsetCode])
- if extraOffsetBits > 0 {
- extraOffset := int32(offset - offsetBase[offsetCode])
- w.writeBits(extraOffset, extraOffsetBits)
- }
- }
-}
-
-// huffOffset is a static offset encoder used for huffman only encoding.
-// It can be reused since we will not be encoding offset values.
-var huffOffset *huffmanEncoder
-
-func init() {
- w := newHuffmanBitWriter(nil)
- w.offsetFreq[0] = 1
- huffOffset = newHuffmanEncoder(offsetCodeCount)
- huffOffset.generate(w.offsetFreq, 15)
-}
-
-// writeBlockHuff encodes a block of bytes as either
-// Huffman encoded literals or uncompressed bytes if the
-// results only gains very little from compression.
-func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
- if w.err != nil {
- return
- }
-
- // Clear histogram
- for i := range w.literalFreq {
- w.literalFreq[i] = 0
- }
-
- // Add everything as literals
- histogram(input, w.literalFreq)
-
- w.literalFreq[endBlockMarker] = 1
-
- const numLiterals = endBlockMarker + 1
- const numOffsets = 1
-
- w.literalEncoding.generate(w.literalFreq, 15)
-
- // Figure out smallest code.
- // Always use dynamic Huffman or Store
- var numCodegens int
-
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
-
- // Store bytes, if we don't get a reasonable improvement.
- if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
-
- // Huffman.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- encoding := w.literalEncoding.codes[:257]
- n := w.nbytes
- for _, t := range input {
- // Bitwriting inlined, ~30% speedup
- c := encoding[t]
- w.bits |= uint64(c.code) << w.nbits
- w.nbits += uint(c.len)
- if w.nbits < 48 {
- continue
- }
- // Store 6 bytes
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- bytes := w.bytes[n : n+6]
- bytes[0] = byte(bits)
- bytes[1] = byte(bits >> 8)
- bytes[2] = byte(bits >> 16)
- bytes[3] = byte(bits >> 24)
- bytes[4] = byte(bits >> 32)
- bytes[5] = byte(bits >> 40)
- n += 6
- if n < bufferFlushSize {
- continue
- }
- w.write(w.bytes[:n])
- if w.err != nil {
- return // Return early in the event of write failures
- }
- n = 0
- }
- w.nbytes = n
- w.writeCode(encoding[endBlockMarker])
-}
diff --git a/vendor/github.com/klauspost/compress/flate/huffman_code.go b/vendor/github.com/klauspost/compress/flate/huffman_code.go
deleted file mode 100644
index bdcbd823..00000000
--- a/vendor/github.com/klauspost/compress/flate/huffman_code.go
+++ /dev/null
@@ -1,344 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-import (
- "math"
- "sort"
-)
-
-// hcode is a huffman code with a bit code and bit length.
-type hcode struct {
- code, len uint16
-}
-
-type huffmanEncoder struct {
- codes []hcode
- freqcache []literalNode
- bitCount [17]int32
- lns byLiteral // stored to avoid repeated allocation in generate
- lfs byFreq // stored to avoid repeated allocation in generate
-}
-
-type literalNode struct {
- literal uint16
- freq int32
-}
-
-// A levelInfo describes the state of the constructed tree for a given depth.
-type levelInfo struct {
- // Our level. for better printing
- level int32
-
- // The frequency of the last node at this level
- lastFreq int32
-
- // The frequency of the next character to add to this level
- nextCharFreq int32
-
- // The frequency of the next pair (from level below) to add to this level.
- // Only valid if the "needed" value of the next lower level is 0.
- nextPairFreq int32
-
- // The number of chains remaining to generate for this level before moving
- // up to the next level
- needed int32
-}
-
-// set sets the code and length of an hcode.
-func (h *hcode) set(code uint16, length uint16) {
- h.len = length
- h.code = code
-}
-
-func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
-
-func newHuffmanEncoder(size int) *huffmanEncoder {
- return &huffmanEncoder{codes: make([]hcode, size)}
-}
-
-// Generates a HuffmanCode corresponding to the fixed literal table
-func generateFixedLiteralEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(maxNumLit)
- codes := h.codes
- var ch uint16
- for ch = 0; ch < maxNumLit; ch++ {
- var bits uint16
- var size uint16
- switch {
- case ch < 144:
- // size 8, 000110000 .. 10111111
- bits = ch + 48
- size = 8
- break
- case ch < 256:
- // size 9, 110010000 .. 111111111
- bits = ch + 400 - 144
- size = 9
- break
- case ch < 280:
- // size 7, 0000000 .. 0010111
- bits = ch - 256
- size = 7
- break
- default:
- // size 8, 11000000 .. 11000111
- bits = ch + 192 - 280
- size = 8
- }
- codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
- }
- return h
-}
-
-func generateFixedOffsetEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(30)
- codes := h.codes
- for ch := range codes {
- codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
- }
- return h
-}
-
-var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
-var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
-
-func (h *huffmanEncoder) bitLength(freq []int32) int {
- var total int
- for i, f := range freq {
- if f != 0 {
- total += int(f) * int(h.codes[i].len)
- }
- }
- return total
-}
-
-const maxBitsLimit = 16
-
-// Return the number of literals assigned to each bit size in the Huffman encoding
-//
-// This method is only called when list.length >= 3
-// The cases of 0, 1, and 2 literals are handled by special case code.
-//
-// list An array of the literals with non-zero frequencies
-// and their associated frequencies. The array is in order of increasing
-// frequency, and has as its last element a special element with frequency
-// MaxInt32
-// maxBits The maximum number of bits that should be used to encode any literal.
-// Must be less than 16.
-// return An integer array in which array[i] indicates the number of literals
-// that should be encoded in i bits.
-func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
- if maxBits >= maxBitsLimit {
- panic("flate: maxBits too large")
- }
- n := int32(len(list))
- list = list[0 : n+1]
- list[n] = maxNode()
-
- // The tree can't have greater depth than n - 1, no matter what. This
- // saves a little bit of work in some small cases
- if maxBits > n-1 {
- maxBits = n - 1
- }
-
- // Create information about each of the levels.
- // A bogus "Level 0" whose sole purpose is so that
- // level1.prev.needed==0. This makes level1.nextPairFreq
- // be a legitimate value that never gets chosen.
- var levels [maxBitsLimit]levelInfo
- // leafCounts[i] counts the number of literals at the left
- // of ancestors of the rightmost node at level i.
- // leafCounts[i][j] is the number of literals at the left
- // of the level j ancestor.
- var leafCounts [maxBitsLimit][maxBitsLimit]int32
-
- for level := int32(1); level <= maxBits; level++ {
- // For every level, the first two items are the first two characters.
- // We initialize the levels as if we had already figured this out.
- levels[level] = levelInfo{
- level: level,
- lastFreq: list[1].freq,
- nextCharFreq: list[2].freq,
- nextPairFreq: list[0].freq + list[1].freq,
- }
- leafCounts[level][level] = 2
- if level == 1 {
- levels[level].nextPairFreq = math.MaxInt32
- }
- }
-
- // We need a total of 2*n - 2 items at top level and have already generated 2.
- levels[maxBits].needed = 2*n - 4
-
- level := maxBits
- for {
- l := &levels[level]
- if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
- // We've run out of both leafs and pairs.
- // End all calculations for this level.
- // To make sure we never come back to this level or any lower level,
- // set nextPairFreq impossibly large.
- l.needed = 0
- levels[level+1].nextPairFreq = math.MaxInt32
- level++
- continue
- }
-
- prevFreq := l.lastFreq
- if l.nextCharFreq < l.nextPairFreq {
- // The next item on this row is a leaf node.
- n := leafCounts[level][level] + 1
- l.lastFreq = l.nextCharFreq
- // Lower leafCounts are the same of the previous node.
- leafCounts[level][level] = n
- l.nextCharFreq = list[n].freq
- } else {
- // The next item on this row is a pair from the previous row.
- // nextPairFreq isn't valid until we generate two
- // more values in the level below
- l.lastFreq = l.nextPairFreq
- // Take leaf counts from the lower level, except counts[level] remains the same.
- copy(leafCounts[level][:level], leafCounts[level-1][:level])
- levels[l.level-1].needed = 2
- }
-
- if l.needed--; l.needed == 0 {
- // We've done everything we need to do for this level.
- // Continue calculating one level up. Fill in nextPairFreq
- // of that level with the sum of the two nodes we've just calculated on
- // this level.
- if l.level == maxBits {
- // All done!
- break
- }
- levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
- level++
- } else {
- // If we stole from below, move down temporarily to replenish it.
- for levels[level-1].needed > 0 {
- level--
- }
- }
- }
-
- // Somethings is wrong if at the end, the top level is null or hasn't used
- // all of the leaves.
- if leafCounts[maxBits][maxBits] != n {
- panic("leafCounts[maxBits][maxBits] != n")
- }
-
- bitCount := h.bitCount[:maxBits+1]
- bits := 1
- counts := &leafCounts[maxBits]
- for level := maxBits; level > 0; level-- {
- // chain.leafCount gives the number of literals requiring at least "bits"
- // bits to encode.
- bitCount[bits] = counts[level] - counts[level-1]
- bits++
- }
- return bitCount
-}
-
-// Look at the leaves and assign them a bit count and an encoding as specified
-// in RFC 1951 3.2.2
-func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
- code := uint16(0)
- for n, bits := range bitCount {
- code <<= 1
- if n == 0 || bits == 0 {
- continue
- }
- // The literals list[len(list)-bits] .. list[len(list)-bits]
- // are encoded using "bits" bits, and get the values
- // code, code + 1, .... The code values are
- // assigned in literal order (not frequency order).
- chunk := list[len(list)-int(bits):]
-
- h.lns.sort(chunk)
- for _, node := range chunk {
- h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
- code++
- }
- list = list[0 : len(list)-int(bits)]
- }
-}
-
-// Update this Huffman Code object to be the minimum code for the specified frequency count.
-//
-// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
-// maxBits The maximum number of bits to use for any literal.
-func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
- if h.freqcache == nil {
- // Allocate a reusable buffer with the longest possible frequency table.
- // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
- // The largest of these is maxNumLit, so we allocate for that case.
- h.freqcache = make([]literalNode, maxNumLit+1)
- }
- list := h.freqcache[:len(freq)+1]
- // Number of non-zero literals
- count := 0
- // Set list to be the set of all non-zero literals and their frequencies
- for i, f := range freq {
- if f != 0 {
- list[count] = literalNode{uint16(i), f}
- count++
- } else {
- list[count] = literalNode{}
- h.codes[i].len = 0
- }
- }
- list[len(freq)] = literalNode{}
-
- list = list[:count]
- if count <= 2 {
- // Handle the small cases here, because they are awkward for the general case code. With
- // two or fewer literals, everything has bit length 1.
- for i, node := range list {
- // "list" is in order of increasing literal value.
- h.codes[node.literal].set(uint16(i), 1)
- }
- return
- }
- h.lfs.sort(list)
-
- // Get the number of literals for each bit count
- bitCount := h.bitCounts(list, maxBits)
- // And do the assignment
- h.assignEncodingAndSize(bitCount, list)
-}
-
-type byLiteral []literalNode
-
-func (s *byLiteral) sort(a []literalNode) {
- *s = byLiteral(a)
- sort.Sort(s)
-}
-
-func (s byLiteral) Len() int { return len(s) }
-
-func (s byLiteral) Less(i, j int) bool {
- return s[i].literal < s[j].literal
-}
-
-func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
-type byFreq []literalNode
-
-func (s *byFreq) sort(a []literalNode) {
- *s = byFreq(a)
- sort.Sort(s)
-}
-
-func (s byFreq) Len() int { return len(s) }
-
-func (s byFreq) Less(i, j int) bool {
- if s[i].freq == s[j].freq {
- return s[i].literal < s[j].literal
- }
- return s[i].freq < s[j].freq
-}
-
-func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
diff --git a/vendor/github.com/klauspost/compress/flate/inflate.go b/vendor/github.com/klauspost/compress/flate/inflate.go
deleted file mode 100644
index 53b63d9a..00000000
--- a/vendor/github.com/klauspost/compress/flate/inflate.go
+++ /dev/null
@@ -1,846 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package flate implements the DEFLATE compressed data format, described in
-// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
-// formats.
-package flate
-
-import (
- "bufio"
- "io"
- "strconv"
- "sync"
-)
-
-const (
- maxCodeLen = 16 // max length of Huffman code
- // The next three numbers come from the RFC section 3.2.7, with the
- // additional proviso in section 3.2.5 which implies that distance codes
- // 30 and 31 should never occur in compressed data.
- maxNumLit = 286
- maxNumDist = 30
- numCodes = 19 // number of codes in Huffman meta-code
-)
-
-// Initialize the fixedHuffmanDecoder only once upon first use.
-var fixedOnce sync.Once
-var fixedHuffmanDecoder huffmanDecoder
-
-// A CorruptInputError reports the presence of corrupt input at a given offset.
-type CorruptInputError int64
-
-func (e CorruptInputError) Error() string {
- return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
-}
-
-// An InternalError reports an error in the flate code itself.
-type InternalError string
-
-func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
-
-// A ReadError reports an error encountered while reading input.
-//
-// Deprecated: No longer returned.
-type ReadError struct {
- Offset int64 // byte offset where error occurred
- Err error // error returned by underlying Read
-}
-
-func (e *ReadError) Error() string {
- return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
-}
-
-// A WriteError reports an error encountered while writing output.
-//
-// Deprecated: No longer returned.
-type WriteError struct {
- Offset int64 // byte offset where error occurred
- Err error // error returned by underlying Write
-}
-
-func (e *WriteError) Error() string {
- return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
-}
-
-// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
-// to switch to a new underlying Reader. This permits reusing a ReadCloser
-// instead of allocating a new one.
-type Resetter interface {
- // Reset discards any buffered data and resets the Resetter as if it was
- // newly initialized with the given reader.
- Reset(r io.Reader, dict []byte) error
-}
-
-// The data structure for decoding Huffman tables is based on that of
-// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
-// For codes smaller than the table width, there are multiple entries
-// (each combination of trailing bits has the same value). For codes
-// larger than the table width, the table contains a link to an overflow
-// table. The width of each entry in the link table is the maximum code
-// size minus the chunk width.
-//
-// Note that you can do a lookup in the table even without all bits
-// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
-// have the property that shorter codes come before longer ones, the
-// bit length estimate in the result is a lower bound on the actual
-// number of bits.
-//
-// See the following:
-// http://www.gzip.org/algorithm.txt
-
-// chunk & 15 is number of bits
-// chunk >> 4 is value, including table link
-
-const (
- huffmanChunkBits = 9
- huffmanNumChunks = 1 << huffmanChunkBits
- huffmanCountMask = 15
- huffmanValueShift = 4
-)
-
-type huffmanDecoder struct {
- min int // the minimum code length
- chunks [huffmanNumChunks]uint32 // chunks as described above
- links [][]uint32 // overflow links
- linkMask uint32 // mask the width of the link table
-}
-
-// Initialize Huffman decoding tables from array of code lengths.
-// Following this function, h is guaranteed to be initialized into a complete
-// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
-// degenerate case where the tree has only a single symbol with length 1. Empty
-// trees are permitted.
-func (h *huffmanDecoder) init(bits []int) bool {
- // Sanity enables additional runtime tests during Huffman
- // table construction. It's intended to be used during
- // development to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if h.min != 0 {
- *h = huffmanDecoder{}
- }
-
- // Count number of codes of each length,
- // compute min and max length.
- var count [maxCodeLen]int
- var min, max int
- for _, n := range bits {
- if n == 0 {
- continue
- }
- if min == 0 || n < min {
- min = n
- }
- if n > max {
- max = n
- }
- count[n]++
- }
-
- // Empty tree. The decompressor.huffSym function will fail later if the tree
- // is used. Technically, an empty tree is only valid for the HDIST tree and
- // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
- // is guaranteed to fail since it will attempt to use the tree to decode the
- // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
- // guaranteed to fail later since the compressed data section must be
- // composed of at least one symbol (the end-of-block marker).
- if max == 0 {
- return true
- }
-
- code := 0
- var nextcode [maxCodeLen]int
- for i := min; i <= max; i++ {
- code <<= 1
- nextcode[i] = code
- code += count[i]
- }
-
- // Check that the coding is complete (i.e., that we've
- // assigned all 2-to-the-max possible bit sequences).
- // Exception: To be compatible with zlib, we also need to
- // accept degenerate single-code codings. See also
- // TestDegenerateHuffmanCoding.
- if code != 1<<uint(max) && !(code == 1 && max == 1) {
- return false
- }
-
- h.min = min
- if max > huffmanChunkBits {
- numLinks := 1 << (uint(max) - huffmanChunkBits)
- h.linkMask = uint32(numLinks - 1)
-
- // create link tables
- link := nextcode[huffmanChunkBits+1] >> 1
- h.links = make([][]uint32, huffmanNumChunks-link)
- for j := uint(link); j < huffmanNumChunks; j++ {
- reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
- reverse >>= uint(16 - huffmanChunkBits)
- off := j - uint(link)
- if sanity && h.chunks[reverse] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
- h.links[off] = make([]uint32, numLinks)
- }
- }
-
- for i, n := range bits {
- if n == 0 {
- continue
- }
- code := nextcode[n]
- nextcode[n]++
- chunk := uint32(i<<huffmanValueShift | n)
- reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
- reverse >>= uint(16 - n)
- if n <= huffmanChunkBits {
- for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
- // We should never need to overwrite
- // an existing chunk. Also, 0 is
- // never a valid chunk, because the
- // lower 4 "count" bits should be
- // between 1 and 15.
- if sanity && h.chunks[off] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- h.chunks[off] = chunk
- }
- } else {
- j := reverse & (huffmanNumChunks - 1)
- if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
- // Longer codes should have been
- // associated with a link table above.
- panic("impossible: not an indirect chunk")
- }
- value := h.chunks[j] >> huffmanValueShift
- linktab := h.links[value]
- reverse >>= huffmanChunkBits
- for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
- if sanity && linktab[off] != 0 {
- panic("impossible: overwriting existing chunk")
- }
- linktab[off] = chunk
- }
- }
- }
-
- if sanity {
- // Above we've sanity checked that we never overwrote
- // an existing entry. Here we additionally check that
- // we filled the tables completely.
- for i, chunk := range h.chunks {
- if chunk == 0 {
- // As an exception, in the degenerate
- // single-code case, we allow odd
- // chunks to be missing.
- if code == 1 && i%2 == 1 {
- continue
- }
- panic("impossible: missing chunk")
- }
- }
- for _, linktab := range h.links {
- for _, chunk := range linktab {
- if chunk == 0 {
- panic("impossible: missing chunk")
- }
- }
- }
- }
-
- return true
-}
-
-// The actual read interface needed by NewReader.
-// If the passed in io.Reader does not also have ReadByte,
-// the NewReader will introduce its own buffering.
-type Reader interface {
- io.Reader
- io.ByteReader
-}
-
-// Decompress state.
-type decompressor struct {
- // Input source.
- r Reader
- roffset int64
-
- // Input bits, in top of b.
- b uint32
- nb uint
-
- // Huffman decoders for literal/length, distance.
- h1, h2 huffmanDecoder
-
- // Length arrays used to define Huffman codes.
- bits *[maxNumLit + maxNumDist]int
- codebits *[numCodes]int
-
- // Output history, buffer.
- dict dictDecoder
-
- // Temporary buffer (avoids repeated allocation).
- buf [4]byte
-
- // Next step in the decompression,
- // and decompression state.
- step func(*decompressor)
- stepState int
- final bool
- err error
- toRead []byte
- hl, hd *huffmanDecoder
- copyLen int
- copyDist int
-}
-
-func (f *decompressor) nextBlock() {
- for f.nb < 1+2 {
- if f.err = f.moreBits(); f.err != nil {
- return
- }
- }
- f.final = f.b&1 == 1
- f.b >>= 1
- typ := f.b & 3
- f.b >>= 2
- f.nb -= 1 + 2
- switch typ {
- case 0:
- f.dataBlock()
- case 1:
- // compressed, fixed Huffman tables
- f.hl = &fixedHuffmanDecoder
- f.hd = nil
- f.huffmanBlock()
- case 2:
- // compressed, dynamic Huffman tables
- if f.err = f.readHuffman(); f.err != nil {
- break
- }
- f.hl = &f.h1
- f.hd = &f.h2
- f.huffmanBlock()
- default:
- // 3 is reserved.
- f.err = CorruptInputError(f.roffset)
- }
-}
-
-func (f *decompressor) Read(b []byte) (int, error) {
- for {
- if len(f.toRead) > 0 {
- n := copy(b, f.toRead)
- f.toRead = f.toRead[n:]
- if len(f.toRead) == 0 {
- return n, f.err
- }
- return n, nil
- }
- if f.err != nil {
- return 0, f.err
- }
- f.step(f)
- if f.err != nil && len(f.toRead) == 0 {
- f.toRead = f.dict.readFlush() // Flush what's left in case of error
- }
- }
-}
-
-// Support the io.WriteTo interface for io.Copy and friends.
-func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
- total := int64(0)
- flushed := false
- for {
- if len(f.toRead) > 0 {
- n, err := w.Write(f.toRead)
- total += int64(n)
- if err != nil {
- f.err = err
- return total, err
- }
- if n != len(f.toRead) {
- return total, io.ErrShortWrite
- }
- f.toRead = f.toRead[:0]
- }
- if f.err != nil && flushed {
- if f.err == io.EOF {
- return total, nil
- }
- return total, f.err
- }
- if f.err == nil {
- f.step(f)
- }
- if len(f.toRead) == 0 && f.err != nil && !flushed {
- f.toRead = f.dict.readFlush() // Flush what's left in case of error
- flushed = true
- }
- }
-}
-
-func (f *decompressor) Close() error {
- if f.err == io.EOF {
- return nil
- }
- return f.err
-}
-
-// RFC 1951 section 3.2.7.
-// Compression with dynamic Huffman codes
-
-var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
-
-func (f *decompressor) readHuffman() error {
- // HLIT[5], HDIST[5], HCLEN[4].
- for f.nb < 5+5+4 {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- nlit := int(f.b&0x1F) + 257
- if nlit > maxNumLit {
- return CorruptInputError(f.roffset)
- }
- f.b >>= 5
- ndist := int(f.b&0x1F) + 1
- if ndist > maxNumDist {
- return CorruptInputError(f.roffset)
- }
- f.b >>= 5
- nclen := int(f.b&0xF) + 4
- // numCodes is 19, so nclen is always valid.
- f.b >>= 4
- f.nb -= 5 + 5 + 4
-
- // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
- for i := 0; i < nclen; i++ {
- for f.nb < 3 {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- f.codebits[codeOrder[i]] = int(f.b & 0x7)
- f.b >>= 3
- f.nb -= 3
- }
- for i := nclen; i < len(codeOrder); i++ {
- f.codebits[codeOrder[i]] = 0
- }
- if !f.h1.init(f.codebits[0:]) {
- return CorruptInputError(f.roffset)
- }
-
- // HLIT + 257 code lengths, HDIST + 1 code lengths,
- // using the code length Huffman code.
- for i, n := 0, nlit+ndist; i < n; {
- x, err := f.huffSym(&f.h1)
- if err != nil {
- return err
- }
- if x < 16 {
- // Actual length.
- f.bits[i] = x
- i++
- continue
- }
- // Repeat previous length or zero.
- var rep int
- var nb uint
- var b int
- switch x {
- default:
- return InternalError("unexpected length code")
- case 16:
- rep = 3
- nb = 2
- if i == 0 {
- return CorruptInputError(f.roffset)
- }
- b = f.bits[i-1]
- case 17:
- rep = 3
- nb = 3
- b = 0
- case 18:
- rep = 11
- nb = 7
- b = 0
- }
- for f.nb < nb {
- if err := f.moreBits(); err != nil {
- return err
- }
- }
- rep += int(f.b & uint32(1<<nb-1))
- f.b >>= nb
- f.nb -= nb
- if i+rep > n {
- return CorruptInputError(f.roffset)
- }
- for j := 0; j < rep; j++ {
- f.bits[i] = b
- i++
- }
- }
-
- if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
- return CorruptInputError(f.roffset)
- }
-
- // As an optimization, we can initialize the min bits to read at a time
- // for the HLIT tree to the length of the EOB marker since we know that
- // every block must terminate with one. This preserves the property that
- // we never read any extra bytes after the end of the DEFLATE stream.
- if f.h1.min < f.bits[endBlockMarker] {
- f.h1.min = f.bits[endBlockMarker]
- }
-
- return nil
-}
-
-// Decode a single Huffman block from f.
-// hl and hd are the Huffman states for the lit/length values
-// and the distance values, respectively. If hd == nil, using the
-// fixed distance encoding associated with fixed Huffman blocks.
-func (f *decompressor) huffmanBlock() {
- const (
- stateInit = iota // Zero value must be stateInit
- stateDict
- )
-
- switch f.stepState {
- case stateInit:
- goto readLiteral
- case stateDict:
- goto copyHistory
- }
-
-readLiteral:
- // Read literal and/or (length, distance) according to RFC section 3.2.3.
- {
- v, err := f.huffSym(f.hl)
- if err != nil {
- f.err = err
- return
- }
- var n uint // number of bits extra
- var length int
- switch {
- case v < 256:
- f.dict.writeByte(byte(v))
- if f.dict.availWrite() == 0 {
- f.toRead = f.dict.readFlush()
- f.step = (*decompressor).huffmanBlock
- f.stepState = stateInit
- return
- }
- goto readLiteral
- case v == 256:
- f.finishBlock()
- return
- // otherwise, reference to older data
- case v < 265:
- length = v - (257 - 3)
- n = 0
- case v < 269:
- length = v*2 - (265*2 - 11)
- n = 1
- case v < 273:
- length = v*4 - (269*4 - 19)
- n = 2
- case v < 277:
- length = v*8 - (273*8 - 35)
- n = 3
- case v < 281:
- length = v*16 - (277*16 - 67)
- n = 4
- case v < 285:
- length = v*32 - (281*32 - 131)
- n = 5
- case v < maxNumLit:
- length = 258
- n = 0
- default:
- f.err = CorruptInputError(f.roffset)
- return
- }
- if n > 0 {
- for f.nb < n {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- length += int(f.b & uint32(1<<n-1))
- f.b >>= n
- f.nb -= n
- }
-
- var dist int
- if f.hd == nil {
- for f.nb < 5 {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- dist = int(reverseByte[(f.b&0x1F)<<3])
- f.b >>= 5
- f.nb -= 5
- } else {
- if dist, err = f.huffSym(f.hd); err != nil {
- f.err = err
- return
- }
- }
-
- switch {
- case dist < 4:
- dist++
- case dist < maxNumDist:
- nb := uint(dist-2) >> 1
- // have 1 bit in bottom of dist, need nb more.
- extra := (dist & 1) << nb
- for f.nb < nb {
- if err = f.moreBits(); err != nil {
- f.err = err
- return
- }
- }
- extra |= int(f.b & uint32(1<<nb-1))
- f.b >>= nb
- f.nb -= nb
- dist = 1<<(nb+1) + 1 + extra
- default:
- f.err = CorruptInputError(f.roffset)
- return
- }
-
- // No check on length; encoding can be prescient.
- if dist > f.dict.histSize() {
- f.err = CorruptInputError(f.roffset)
- return
- }
-
- f.copyLen, f.copyDist = length, dist
- goto copyHistory
- }
-
-copyHistory:
- // Perform a backwards copy according to RFC section 3.2.3.
- {
- cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
- if cnt == 0 {
- cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
- }
- f.copyLen -= cnt
-
- if f.dict.availWrite() == 0 || f.copyLen > 0 {
- f.toRead = f.dict.readFlush()
- f.step = (*decompressor).huffmanBlock // We need to continue this work
- f.stepState = stateDict
- return
- }
- goto readLiteral
- }
-}
-
-// Copy a single uncompressed data block from input to output.
-func (f *decompressor) dataBlock() {
- // Uncompressed.
- // Discard current half-byte.
- f.nb = 0
- f.b = 0
-
- // Length then ones-complement of length.
- nr, err := io.ReadFull(f.r, f.buf[0:4])
- f.roffset += int64(nr)
- if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- f.err = err
- return
- }
- n := int(f.buf[0]) | int(f.buf[1])<<8
- nn := int(f.buf[2]) | int(f.buf[3])<<8
- if uint16(nn) != uint16(^n) {
- f.err = CorruptInputError(f.roffset)
- return
- }
-
- if n == 0 {
- f.toRead = f.dict.readFlush()
- f.finishBlock()
- return
- }
-
- f.copyLen = n
- f.copyData()
-}
-
-// copyData copies f.copyLen bytes from the underlying reader into f.hist.
-// It pauses for reads when f.hist is full.
-func (f *decompressor) copyData() {
- buf := f.dict.writeSlice()
- if len(buf) > f.copyLen {
- buf = buf[:f.copyLen]
- }
-
- cnt, err := io.ReadFull(f.r, buf)
- f.roffset += int64(cnt)
- f.copyLen -= cnt
- f.dict.writeMark(cnt)
- if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- f.err = err
- return
- }
-
- if f.dict.availWrite() == 0 || f.copyLen > 0 {
- f.toRead = f.dict.readFlush()
- f.step = (*decompressor).copyData
- return
- }
- f.finishBlock()
-}
-
-func (f *decompressor) finishBlock() {
- if f.final {
- if f.dict.availRead() > 0 {
- f.toRead = f.dict.readFlush()
- }
- f.err = io.EOF
- }
- f.step = (*decompressor).nextBlock
-}
-
-func (f *decompressor) moreBits() error {
- c, err := f.r.ReadByte()
- if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- return err
- }
- f.roffset++
- f.b |= uint32(c) << f.nb
- f.nb += 8
- return nil
-}
-
-// Read the next Huffman-encoded symbol from f according to h.
-func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
- // Since a huffmanDecoder can be empty or be composed of a degenerate tree
- // with single element, huffSym must error on these two edge cases. In both
- // cases, the chunks slice will be 0 for the invalid sequence, leading it
- // satisfy the n == 0 check below.
- n := uint(h.min)
- for {
- for f.nb < n {
- if err := f.moreBits(); err != nil {
- return 0, err
- }
- }
- chunk := h.chunks[f.b&(huffmanNumChunks-1)]
- n = uint(chunk & huffmanCountMask)
- if n > huffmanChunkBits {
- chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
- n = uint(chunk & huffmanCountMask)
- }
- if n <= f.nb {
- if n == 0 {
- f.err = CorruptInputError(f.roffset)
- return 0, f.err
- }
- f.b >>= n
- f.nb -= n
- return int(chunk >> huffmanValueShift), nil
- }
- }
-}
-
-func makeReader(r io.Reader) Reader {
- if rr, ok := r.(Reader); ok {
- return rr
- }
- return bufio.NewReader(r)
-}
-
-func fixedHuffmanDecoderInit() {
- fixedOnce.Do(func() {
- // These come from the RFC section 3.2.6.
- var bits [288]int
- for i := 0; i < 144; i++ {
- bits[i] = 8
- }
- for i := 144; i < 256; i++ {
- bits[i] = 9
- }
- for i := 256; i < 280; i++ {
- bits[i] = 7
- }
- for i := 280; i < 288; i++ {
- bits[i] = 8
- }
- fixedHuffmanDecoder.init(bits[:])
- })
-}
-
-func (f *decompressor) Reset(r io.Reader, dict []byte) error {
- *f = decompressor{
- r: makeReader(r),
- bits: f.bits,
- codebits: f.codebits,
- dict: f.dict,
- step: (*decompressor).nextBlock,
- }
- f.dict.init(maxMatchOffset, dict)
- return nil
-}
-
-// NewReader returns a new ReadCloser that can be used
-// to read the uncompressed version of r.
-// If r does not also implement io.ByteReader,
-// the decompressor may read more data than necessary from r.
-// It is the caller's responsibility to call Close on the ReadCloser
-// when finished reading.
-//
-// The ReadCloser returned by NewReader also implements Resetter.
-func NewReader(r io.Reader) io.ReadCloser {
- fixedHuffmanDecoderInit()
-
- var f decompressor
- f.r = makeReader(r)
- f.bits = new([maxNumLit + maxNumDist]int)
- f.codebits = new([numCodes]int)
- f.step = (*decompressor).nextBlock
- f.dict.init(maxMatchOffset, nil)
- return &f
-}
-
-// NewReaderDict is like NewReader but initializes the reader
-// with a preset dictionary. The returned Reader behaves as if
-// the uncompressed data stream started with the given dictionary,
-// which has already been read. NewReaderDict is typically used
-// to read data compressed by NewWriterDict.
-//
-// The ReadCloser returned by NewReader also implements Resetter.
-func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
- fixedHuffmanDecoderInit()
-
- var f decompressor
- f.r = makeReader(r)
- f.bits = new([maxNumLit + maxNumDist]int)
- f.codebits = new([numCodes]int)
- f.step = (*decompressor).nextBlock
- f.dict.init(maxMatchOffset, dict)
- return &f
-}
diff --git a/vendor/github.com/klauspost/compress/flate/reverse_bits.go b/vendor/github.com/klauspost/compress/flate/reverse_bits.go
deleted file mode 100644
index c1a02720..00000000
--- a/vendor/github.com/klauspost/compress/flate/reverse_bits.go
+++ /dev/null
@@ -1,48 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-var reverseByte = [256]byte{
- 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
- 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
- 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
- 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
- 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
- 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
- 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
- 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
- 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
- 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
- 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
- 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
- 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
- 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
- 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
- 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
- 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
- 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
- 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
- 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
- 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
- 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
- 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
- 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
- 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
- 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
- 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
- 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
- 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
- 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
- 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
- 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
-}
-
-func reverseUint16(v uint16) uint16 {
- return uint16(reverseByte[v>>8]) | uint16(reverseByte[v&0xFF])<<8
-}
-
-func reverseBits(number uint16, bitLength byte) uint16 {
- return reverseUint16(number << uint8(16-bitLength))
-}
diff --git a/vendor/github.com/klauspost/compress/flate/snappy.go b/vendor/github.com/klauspost/compress/flate/snappy.go
deleted file mode 100644
index 8a57c05b..00000000
--- a/vendor/github.com/klauspost/compress/flate/snappy.go
+++ /dev/null
@@ -1,900 +0,0 @@
-// Copyright 2011 The Snappy-Go Authors. All rights reserved.
-// Modified for deflate by Klaus Post (c) 2015.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-// emitLiteral writes a literal chunk and returns the number of bytes written.
-func emitLiteral(dst *tokens, lit []byte) {
- ol := int(dst.n)
- for i, v := range lit {
- dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
- }
- dst.n += uint16(len(lit))
-}
-
-// emitCopy writes a copy chunk and returns the number of bytes written.
-func emitCopy(dst *tokens, offset, length int) {
- dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
- dst.n++
-}
-
-type snappyEnc interface {
- Encode(dst *tokens, src []byte)
- Reset()
-}
-
-func newSnappy(level int) snappyEnc {
- switch level {
- case 1:
- return &snappyL1{}
- case 2:
- return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
- case 3:
- return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
- case 4:
- return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
- default:
- panic("invalid level specified")
- }
-}
-
-const (
- tableBits = 14 // Bits used in the table
- tableSize = 1 << tableBits // Size of the table
- tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
- tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
- baseMatchOffset = 1 // The smallest match offset
- baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
- maxMatchOffset = 1 << 15 // The largest match offset
-)
-
-func load32(b []byte, i int) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
-}
-
-func load64(b []byte, i int) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
-}
-
-func hash(u uint32) uint32 {
- return (u * 0x1e35a7bd) >> tableShift
-}
-
-// snappyL1 encapsulates level 1 compression
-type snappyL1 struct{}
-
-func (e *snappyL1) Reset() {}
-
-func (e *snappyL1) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 16 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- return
- }
-
- // Initialize the hash table.
- //
- // The table element type is uint16, as s < sLimit and sLimit < len(src)
- // and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
- var table [tableSize]uint16
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := len(src) - inputMargin
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := 0
-
- // The encoded form must start with a literal, as there are no previous
- // bytes to copy, so we start looking for hash matches at s == 1.
- s := 1
- nextHash := hash(load32(src, s))
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := 32
-
- nextS := s
- candidate := 0
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = int(table[nextHash&tableMask])
- table[nextHash&tableMask] = uint16(s)
- nextHash = hash(load32(src, nextS))
- if s-candidate <= maxMatchOffset && load32(src, s) == load32(src, candidate) {
- break
- }
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
- base := s
-
- // Extend the 4-byte match as long as possible.
- //
- // This is an inlined version of Snappy's:
- // s = extendMatch(src, candidate+4, s+4)
- s += 4
- s1 := base + maxMatchLength
- if s1 > len(src) {
- s1 = len(src)
- }
- a := src[s:s1]
- b := src[candidate+4:]
- b = b[:len(a)]
- l := len(a)
- for i := range a {
- if a[i] != b[i] {
- l = i
- break
- }
- }
- s += l
-
- // matchToken is flate's equivalent of Snappy's emitCopy.
- dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
- dst.n++
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load64(src, s-1)
- prevHash := hash(uint32(x >> 0))
- table[prevHash&tableMask] = uint16(s - 1)
- currHash := hash(uint32(x >> 8))
- candidate = int(table[currHash&tableMask])
- table[currHash&tableMask] = uint16(s)
- if s-candidate > maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
- nextHash = hash(uint32(x >> 16))
- s++
- break
- }
- }
- }
-
-emitRemainder:
- if nextEmit < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
-}
-
-type tableEntry struct {
- val uint32
- offset int32
-}
-
-func load3232(b []byte, i int32) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
-}
-
-func load6432(b []byte, i int32) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
-}
-
-// snappyGen maintains the table for matches,
-// and the previous byte block for level 2.
-// This is the generic implementation.
-type snappyGen struct {
- prev []byte
- cur int32
-}
-
-// snappyGen maintains the table for matches,
-// and the previous byte block for level 2.
-// This is the generic implementation.
-type snappyL2 struct {
- snappyGen
- table [tableSize]tableEntry
-}
-
-// EncodeL2 uses a similar algorithm to level 1, but is capable
-// of matching across blocks giving better compression at a small slowdown.
-func (e *snappyL2) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 8 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // Protect against e.cur wraparound.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntry{}
- }
- e.cur = maxStoreBlockSize
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
- nextHash = hash(now)
-
- offset := s - (candidate.offset - e.cur)
- if offset > maxMatchOffset || cv != candidate.val {
- // Out of range or not matched.
- cv = now
- continue
- }
- break
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
-
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- t += l
- // Index first pair after match end.
- if int(t+4) < len(src) && t > 0 {
- cv := load3232(src, t)
- e.table[hash(cv)&tableMask] = tableEntry{offset: t + e.cur, val: cv}
- }
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-1)
- prevHash := hash(uint32(x))
- e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
- x >>= 8
- currHash := hash(uint32(x))
- candidate = e.table[currHash&tableMask]
- e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
-
- offset := s - (candidate.offset - e.cur)
- if offset > maxMatchOffset || uint32(x) != candidate.val {
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-type tableEntryPrev struct {
- Cur tableEntry
- Prev tableEntry
-}
-
-// snappyL3
-type snappyL3 struct {
- snappyGen
- table [tableSize]tableEntryPrev
-}
-
-// Encode uses a similar algorithm to level 2, will check up to two candidates.
-func (e *snappyL3) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 8 - 1
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- )
-
- // Protect against e.cur wraparound.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntryPrev{}
- }
- e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidates := e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
- nextHash = hash(now)
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- break
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- break
- }
- }
- }
- cv = now
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
-
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- t += l
- // Index first pair after match end.
- if int(t+4) < len(src) && t > 0 {
- cv := load3232(src, t)
- nextHash = hash(cv)
- e.table[nextHash&tableMask] = tableEntryPrev{
- Prev: e.table[nextHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + t, val: cv},
- }
- }
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-3 to s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-3)
- prevHash := hash(uint32(x))
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
- }
- x >>= 8
- currHash := hash(uint32(x))
- candidates := e.table[currHash&tableMask]
- cv = uint32(x)
- e.table[currHash&tableMask] = tableEntryPrev{
- Prev: candidates.Cur,
- Cur: tableEntry{offset: s + e.cur, val: cv},
- }
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- continue
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- continue
- }
- }
- }
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-// snappyL4
-type snappyL4 struct {
- snappyL3
-}
-
-// Encode uses a similar algorithm to level 3,
-// but will check up to two candidates if first isn't long enough.
-func (e *snappyL4) Encode(dst *tokens, src []byte) {
- const (
- inputMargin = 8 - 3
- minNonLiteralBlockSize = 1 + 1 + inputMargin
- matchLenGood = 12
- )
-
- // Protect against e.cur wraparound.
- if e.cur > 1<<30 {
- for i := range e.table {
- e.table[i] = tableEntryPrev{}
- }
- e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
- }
-
- // This check isn't in the Snappy implementation, but there, the caller
- // instead of the callee handles this case.
- if len(src) < minNonLiteralBlockSize {
- // We do not fill the token table.
- // This will be picked up by caller.
- dst.n = uint16(len(src))
- e.cur += maxStoreBlockSize
- e.prev = e.prev[:0]
- return
- }
-
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := int32(len(src) - inputMargin)
-
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := int32(0)
- s := int32(0)
- cv := load3232(src, s)
- nextHash := hash(cv)
-
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := int32(32)
-
- nextS := s
- var candidate tableEntry
- var candidateAlt tableEntry
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidates := e.table[nextHash&tableMask]
- now := load3232(src, nextS)
- e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
- nextHash = hash(now)
-
- // Check both candidates
- candidate = candidates.Cur
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- offset = s - (candidates.Prev.offset - e.cur)
- if cv == candidates.Prev.val && offset < maxMatchOffset {
- candidateAlt = candidates.Prev
- }
- break
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset < maxMatchOffset {
- break
- }
- }
- }
- cv = now
- }
-
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- emitLiteral(dst, src[nextEmit:s])
-
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
-
- // Extend the 4-byte match as long as possible.
- //
- s += 4
- t := candidate.offset - e.cur + 4
- l := e.matchlen(s, t, src)
- // Try alternative candidate if match length < matchLenGood.
- if l < matchLenGood-4 && candidateAlt.offset != 0 {
- t2 := candidateAlt.offset - e.cur + 4
- l2 := e.matchlen(s, t2, src)
- if l2 > l {
- l = l2
- t = t2
- }
- }
- // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
- dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
- dst.n++
- s += l
- nextEmit = s
- if s >= sLimit {
- t += l
- // Index first pair after match end.
- if int(t+4) < len(src) && t > 0 {
- cv := load3232(src, t)
- nextHash = hash(cv)
- e.table[nextHash&tableMask] = tableEntryPrev{
- Prev: e.table[nextHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + t, val: cv},
- }
- }
- goto emitRemainder
- }
-
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-3 to s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load6432(src, s-3)
- prevHash := hash(uint32(x))
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
- }
- x >>= 8
- prevHash = hash(uint32(x))
-
- e.table[prevHash&tableMask] = tableEntryPrev{
- Prev: e.table[prevHash&tableMask].Cur,
- Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
- }
- x >>= 8
- currHash := hash(uint32(x))
- candidates := e.table[currHash&tableMask]
- cv = uint32(x)
- e.table[currHash&tableMask] = tableEntryPrev{
- Prev: candidates.Cur,
- Cur: tableEntry{offset: s + e.cur, val: cv},
- }
-
- // Check both candidates
- candidate = candidates.Cur
- candidateAlt = tableEntry{}
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- offset = s - (candidates.Prev.offset - e.cur)
- if cv == candidates.Prev.val && offset <= maxMatchOffset {
- candidateAlt = candidates.Prev
- }
- continue
- }
- } else {
- // We only check if value mismatches.
- // Offset will always be invalid in other cases.
- candidate = candidates.Prev
- if cv == candidate.val {
- offset := s - (candidate.offset - e.cur)
- if offset <= maxMatchOffset {
- continue
- }
- }
- }
- cv = uint32(x >> 8)
- nextHash = hash(cv)
- s++
- break
- }
- }
-
-emitRemainder:
- if int(nextEmit) < len(src) {
- emitLiteral(dst, src[nextEmit:])
- }
- e.cur += int32(len(src))
- e.prev = e.prev[:len(src)]
- copy(e.prev, src)
-}
-
-func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
- s1 := int(s) + maxMatchLength - 4
- if s1 > len(src) {
- s1 = len(src)
- }
-
- // If we are inside the current block
- if t >= 0 {
- b := src[t:]
- a := src[s:s1]
- b = b[:len(a)]
- // Extend the match to be as long as possible.
- for i := range a {
- if a[i] != b[i] {
- return int32(i)
- }
- }
- return int32(len(a))
- }
-
- // We found a match in the previous block.
- tp := int32(len(e.prev)) + t
- if tp < 0 {
- return 0
- }
-
- // Extend the match to be as long as possible.
- a := src[s:s1]
- b := e.prev[tp:]
- if len(b) > len(a) {
- b = b[:len(a)]
- }
- a = a[:len(b)]
- for i := range b {
- if a[i] != b[i] {
- return int32(i)
- }
- }
-
- // If we reached our limit, we matched everything we are
- // allowed to in the previous block and we return.
- n := int32(len(b))
- if int(s+n) == s1 {
- return n
- }
-
- // Continue looking for more matches in the current block.
- a = src[s+n : s1]
- b = src[:len(a)]
- for i := range a {
- if a[i] != b[i] {
- return int32(i) + n
- }
- }
- return int32(len(a)) + n
-}
-
-// Reset the encoding table.
-func (e *snappyGen) Reset() {
- e.prev = e.prev[:0]
- e.cur += maxMatchOffset
-}
diff --git a/vendor/github.com/klauspost/compress/flate/token.go b/vendor/github.com/klauspost/compress/flate/token.go
deleted file mode 100644
index 4f275ea6..00000000
--- a/vendor/github.com/klauspost/compress/flate/token.go
+++ /dev/null
@@ -1,115 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package flate
-
-import "fmt"
-
-const (
- // 2 bits: type 0 = literal 1=EOF 2=Match 3=Unused
- // 8 bits: xlength = length - MIN_MATCH_LENGTH
- // 22 bits xoffset = offset - MIN_OFFSET_SIZE, or literal
- lengthShift = 22
- offsetMask = 1<<lengthShift - 1
- typeMask = 3 << 30
- literalType = 0 << 30
- matchType = 1 << 30
-)
-
-// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
-// is lengthCodes[length - MIN_MATCH_LENGTH]
-var lengthCodes = [...]uint32{
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
- 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
- 13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
- 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
- 17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
- 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
- 19, 19, 19, 19, 20, 20, 20, 20, 20, 20,
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
- 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
- 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
- 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
- 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
- 23, 23, 23, 23, 23, 23, 23, 23, 24, 24,
- 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
- 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
- 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
- 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
- 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
- 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
- 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
- 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
- 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
- 26, 26, 26, 26, 27, 27, 27, 27, 27, 27,
- 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
- 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
- 27, 27, 27, 27, 27, 28,
-}
-
-var offsetCodes = [...]uint32{
- 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
-}
-
-type token uint32
-
-type tokens struct {
- tokens [maxStoreBlockSize + 1]token
- n uint16 // Must be able to contain maxStoreBlockSize
-}
-
-// Convert a literal into a literal token.
-func literalToken(literal uint32) token { return token(literalType + literal) }
-
-// Convert a < xlength, xoffset > pair into a match token.
-func matchToken(xlength uint32, xoffset uint32) token {
- return token(matchType + xlength<<lengthShift + xoffset)
-}
-
-func matchTokend(xlength uint32, xoffset uint32) token {
- if xlength > maxMatchLength || xoffset > maxMatchOffset {
- panic(fmt.Sprintf("Invalid match: len: %d, offset: %d\n", xlength, xoffset))
- return token(matchType)
- }
- return token(matchType + xlength<<lengthShift + xoffset)
-}
-
-// Returns the type of a token
-func (t token) typ() uint32 { return uint32(t) & typeMask }
-
-// Returns the literal of a literal token
-func (t token) literal() uint32 { return uint32(t - literalType) }
-
-// Returns the extra offset of a match token
-func (t token) offset() uint32 { return uint32(t) & offsetMask }
-
-func (t token) length() uint32 { return uint32((t - matchType) >> lengthShift) }
-
-func lengthCode(len uint32) uint32 { return lengthCodes[len] }
-
-// Returns the offset code corresponding to a specific offset
-func offsetCode(off uint32) uint32 {
- if off < uint32(len(offsetCodes)) {
- return offsetCodes[off]
- } else if off>>7 < uint32(len(offsetCodes)) {
- return offsetCodes[off>>7] + 14
- } else {
- return offsetCodes[off>>14] + 28
- }
-}